
On Modeling A Dynamic Hybrid System with
Constraints: Computing Aircraft Landing

Trajectories

Konstantin Artiouchine
Thales TRT, Domaine de Corbeville, 91404 Orsay CEDEX, France and LIX, Ecole
Polytechnique, 91128 Palaiseau, France, Konstantin.Artiouchine@polytechnique.org

Philippe Baptiste
LIX, Ecole Polytechnique, 91128 Palaiseau, France, Philippe.Baptiste@polytechnique.fr

Juliette Mattioli
Thales TRT, Domaine de Corbeville, 91404 Orsay CEDEX, France,

Juliette.Mattioli@thalesgroup.com

We study the problem of computing trajectories of a set of aircraft in their

final descent, right before landing. Trajectories must be compatible with

aircraft dynamics while keeping distance between aircraft large enough. Our

objective is to determine the order in which aircraft land as well as their

exact trajectories in order to minimize the maximal landing time. We study

a highly simplified version of this hybrid problem where time and space

are discretized. A constraint based model relying on several specific global

constraints is introduced. Computational experiments are reported.

Key words: Air-Traffic Control, Scheduling, Constraint Programming

1

1. Introduction

Systems are often modeled by differential equations derived from physical

laws that capture the dynamics of the system. Control theory is devoted to

this field of research. Hybrid systems are characterized by the interaction

of continuous and discrete models (e.g., the system is modeled by variables

taking values from a continuous set and variables taking values from a discrete

one).

Motivated by long term industrial applications of Thales, we study a

hybrid system where aircraft trajectories have to be computed when aircraft

reach the final descent in the Terminal Radar Approach CONtrol area (tra-

con). Trajectories must be compatible with aircraft dynamics while keeping

the distance between aircraft, at any time, larger than some predefined value.

Moreover, there is minimum delay between any two consecutive landings on

the same runway, under which safety is not granted. Our objective is to

determine the order in which aircraft land as well as their exact trajectories

in order to minimize the maximal landing time.

Similar problems have been studied in the literature. In the “static”

version studien in Artiouchine, Baptiste, and Dürr (2004), Beasley et al.

(2000) all possible trajectories are precomputed for each aircraft taken in-

dependently from others. From this computation, a set of possible landing

times is associated to each aircraft. The problem of sequencing aircraft on

the runway, while meeting one of the possible landing times, is then solved

as a standard scheduling problem. Once the landing times are known, cor-

responding aircraft flight plans can be computed. Note that this process,

described in Bayen and Tomlin (2003) does not ensure that trajectories do

not conflict each other since inter-distance constraints can be violated. This

drawback comes from the fact that the scheduling problem and the trajectory

2

computation problems are not solved simultaneously.

To our knowledge, the problem of taking into account all constraints si-

multaneously has not been studied yet. In this paper we focus on a highly

simplified version of the problem: The “K−King” problem. Time is dis-

cretized and airspace is modeled as a two dimensional chessboard with a

special square that represents the runway. Aircraft move as kings do on a

chessboard and the objective is to empty the chessboard as soon as possible.

An even simpler problem is to check if a move is possible or not.

More formally, starting from an initial layout described by the coordinates

(a1, b1), ..., (aK , bK) of K kings R1, . . . ,RK on the chessboard, we look for a

sequence of moves. The objective is to “empty” the N ∗N chessboard while

meeting the following constraints:

1. The distance between any pair of kings is at least 1.

2. A king is removed of the board at the time point following its arrival

on the runway square (marked with a cross on Figure 1).

3. At each time point, all kings move simultaneously to an adjacent square.

Arrows on Figure 1 show a possible simultaneous move of kings meeting all

constraints. Note that for some initial configuration, it may happen that no

move at all is possible (see Figure 2). Deciding whether the move exists or

not is the problem that we study in Section 5.

An instance of the problem and one of its optimal solution is depicted in

Figure 3. In the following, we assume that lines and columns are numbered

from 1 to N and to simplify all notations, a “fictive” square with coordinates

(0, 0) is added to the board. By convention, all pieces already removed from

the board are positioned on this square. This fictive square can be seen as

3

Figure 1: Non-Blocking Instance Figure 2: Blocking Instance

the airport where aircraft can stay as long as they wish. The squares that

do not exist are coloured in gray on Figure 2.

Figure 3: 4 kings reach the target square within 9 moves

The paper is organized as follows. We formally describe the K−King

problem and we provide an initial CSP model in Section 2. In Section 3,

we describe additional propagation rules that drastically reduce the search

space. Search strategies are defined in Section 4 and experimental results are

reported in Section 5.

4

2. CSP Model

Three sets of variables are used to build a finite domain constraint model for

the problem: Integer Position Variables, Boolean Position Variables and Exit

Time variables. A very basic model, relying on Integer Position Variables

only, can be designed but, as we will see later, the propagation is extremely

inefficient and leads to poor performance.

The position Rk(t) of the king Rk at time t is given by a pair (Xk,t , Yk,t)

of Integer Position Variables where Xk,t (respectively Yk,t) stands for the

column (resp. row) of the chessboard. As stated earlier, we assume that the

coordinates of the upper left square of the chessboard is (1, 1).

We introduce an additional set of Exit Time Variables T1, ..., Tk, that

correspond to the time at which kings leave the board.

Tk = min

{
t̃

∣∣∣ ∀t ≥ t̃,
(Xk,t

Yk,t

)
=

(0

0

)}

In the constraint model we introduce the following set of constraints in

order to enforce this equation:

∀k ∈ [1, K],∀t ∈ [1, T]
(Xk,t

Yk,t

)
=

(0

0

)
⇐⇒ Tk ≤ t

Moreover, T̄ denotes the variable corresponding to the maximum over

these variables (i.e., the time at which the chessboard becomes empty). As in

any optimal solution, all kings do not stand exactly on the same position twice

(otherwise the solution would be suboptimal) this variable can be bounded

by a constant.

Such variables allow us to define a basic CP model for the problem. Still,

we introduce additional Boolean Position Variables uk,i,j,t for additional con-

straint propagation that cannot take place directly on the initial variables.

uk,i,j,t is instantiated to “true” if and only if Rk is located at (i, j) at time t.

5

Constraint propagation rules that make use of these variables are presented

in Section 3.

Integer Position Variables Xk,t and Yk,t are linked to the Boolean Position

Variables uk,i,j,t by introducing two additional sets of variables xk,i,t and yk,j,t

which can take the value true if king k can be on line i (column j) at time

t. These variables enable us to establish a bi-directional link. At first, they

are connected to the Boolean model as follows:

∀k ∈ [1, K],∀t ∈ [1, sup(T̄)],∀i ∈ [0, N] xk,i,t =
∨

j∈[0,N] uk,i,j,t

∀k ∈ [1, K],∀t ∈ [1, sup(T̄)],∀j ∈ [0, N] yk,j,t =
∨

i∈[0,N] uk,i,j,t

Second, we establish the connection between these variable sets and the main

model:

∀k ∈ [1, K], ∀t ∈ [1, sup(T̄)], ∀i ∈ [0, N] i /∈ dom(Xk,t) ⇐⇒ ¬ xk,i,t

∀k ∈ [1, K], ∀t ∈ [1, sup(T̄)], ∀j ∈ [0, N] j /∈ dom(Yk,t) ⇐⇒ ¬ yk,j,t

Where dom(X) denotes the domain of the variable X with inf (X) = minx∈dom(X) x

and sup(X) = maxx∈dom(X) x.

2.1. The Fictive Square (0, 0)

As stated previously, kings either stay in the N × N board or are located

on the “fictive” additional square with coordinates (0, 0). So, domains of

the position variables Xk,t, Yk,t are [0, N]. In order to forbid the squares

(1, 0), ..., (N, 0), (0, 1), ...(0, N), we introduce the following set of constraints

over position variables:

∀k ∈ [1, K],∀t ∈ [1, sup(T̄)]
[
(Xk,t = 0)∧(Yk,t = 0)

]
∨

[
(Xk,t 6= 0)∧(Yk,t 6= 0)

]
For the Boolean model this restriction is easy to formulate:

∀k ∈ [1, K], ∀t ∈ [1, sup(T̄)], ∀i ∈ [1, N], uk,i,0,t = false
∀k ∈ [1, K], ∀t ∈ [1, sup(T̄)], ∀j ∈ [1, N], uk,0,j,t = false

6

2.2. Initial and Target Layouts

The initial coordinates of king Rk is (ak, bk) and at time T̄ , all kings are

located on (0, 0).

∀k ∈ [1, K]
(Xk,1

Yk,1

)
=

(ak

bk

) (Xk,sup(T̄)

Yk,sup(T̄)

)
=

(0

0

)
Such constraints allow to instantiate immediately the Integer Position Vari-

ables and do not have a direct counterpart on the Boolean model.

2.3. Inter-Distance Constraints

Kings cannot stand in adjacent squares. Hence, relying on Position Variables,

we have

∀k, k′ ∈ [1, K],∀t ∈ [1, sup(T̄)], k 6= k′
(
|Xk,t−Xk′,t| > 1

)
∨

(
|Yk,t−Yk′,t| > 1

)
Relying on boolean variables, we have a set of disjunctive constraints

∀k′ 6= k,¬uk,i,j,t
∨¬uk′,i′,j′,t for all squares i, j and i′, j′ such that |i − i′| ≤

1 and |j − j′| ≤ 1. However, this leads to a large number of constraints

that make the model slow. We refer to these as the Boolean inter-distance

constraints and present a more compact and more generic global constraint

in Section 3.

Note that there is no inter-distance constraints involving the fictive square.

In sake of clarity, we omit the corresponding conditions in the following sec-

tions.

2.4. Constraints on Dynamics

As dynamics are extremely simple, they can be easily modeled as follows:

• The length of a move is at most 1, i.e., ∀k ∈ [1, K],∀t ∈ [1, sup(T̄)−1],

|Xk,t+1 −Xk,t| ≤ 1 and |Yk,t+1 − Yk,t| ≤ 1

7

• Kings actually move, i.e., ∀k ∈ [1, K],∀t ∈ [1, sup(T̄) − 1], (Xk,t 6=
Xk,t+1

)
or (Yk,t 6= Yk,t+1)

Dynamics of a more complex system can be captured by a transition

graph Γ. Each square of the board corresponds to a vertex of Γ and there is

an edge between two vertices (x, y) and (x′, y′) if and only if a king can move

from (x, y) to (x′, y′) within the same single move.

Figure 4 shows a part of this transition graph involving the target square.

Vertices correspond to grid points and transitions are drawn as dotted arrows.

1

t

Y

2 X3

2

3

4

Figure 4: A part of transition graph

With our dynamics, for any square (x, y) with 1 ≤ x ≤ N , 1 ≤ y ≤ N

and (x, y) 6= (1, 1), we have

Γ
(x

y

)
=

{(x′

y′

) ∣∣∣ x′ ∈ [max(1, x− 1), min(x + 1, N)]

y′ ∈ [max(1, y − 1), min(y + 1, N)]

}
\

{(x

y

)}

Note again that more complex dynamics can be modeled with Γ.

Once the king has reached the square (1, 1) it can leave the board (i.e.,

it moves to (0, 0)) or it can continue.

Γ
((1

1

))
=

{(0

0

)
,
(1

2

)
,
(2

1

)
,
(2

2

)}

8

A king, once it has left the board, does not move any longer, i.e.

Γ
((0

0

))
=

{(0

0

)}
.

In the following we most often rely on the generic graph formulation. In

particular, the global constraints introduced later rely on the generic transi-

tion graph rather than on more specific dynamics.

This allows us to describe the dynamics of a single king by the following

relation:

∀k ∈ [1, K],∀t ∈ [1, sup(T̄)− 1]
(Xk,t+1

Yk,t+1

)
∈ Γ

(Xk,t

Yk,t

)
Using the Boolean Variables, we have a straightforward formulation:

∀k ∈ [1, K],∀i, j ∈ [1, N],∀t ∈ [2, sup(T̄)] uk,i,j,t ⇒
∨(

i′
j′

)
∈Γ−1(i

j)

uk,i′,j′,t−1

Moreover, we also have uk,i,j,t ⇒ ¬ uk,i,j,t+1.

9

3. Reducing Search Space with Global Con-

straints

3.1. Square Unavailability

The first specific global constraint is related to the distance constraints be-

tween kings. During the construction of the solution we can make additional

deductions based on partial information about kings’ positions.

Figure 5: Mandatory Move Detection

Consider for instance a king Rk in a corner of the board at time t. Wher-

ever it moves, we are sure that none of the three immediate neighbors of

the corner are occupied by another king at t + 1. We can of course use this

information to propagate on the position variables of all kings Rk′ , k′ 6= k at

time t + 1.

This simple mechanism can be extended as follows: Consider at some

time t, the intersection I of the immediate neighbors of all admissible (i.e.

not yet forbidden) squares for a king Rk. All squares in I are immediate

neighbors of Rk at time t + 1 hence, kings Rk′ , k′ 6= k cannot stand in the

squares in I at time t + 1.

First, note that the intersection I is empty if (|dom(Xk)| > 3) or if

(|dom(Yk)| > 3). Given this remark, it is easy to see that Algorithm 1

propagates the necessary deductions on the variables uk,i,j,t.

10

When the king is known to be in to be in a smaller than 3 × 3 square,

Algorithm 1 propagates the necessary deductions on all Boolean Position

Variables and its overall complexity is O(K).

Algorithm 1 Propagation of square unavailability for king Rk at time t

if ((|dom(Xk)| ≤ 3) ∧ (|dom(Yk)| ≤ 3) then
for i in sup(Xk)− 1 .. inf (Xk) + 1 do

for j in sup(Yk)− 1 .. inf (Yk) + 1 do
for all k′ 6= k do

uk′,i,j,t:= false

Note that this global constraint subsumes the propagation of the Boolean

inter-distance constraints as described in the previous section. Indeed, the

propagation of these constraints corresponds to the propagation of our global

constraint when variables Xk,t and Yk,t are instantiated.

3.2. Rectangle Capacity

The second set of specific global constraints is based on the following propo-

sition.

Proposition 3.1 The maximal number of kings in a rectangle l ∗ h is at

most
⌈

l
2

⌉ ⌈
h
2

⌉
Proof: There is at most one king per 2 × 2 square. So the number of kings

in a rectangle of the size l × h is limited by the number of 2 × 2 rectangles

that can be contained inside. 2

The above limit can be reached as shown in Figure 7.

This property allows us to immediately deduce the fact that there is no

solution for the instance presented in Figure 6. Indeed, we first deduce that

all kings in the bottom line have to move upward (Section 3.1) and then,

11

Figure 6: Blocking instance Figure 7: Max. rectangle capacity

based on the capacity of first 6 lines, Proposition 3.1 allows us to deduce

that there is no solution.

More formally, we introduce the following notation in order to describe

the fact that rectangle [i, i + l − 1]× [j, j + h− 1] contains the king Rk:

Rk(t) ∈ ([i, i + l− 1]× [j, j + h− 1])⇔ (i ≤ Xk,t < i + l)∧ (j ≤ Yk,t < j + h)

So, a partial solution cannot be completed if the following condition is

violated for any particular rectangle:

∀t ∈ [1, sup(T̄)],∀i, j ∈ [1, N],∀l > 0,∀h > 0

({k | Rk(t) ∈ ([i, i + l − 1]× [j, j + h− 1])}) ≤
⌈

l
2

⌉ ⌈
h
2

⌉
where #(S) stands for the cardinality of the set S.

Moreover, if the number of kings inside a rectangle becomes equal to the

capacity of this rectangle, then its inner squares are “forbidden” to other

kings. More formally, if for some rectangle ([i, i + l − 1] × [j, j + h − 1])

the cardinality of the set S = {Rk | Rk(t) ∈ ([i, i + l − 1]× [j, j + h− 1])}
of kings that are in this rectangle at t, is exactly

⌈
l
2

⌉ ⌈
h
2

⌉
then, all kings

besides those in S have to be out of the rectangle at t, i.e., ∀Rk, Rk(t) /∈
S ⇒ Rk(t) /∈ ([i, i + l − 1]× [j, j + h− 1]).

Algorithm 2 describes the constraint propagation of the constraint for

some rectangle (xmin, xmax) × (ymin, ymax) at time t. The complexity

of one pass of this algorithm is O(K). Note that for one time point, we

12

have O(N4) rectangles to test. We consider in Section 5 two variants of the

CSP model adding all such constraints or only N2 constraints only for the

rectangles with one corner fixed to (1, 1).

Algorithm 2 Propagation of the rectangle capacity constraint

Require: Xk, Yk, xmin, xmax, ymin, ymax, t
nbS:= 0
for all k do

if dom(Xk)× dom(Yk) ⊂ (xmin, xmax)× (ymin, ymax) then
nbS:= nbS + 1

if nbS >
⌈

(xmax−xmin)
2

⌉ ⌈
(ymax−ymin)

2

⌉
then

There is no possible solution
if nbS =

⌈
(xmax−xmin)

2

⌉ ⌈
(ymax−ymin)

2

⌉
then

for all k do
for all i do

for all j do
if dom(Xk)× dom(Yk) /∈ (xmin, xmax)× (ymin, ymax) then

uk,i,j,t := false

3.3. Trajectories

As stated in Section 2.4, dynamics are captured by

∀k ∈ [1, K],∀i, j ∈ [1, N],∀t ∈ [1, sup(T̄)−1] uk,i,j,t ⇒
∨(

i′
j′

)
∈Γ((i

j))

uk,i′,j′,t+1.

(1)

The symmetric equation also holds

∀k ∈ [1, K],∀i, j ∈ [1, N],∀t ∈ [2, sup(T̄)] uk,i,j,t ⇒
∨(

i′
j′

)
∈Γ−1((i

j))

uk,i′,j′,t−1.

(2)

We enforce generalized arc consistency on this constraint network (GAC-

scheme from Bessière and Régin (1997)) to eliminate non-consistent values

13

from the domains of the variables uk,i,j,t. A constraint is arc-consistent if

all the values remaining in the domains of its variables can participate in a

solution for this constraint. GAC filtering eliminates all inconsistent values

and after each deletion the propagation is done for all constraints that can

be concerned.

The following proposition shows that GAC ensures that the target square

is reachable.

Proposition 3.2 GAC on constraints (1) and (2) ensures that if the value

true belongs to the domain of some variable uk,i,j,t then there is a trajectory

for Rk from its initial location to the target square that steps over (i, j) at

time t.

Proof: First, we show that the king can reach the target square if it can

reach (i, j) at time t.

A value true is removed by GAC from the domain of uk,i,j,t when all

variables at the right side of (1) are instantiated to “false”. Thus, if GAC

has not detected an inconsistency, then for each value “true” in the domain

of a variable there is variable non-instantiated to “false” in the right part of

(1).

So, to build a path from the position (i, j) at time t to the target we build a

list of variables uk,i,j,t, uk,i′,j′,t+1, uk,i′′,j′′,t+2, etc, that contain the value “true”

in their domain. Since at time sup(dom(T)), all variables u are instantiated

to false except uk,0,0,sup(T), the last variable in this list corresponds to the

target square. Hence we have build a path from (i, j) at time t to the target

square

To show that there is a trajectory from the initial position of the king Rk

to the position (i, j) at time t we can apply similar reasoning to the second

set of inequalities (2). 2

14

The above proposition shows that this simple mechanism is extremely

efficient to propagate the existence of trajectories. Also note that this tra-

jectory propagation scheme relies on the transition graph Γ an can thus be

used for more complex dynamics.

3.4. Scheduling

Because of inter-distance constraints, we know that there are at least two

time points between two consecutive king exits.

∀k, k′ ∈ [1, K], k 6= k′, (Tk ≤ Tk′ + 2) ∨ (Tk′ ≤ Tk + 2)

This allows us to strengthen the constraint model using a redundant single

machine scheduling constraint: We associate to each kingRk an activity with

processing time 2 whose starting time is Tk and we add a constraint stating

that all these activities must be scheduled on a single machine (i.e., they

cannot overlap in time). Many constraint propagation techniques have been

proposed for single machine scheduling (see Baptiste et al. (2001) for a re-

view). We rely on edge-finding (Carlier and Pinson, 1990) and not-first/not-

last rules (Baptiste and Pape, 1996; Carlier and Pinson, 1990; Torres and

Lopez, 1999; Viĺım, 2004).

As all processing times are equal, we have also tested another propaga-

tion scheme based on the well known “all different” constraint. This global

constraint ensures that all variables in a set take pairwise distinct values.

Two variants have been proposed

• Bounds consistency algorithm described in Puget (1998). The propa-

gation ensures that for each bound of each variable can participate in

a solution for this constraint.

15

• Arc-consistency algorithm from Régin (1995) which eliminates from

domains of variables all values which can not participate in a solution

for this constraint.

For our scheduling problem, we divide and round Equation (3.4) as follows.

Two additional sets of variables τ−k = bTk/2c and τ+
k = dTk/2e are intro-

duced. These variables must satisfy the following constraints that can be

handled by an all different constraint.

∀i ∈ [1, K] ,∀j ∈ [1, K] , i 6= j τ−i 6= τ−j τ+
i 6= τ+

j

3.5. SAC Propagation

To strengthen propagation we enforce Singleton Arc Consistency (Bessière

and Debruyne, 2004), (Bartàk, 2004) on the variables Xk,2 and Yk,2 as out-

lined in Algorithm 3. This algorithm ensures that after assigning the value to

the variable it is still possible to make the problem consistent. This strength-

ened constraint propagation is strongly related to “shaving” (Carlier and

Pinson, 1994; Martin and Shmoys, 1996).

Given a constraint network P this algorithm ensures the network P |Di =

a with the domain Di of variable Vi reduced to the singleton {a} can be

made arc-consistent. If not, then this assignment will not participate in any

solution of the problem.

4. Search Strategy

Following preliminary experiments, we decided to implement the following

search strategy. First decide the time at which kings reach the exit. Second,

build a feasible sequence of transitions.

16

Algorithm 3 Singleton Consistency Propagation Algorithm

Propagate AC on all constraints
repeat

change← false
for all i ∈ V do

for all a ∈ Di do
if P |Di = a is not consistent then

Di ← Di \ {a}
Propagate AC on all constraints
change = true

until change = false

Step 1 If not all exit times are known, then among variables Tk that are

not bound, chose one such that inf (Tk) is minimal. Try then to bound

Tk to the minimal value in its domain. Upon backtracking, remove the

corresponding value from the domain of Tk.

Step 2 If all exit times are known, then compute the first time point t at

which the position of at least one king is not known (if no such t exists

then the problem is solved). Among unbound position variable Xk,t

or Yk,t, we then chose one with minimal Tk (thanks to Step 1, all Tk

values are bound). We then try all possible values in the domain of the

variable in increasing order.

We have also implemented a variant of this search strategy in which we

rely on Step 2 only, i.e. trajectories are build in lexicographical order. In this

case all Tk values are not bound so among unbound position variable Xk,t,

Yk,t, we chose one with minimal value of inf (Tk).

17

5. Experimental Results

An instance is characterized by the board size N × N , the number of kings

K and by the initial coordinates of kings (ak, bk). Several instance sets with

up to 7× 7 boards have been generated (several thousands of instances for a

given board size and several hundreds of them are non-blocking).

Two sets of experiments have been led on these instances.

• As for some instances (see, Figure 2), no move is possible, we first test

if one move can be achieved.

• We then look for a sequence of transitions to empty the chessboard as

soon as possible.

In both case, we try to evaluate the efficiency of the constraint propaga-

tion schemes that have been proposed in the paper. All experiments were

performed on Intel Pentium-M 1.5 GHz (Centrino) platform.

5.1. Can Kings Move ?

The question here is to determine if, given an initial layout, there is a feasible

move or not. Several combinations of constraint propagation algorithms have

been tested. Each line of Table 1 corresponds to a combination of algorithms

tested in our study. Each row refers to a specific constraint propagation

algorithm and a “+” means that the algorithm has been used in the the

combination associated to the corresponding column.

• Row Bool stands for the Boolean inter-distance constraints, as de-

scribed in Section 2.3.

• Row Indisp stands for the square unavailability constraint propagation

(Algorithm 1).

18

A B C D E F G H I J K L M N
Bool + + + +

Indisp + + + + + +
N4check + + + + + + +
N2prop + + +
N4prop + + + +
SAC + + + + +

Table 1: Parameters

• Rows N4check , N2prop and N4prop reefer to the rectangle capacity

constraints described in Section 3.2. With N4check, only the satisfia-

bility of the constraints is tested on all O(N4) rectangles. Propagation

is achieved either on O(N2) rectangles (one of the corners being always

(1, 1)) or on all rectangles.

• Row SAC indicates whether Singleton Arc Consistency was applied or

not (Algorithm 3).

Among instances for which no move is possible, many of them are identified

immediately by constraint propagation. We report in Figure 8 the ratio be-

tween those instances and the total number of instances for which no move is

possible. The 14 constraint propagation combinations have been tested and

for each of them, we report the results on four kind of instances 6 ∗ 5 × 5

(6 kings on a 5 ∗ 5 board, dark gray), 7 ∗ 5 × 5 (7 kings on a 5 ∗ 5 board,

black), 13 ∗ 7× 7 (13 kings on a 7 ∗ 7 board, white), 14 ∗ 7× 7 (14 kings on

a 7 ∗ 7 board, light gray). Note that SAC plays a crucial role for detection

of move absence. Almost 100% of all instances are detected by constraint

propagation even when SAC is used alone. The very few remaining 13∗7×7

instances that are not detected by SAC propagation are detected as soon

as extra propagation relying on rectangle capacity or on square unavailabil-

ity is performed. According to these experiments, it seems that, beyond

19

Figure 8: Results

SAC, the most crucial ingredient of the propagation scheme are the square

unavailability propagation rules.

5.2. How To Empty the Chessboard ?

Several combination of propagation rules have been tested to compute all

minimal trajectories, i.e., all trajectories such that the date at which the

board is empty is minimal. All tested variants are listed in Table 2. Column

“Dyn” stands for the propagation of dynamics as described in Section 3 and

column Sched indicates whether the search strategy follows the two steps of

Section 4 (first decide the time at which kings reach the exit, second build a

feasible sequence of transitions) or attempts to build the trajectories (Step 2

only). Finally, the results of the initial variant of the problem based only on

the variables Tk, Xk,t and Yk,t with the search strategy based on the trajectory

construction are reported in the column XY .

20

Dyn N4prop Sched
K +
L
M + +
N +
O + +
P +
Q + + +
R + +

Table 2: Parameters

Figures 9, 10, 11, 12, 13 and 14 report the results obtained on all instances

of corresponding sizes for which a solution was found by all the variants of

the problem. For each set and each combination of propagation rule, the

average number of backtracks, and average time in milliseconds is reported

on a logarithmic scale. Surprisingly, when the scheduling problem is solved

before the computing the trajectories (K, M, O, Q), the first solution found

is always optimal and the overall number of backtracks is kept low. The

two other ingredients (dynamics constraint propagation, rectangle capacity

constraint) are very useful to reduce the search space.

However, without the rectangle constraints propagation, there is about

10 percent of of the largest instances (13 kings on 7 × 7 board) which were

not solved by this strategy within 5 minutes (variants K and O).

The initial variant makes much more backtracks than more complex ones

but goes faster on the small instances. This difference is not as strong as

for the largest instances which were accessible for our implementation of the

boolean model.

21

Figure 9: Backtracks on 6 ∗ 5× 5 Figure 10: Time on 6∗5×5 instances

Figure 11: Backtracks on 9 ∗ 6× 6 Figure 12: Time on 9∗6×6 instances

Figure 13: Backtracks on 13 ∗ 7× 7 Figure 14: Time on 13∗7×7 instances

5.3. Modified Problem

We have tested two variants of the initial problem that can be easily imple-

mented within our framework.

• In the first variant, a king cannot immediately return to the square it

has left and the time between two consecutive exits is at least 3. These

22

two additional constraints model slightly more complex dynamics of

aircraft together with the fact that the landings have to be spaced of

some arbitrary value for safety reasons.

• In the second variant, in addition to the previous constraints, a small

“wall”, from (2, 1) to (2, 3) in our experiments, forbids a region of the

airspace. This models the fact that a sector of the airspace is closed

(this typically happens for military operations).

The combinations of Table 2 have been used gain in this experimental study.

Figures 15, 16, 17, 18 report the number of backtracks required to find the

optimal solution (and prove its optimality) for all 6 ∗ 5× 5 and 50 randomly

generated 8∗6×6 instances of the first variant. Propagation of dynamics do

improve the overall efficiency of the algorithm (L vs. P, N vs. R) while the

propagation of rectangle constraints is rather small. Also note that the search

strategy based on the resolution of the scheduling problem outperforms the

strategy based on pure trajectory construction. Finally, the initial variant is

not competitive. Figures 20 and 19 report the same results for the small wall

variant for 5× 5 board with 6 kings. Compared to our previous experiments

appears that the search strategy based on the scheduling problem does not

improve the behavior of the search procedure but, however, the first solution

found is optimal. Finally, the initial variant of the model (shown in XY

column) was not able to solve about one third of the instances in one minute

and the average was computed over the instances which were solved.

6. Conclusion

We have introduced a CSP model to solve a complex optimization problem in

which aircraft trajectories and landing times are computed to minimize the

23

Figure 15: Backtracks on 6 ∗ 5× 5 Figure 16: Time on 6∗5×5 instances

Figure 17: Backtracks on 8 ∗ 6× 6 Figure 18: Time on 8∗6×6 instances

Figure 19: Backtracks on 6∗5×5 with
a wall

Figure 20: Time on 6∗5×5 instances
with a wall

maximal landing time of aircraft waiting in the Terminal Radar Approach

CONtrol area. Several models and several constraint propagation algorithms

have been introduced and tested and we have highlighted the key ingredients

of a successful CP approach for this problem. We have also shown that our

24

model could be extended to deal with more complex situations.

There are several limitations to our approach but we believe that the

most important is that we are not able to deal with large problems and thus,

we have to roughly discretize time and space. There are several directions

in which we could improve our search procedure: The search strategy could

be improved with “No-Good recoding” to avoid solving exactly the same

subproblem several times. We could also try to improve the propagation

process.

Finally, we would like to mention that we have not been able to prove that

the problem of deciding whether a move is possible or not is NP-Complete.

So it could be that there is polynomial time algorithm for this problem.

Acknowledgment

The authors are grateful to Jean-Marc Steyaert for several enlightening dis-

cussions on hybrid systems.

References

Artiouchine, K., P. Baptiste, C. Dürr. 2004. Runway sequencing with holding

patterns. Tech. rep., Laboratoire d’Informatique de l’Ecole Polytechnique.

Baptiste, P., C. Le Pape, W. Nuijten. 2001. Constraint-based Scheduling .

Kluwer.

Baptiste, P., C. Le Pape. 1996. Edge-finding constraint propagation algo-

rithms for disjunctive and cumulative scheduling. Proceedings of the fif-

teenth workshop of the U.K. planning special interest group.

25

Bartàk, R. 2004. A new algorithm for singleton arc consistency. Proceedings

of FLAIRS-04 .

Bayen, A.M., C.J. Tomlin. 2003. Real-time discrete control law synthesis for

hybrid systems using milp: Application to congested airspace. American

control conference.

Beasley, J.E., M. Krishnamoorthy, Y.M.Sharaiha, D.Abramson. 2000.

Scheduling aircraft landings - the static case. Transportation Science 34

180–197.

Bessière, C., R. Debruyne. 2004. Theoretical analysis of singleton arc consis-

tency. Proceedings of ECAI-04 workshop on Modeling and Solving Problems

with Constraints .

Bessière, C., J.-C. Régin. 1997. Arc consistency for general constraint net-

works: preliminary results. Proceedings of IJCAI, Nagoya, Japan. 398–404.

Carlier, J., E. Pinson. 1990. A practical use of jackson’s preemptive schedule

for solving the job-shop problem. Annals of Operations Research 26 269–

287.

Carlier, J., E. Pinson. 1994. Adjustments of heads and tails for the job-shop

problem. European Journal of Operational Research 78 146–161.

Martin, P. D., D. B. Shmoys. 1996. Approach to computing optimal schedules

for the job-shop scheduling problem. Proceedings of 5th Conference on

Integer Programming and Combinatorial Optimization.

Puget, J.-F. 1998. A fast algorithm for the bound consistency of alldiff

constraints. Proceedings of AAAI-98 . 359–366.

26

Régin, J.-C. 1995. Développement d’outils algorithmiques pour l’Intelligence

Artificielle. application à la chimie organique. Ph.D. thesis, Université

Montpellier II.

Torres, P., P. Lopez. 1999. On not-first/not-last conditions in disjunctive

scheduling. European Journal of Operational Research .

Viĺım, P. 2004. o(n log n) filtering algorithms for unary resource con-

straint. Jean-Charles Régin, Michel Rueher, eds., Proceedings of CP-AI-

OR, LNCS , vol. 3011. Springer, 335–347.

27

