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Abstract. We study a global constraint, the “inter-distance constraint”
that ensures that the distance between any pair of variables is at least
equal to a given value. When this value is 1, the inter-distance con-
straint reduces to the all-different constraint. We introduce an algorithm
to propagate this constraint and we show that, when domains of the
variables are intervals, our algorithm achieves arc-B-consistency. It pro-
vides tighter bounds than generic scheduling constraint propagation al-
gorithms (like edge-finding) that could be used to capture this constraint.
The worst case complexity of the algorithm is cubic but it behaves well
in practice and it drastically reduces the search space. Experiments on
special Job-Shop problems and on an industrial problem are reported.
Keywords: Global Constraint, Scheduling, Constraint Propagation.

1 Introduction

We introduce a global constraint, the “inter-distance constraint” that ensures
that the distance between any pair (Si, Sj) of variables in some set {S1, ..., Sn}
is not smaller than a given value p, i.e., ∀i, j, |Si − Sj | ≥ p. To our knowledge,
this constraint has been introduced for the first time by Régin [20]. When p is
1, the inter-distance constraint reduces to the well-known all-different constraint
[19], [18], [13].

This study was motivated by an industrial application for Air Traffic Man-
agement in the Terminal RAdar Control Area of airports [2]. When aircraft reach
the final descent in the “Terminal Radar Approach CONtrol” area (tracon),
a set of disjoint time windows in which the landing is possible, can be auto-
matically assigned to each aircraft. The objective is then to determine landing
times within these time windows which maximize the minimum time elapsed
between consecutive landings. The decision variant of this problem, (i.e., when
the minimum time elapsed between consecutive landings is fixed and when the
question is to determine if there are feasible landing times or not), can be mod-
eled with an inter-distance constraint. The inter-distance constraint is also useful
to model scheduling situation in which all jobs that have to be processed on the



same machine have the same processing time. This is often the case in man-
ufacturing scheduling problems (see for instance the testbed proposed by Ilog
www2.ilog.com/masclib described in [16]).

The objective of this paper is to present a global constraint propagation
algorithm for the inter-distance constraint. As explained in Section 2, stan-
dard scheduling constraint propagation algorithms, like edge-finding or “Not-
First/Not-Last”, can be used to model this constraint. We also show that these
more generic algorithms do not perform all possible deductions. An algorithm
that determines whether the constraint is globally consistent or not is described
in Section 3. We then introduce propagation rules (Section 4) and a polynomial
time algorithm to propagate the inter-distance constraint (Section 5). We show
that, when variables domains are intervals, our algorithm achieves the arc-B-
consistency (i.e., arc consistency restricted to the bounds of the domains of the
variables [12]) of the global constraint and hence performs the best possible fil-
tering. The worst case complexity of the algorithm is cubic but it behaves well
in practice and it drastically reduces the search space. Experiments (Section 6)
on special Job-Shop problems and on our industrial application are reported.

2 Inter-Distance Constraint vs. Scheduling Constraints

Régin [20] relies on the sequencing constraint [21] to propagate the “inter-
distance constraint”. However, we believe it is somewhat easier to consider this
constraint as a pure scheduling constraint. To each variable Si, we associate a job
i starting at time Si and whose processing time is p. The disjunctive constraint
directly ensures that activities are not processed simultaneously and hence, the
distance between any pair of starting times is at least p. So both models are
identical.

Over the last decade, several resource constraint propagation algorithms have
been designed to address a variety of scheduling situations (see [3] for a review).
We first describe two constraint propagation schemes known as “Edge-Finding”
and “Not-First/Not-Last” that are widely used in the literature for disjunctive
scheduling. Then we show that they can be improved when all processing times
are equal.

2.1 Edge-Finding

The edge-finding algorithm [7], [8], [14] is one of the most well known OR al-
gorithm integrated in CP. This global constraint propagation algorithm for dis-
junctive scheduling is a key ingredient for solving complex scheduling problems
such as the Job-Shop Scheduling problem

The term “Edge-Finding” denotes both a “branching” and a “bounding”
technique [1]. The branching technique consists of ordering jobs that require the
same resource. At each node, a set of jobs Ω is selected and, for each job i ∈ Ω,
a new branch is created where i is constrained to execute first (or last) among
the jobs in Ω. The bounding technique consists of deducing that some jobs from



a given set Ω must, can, or cannot, execute first (or last) in Ω. Such deductions
lead to new ordering relations (“edges” in the graph representing the possible
orderings of jobs) and new time bounds, i.e., strengthened earliest start times
and latest end times of jobs.

In the following, rΩ and dΩ respectively denote the smallest of release dates
and the largest deadline of the jobs in Ω. Moreover, pΩ is the sum of the pro-
cessing times of the jobs in Ω. Finally, let iÀ Ω mean that i executes after all
the jobs in Ω and let Si be the variable representing the starting time of the
job i. The following rules capture the “essence” of the Edge-Finding bounding
technique:

∀Ω,∀i /∈ Ω, [dΩ − rΩ∪{i} < pΩ + pi]⇒ [iÀ Ω]

∀Ω,∀i /∈ Ω, [iÀ Ω]⇒ [Si ≥ max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)]

An algorithm that performs all the time-bound adjustments inO(n2) is presented
in [7]. Another variant of the Edge-Finding technique is presented in [8]. Its time
somplexity is O(n log n) but it requires much more complex data structures.

2.2 Not-First/Not-Last

The algorithms presented earlier focus on determining whether a job i must
execute first (or last) in a set of jobs Ω ∪ {i} requiring the same resource. A
natural complement consists of determining whether i can execute first (or last)
in Ω ∪ {i}. If not, i is “Not-First” and cannot start before at least one job in Ω
is completed. This leads to the following rules [17]:

∀Ω,∀i /∈ Ω, [dΩ − ri < pΩ + pi]⇒ ¬(i¿ Ω)

∀Ω,∀i /∈ Ω,¬(i¿ Ω)⇒ Si ≥ min
j∈Ω

Sj + pj

A quadratic algorithm is described in [4]. Alternative approaches can be
found in [23], [9], [24].

2.3 Missed Deductions

It is well known that Edge-Finding and Not-First/Not-Last propagation rules
do not ensure the consistency of the global disjunctive constraint (determining
whether this constraint is consistent is NP-Complete in the strong sense). What
happens when processing times are equal ? The following examples show that
Edge-Finding and Not-First/Not-Last do not perform all possible deductions.

In the example described in Figure 1, 6 jobs with processing time 2 are to
be scheduled on a single machine. The time window (release dates / deadlines)
of a job is drawn as white rectangle. The job itself (black rectangle) has to
be scheduled inside this window. There is no feasible schedule (the machine
is occupied from 3 to 9 because of the last three jobs, hence 3 jobs have to
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Fig. 1. Edge-Finding and Not-First/Not-Last do not detect all inconsistencies

be scheduled in two disjoint time windows of size 3; contradiction) but neither
edge-finding nor Not-First/Not-Last rule detect this. In the example of Figure 2,
3 jobs with processing time 5 have to be scheduled on a single machine. There is
a feasible schedule but neither edge-finding nor Not-First/Not-Last deduce that
the third job cannot start earlier than 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 2. Edge-Finding and Not-First/Not-Last do not achieve Arc-B-Consistency

3 Feasibility test

From now on, we focus on the scheduling problem with identical processing
times. Garey, Johnson, Simons and Tarjan [10] have introduced an O(n log n)
algorithm to solve this problem. We describe a cubic version of this algorithm
based on similar techniques as in [10]. We have however modified the presentation
of the algorithm (and also the proofs) to be able to introduce the adjustments
of release dates and deadlines described in Sections 4 and 5.

3.1 Why EDD Fails

EDD (Earliest DeaDline) is a dispatching rule that builds a schedule chrono-
logically as follows: Whenever the machine is idle, select among the jobs that
are released before or at the current time point the job with minimal deadline.
Schedule the job and iterate. When preemption is allowed, the preemptive EDD
rule computes a feasible schedule if one such exists [7] (this also holds in the
general case with arbitrary processing times). It is well known that this is not
the case in the non-preemptive case. We show in Figure 3 a 3 job instance with



identical processing times for which EDD fails while there is a feasible schedule.
When processing times are all equal, Garey, Johnson, Simons and Tarjan pro-
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Fig. 3. EDD fails while there is a feasible schedule.

pose to modify the EDD rule to ensure that it builds a feasible schedule, if one
exists. The modification consists in introducing a set of forbidden regions F in
which no job can start on any feasible schedule.

Given a set of forbidden regions F , the modified EDD rule keeps the schedule
idle when the current time point t belongs to F (see Algorithm 1). Throughout
this algorithm, U denotes the set of yet unscheduled jobs. At each iteration one
job of U is scheduled.

Algorithm 1 Modified EDD schedule

1: U := {1, ..., n}
2: t := mini∈U ri
3: while U 6= ∅ do

4: t := min(t,mini∈U ri)
5: if t ∈ F then

6: t := min{t′ ≥ t : t′ /∈ F}
7: Let k be the job with smallest deadline s.t. rk ≤ t
8: Start job k at time t, U := U − {k}, t := t+ p

3.2 Computing Forbidden Regions

The crucial point is how to compute the set F of “forbidden regions” . We
first provide an intuitive description of this mechanism. F is built step by step,
starting from F = ∅. Given a set of jobs X, compute an upper bound lst of
the largest time point such that there is a feasible schedule of the jobs in X
that is idle before lst and in which no job starts in F (lst stands for latest
start time). If lst is smaller than mini∈X ri then there is no feasible schedule.
If lst − p < mini∈X ri then no job can start after lst − p and before mini∈X ri
(if this were the case, the job would finish after lst . Thus, we would not have a
feasible schedule). So no job starts in the interval [lst − p+1,mini∈X ri− 1] and
this interval is added to the set of forbidden regions F .

To give a formal description of this mechanism, we introduce the following
notations:



Definition 1. Given a time point t, an integer q and a set of forbidden regions
F , ect(F, t, q) and lst(F, t, q) respectively denote the earliest completion time
(resp. latest start time) of a schedule of q jobs, with no release date and no
deadline, starting after or at (resp. completed before or at) t.

Algorithms 2 and 3 compute respectively ect(F, t, q) and lst(F, t, q). The proof
of correctness is easy to make by induction on q and is skipped.

Algorithm 2 Earliest Completion Time of q jobs starting after or at t

1: for i = 1 to q do

2: if t ∈ F then

3: t := min{t′ ≥ t : t′ /∈ F}
4: t := t+ p
5: ect(F, t, q) = t

Algorithm 3 Latest Start Time of q jobs to be completed before or at t

1: for i = 1 to q do

2: t := t− p
3: if t ∈ F then

4: t := max{t′ ≤ t : t′ /∈ F}
5: lst(F, t, q) = t

We are now ready to explain Algorithm 4 that computes all forbidden regions.
In the following, ∆ (r,d) stands for the set of jobs {i : r ≤ ri,di ≤ d} and
|∆ (r, d)| is the cardinality of this set.

Algorithm 4 Forbidden Regions

1: F := ∅
2: for all release date r taken in non-increasing order do

3: lst :=∞
4: for all deadline d taken in non-increasing order do

5: lst := min(lst, lst(F, d, |∆ (r, d)|))
6: if lst < r then

7: There is no feasible schedule
8: else if r ≤ lst < r + p then

9: F := F ∪ [lst − p+ 1, r − 1]

Lemma 1. If Algorithm 4 fails then there is no feasible schedule. Moreover, in
any feasible schedule, jobs do not start in F .



Proof. Assume that the lemma holds for all the regions that have been added
by Algorithm 4 up to the current iteration (r, d). If lst < r then in any feasible
schedule, one job of ∆ (r, d) starts before the minimal release date in this set;
contradiction. Now assume that r ≤ lst < r + p (otherwise no forbidden region
is added to F and our claim holds up to the next iteration). If there is a feasible
schedule in which a job u starts at t ∈ [lst − p+ 1, r − 1] then no job of ∆ (r, d)
is scheduled before t+ p ≥ lst + 1 which contradicts the definition of lst . ut

Lemma 2. Given two time points t1 ≤ t2, an integer q and a set of forbidden
regions F , ect(F, t1, q) > t2 if and only if lst(F, t2, q) < t1.

Proof. If ect(F, t1, q) ≤ t2 then there is a schedule of q jobs that can be executed
between t1 and t2. Hence a schedule of q jobs completed at t2 with no starting
times in F can start after or at t2. Hence lst(F, t2, q) ≥ t1. ut

Lemma 3. If Algorithm 4 does not fail, there is a feasible schedule.

Proof. We claim that, given the set of forbidden regions F computed by Algo-
rithm 4, a feasible schedule is built by Algorithm 1 when applied to the set of
forbidden regions F . Let us assume this is not true and let k′ denote the first
job that is completed after its deadline by Algorithm 1. We iteratively build a
set of jobs S′. Initially, S′ = {k′}; we then add in S′ all the jobs preceding k′

until we either reach a time point t /∈ F at which all jobs released before t are
scheduled or until we reach a job u with du > dk′ .

– If we have reached a time point t /∈ F at which all jobs released before t are
scheduled. Let j′ be the job in S′ with minimal release date. So, at some step
of the algorithm the interval rj′ , dk′ was considered. All jobs of S ′ belong
to this interval. When building the EDD schedule of this set, note that the
forbidden regions that are encountered are those in the set F as built at
iteration r. Indeed, forbidden regions added at a later iteration end before r
so they do not interact with jobs considered at this step.
Also note that time points at which the machine is idle are forbidden (these
time points do not correspond to release dates because of the construction
of S′). Hence the shape of the EDD schedule after rj′ up to dk′ is exactly
the same as the one computed by the forward scheduling algorithm when
applied to the same set of jobs with the forbidden list built while processing
the release date r. Hence ect(F, rj′ , |∆ (rj′ , dk′)|) > dk′ . So, according to
Lemma 2, lst(F, dk′ , |∆ (rj′ , dk′)|) < rj′ . Hence Algorithm 4 would declare
the failure.

– If we have reached a job u with du > dk′ . Then All jobs i in S′ are such
that di ≤ dk′ and ri > ru (otherwise EDD would have scheduled another
job than u at time ru). As before, let j′ denote the job in S′ with minimal
release date. So S′ is a subset of ∆ (rj′ , dk′).
Algorithm 1 fails, hence, ect(F, ru + p, |S

′|) > dk′ . So, according to Lemma
2, lst(F, dk′ , |S′|) < ru + p. Since no failure has been triggered, we have also
ru < rj′ ≤ lst(F, dk′ , |S′|). Hence, ru must belong to a forbidden region
declared by Algorithm 4, but it is not the case. ut



3.3 Runtime Analysis

It is easy to see that there are no more than n forbidden regions hence algorithms
2 and 3 can be implemented in quadratic time. This would lead to an overall
O(n4) algorithm. We can improve this to cubic time as follows:

When a new forbidden region is created (Algorithm 4), its endpoint is smaller
than or equal to the endpoints of the previously build forbidden regions. So, we
can easily maintain – in constant time – the set of forbidden regions as a list of
ordered disjoint intervals whenever a new interval is added. Finally, note that
forbidden regions end right before a release date. Hence, it is easy to maintain the
set F in such a way that we have no more than n forbidden regions throughout
the algorithm.

Moreover, we can incrementally compute min{t′ ≥ t : t′ /∈ F} since t increases
at each iteration. Moreover, inside the loop, all operations can be done in linear
time except min{t′ ≥ t : t′ /∈ F}. Hence the overall complexity of Algorithm
1 is O(n2 + |F |) since overall time needed for the computations of mini∈U ri is
linear if all jobs are sorted in increasing order of release dates. Following the
same remarks, both Algorithms 2 and 3 run in O(q + |F |).

This directly ensures that Algorithm 4 runs in O(n3).

4 Propagation Rules

From now on, we assume that there is a feasible schedule. We denote by F
the set of forbidden regions computed by Algorithm 4. The following lemmas
characterize a set of time points at which jobs cannot start. Lemma 7 shows
that all other time points are possible starting times.

Lemma 4 (Internal Adjustment). Given two time points r, d, and an integer
0 ≤ q ≤ |∆ (r, d)| − 1, job i cannot start in

Ir,d,q = [lst(F, d, |∆ (r, d)| − q) + 1, ect(F, r, q + 1)− 1].

Proof. Assume there is a feasible schedule in which a job i starts at time t <
ect(F, r, q + 1), for some q ∈ {0, ..., |∆ (r, d)| − 1} (if t ≥ ect(F, r, q + 1) then
the job does not start in Ir,d,q). Given the definition of ect , at most q jobs are
completed strictly before ect(F, r, q+1). Hence |∆ (r, d)| − q jobs are completed
after t. So t ≤ lst(F, d, |∆ (r, d)| − q), i.e., job i does not start in the interval
[lst(F, d, |∆ (r, d)| − q) + 1, ect(F, r, q + 1)− 1]. ut

Note that in the above lemma, we could restrict to jobs i ∈ ∆ (r, d) but it also
works for jobs i /∈ ∆ (r, d).

Lemma 5 (External Adjustment). Given two time points r, d and an integer
0 ≤ q ≤ |∆ (r, d)|, a job i /∈ ∆ (r, d) cannot start in

Er,d,q = [lst(F, d, |∆ (r, d)| − q + 1) + 1, ect(F, r, q + 1)− 1].



Proof. Assume there is a feasible schedule in which a job i /∈ ∆ (r, d) starts at
time t < ect(F, r, q+1), for some q ∈ {0, ..., |∆ (r, d)|−1}. Given the definition of
ect , at most q jobs are completed strictly before ect(F, r, q+1). Hence |∆ (r, d)|−q
jobs of ∆ (r, d) as well as job i are completed after t. So t ≤ lst(F, d, |∆ (r, d)| −
q + 1), i.e., job i does not start in the interval [lst(F, d, |∆ (r, d)| − q + 1) +
1, ect(F, r, q + 1)− 1]. ut

In the following, we say that a time point t ≥ ri is a candidate starting time
for job i if it has not been discarded by internal and/or external adjustment
(Lemmas 4, 5). Given a candidate starting time t for job i, we note I ′ the the
instance obtained from I in which we have replaced ri by t and di by t + p.
So in I ′ the job i is fixed, and our objective is to prove that there is a feasible
schedule for this instance. This claim is proven in Lemma 8 but we first need
some technical lemmas.

Definition 2. The associated deadline of a release date r is the largest dead-
line d such that lst(F, d, |∆ (r, d)|) is minimal.

Lemma 6. If Algorithm 4 declares a forbidden region [lst ′− p+1, r− 1] for the
instance I ′ that strictly extends the forbidden region [lst − p+1, r− 1] computed
for the instance I then the associated deadline of r for the instance I ′ is greater
than or equal to t+ p.

Proof. Let r be the largest release date of instance I ′ such that

– its associated deadline d is strictly lower than t+ p
– lst(F ′, d, |∆ (r, d)|) < lst(F, d, |∆ (r, d)|).

Note that if r does not exist then our lemma holds. When scheduling backward
from d with the forbidden set F , at least one starting time must belong to F ′

but not to F otherwise lst(F, d, |∆ (r, d)|) = lst(F ′, d, |∆ (r, d)|). Let then t be
the largest starting time in this backward schedule that belongs to F ′ but not to
F and let r′ > r be the release date that makes t forbidden in the new instance.
As r′ > r, we know that the associated deadline d′ of r′ is greater than or equal
to t+ p. When back-scheduling |∆ (r′, d)| jobs from d using F ′, no starting time
belongs to F ′ (recall that t is maximal). Hence, the corresponding latest start
time is larger than t+ p (on the back-schedule) otherwise t ∈ F . So we have

lst(F ′, d′, |∆ (r′, d′)|) < lst(F ′, d, |∆ (r′, d)|).

Now note that lst(F ′, d′, |∆ (r, d′)|) = lst(F ′, lst(F ′, d′, |∆ (r′, d′)|), q) where q is
exactly |{i : r ≤ ri < r

′, di ≤ d}|, or similarly,

lst(F ′, d, |∆ (r, d)|) = lst(F ′, lst(F ′, d, |∆ (r′, d)|), q).

As the function h→ lst(F ′, h, q) is non decreasing, we have

lst(F ′, d′, |∆ (r, d′)|) ≤ lst(F ′, d, |∆ (r, d)|).

This contradicts the fact that d is the associated deadline of r. ut



In the the proofs of the subsequent lemmas, we use the following notation:
given a release date r and deadline d,

Θi(r, d) =

{

0, if r ≤ ri ≤ di ≤ d

1, otherwise

Lemma 7. If t has not been discarded by the propagation, for any v, lst(F, t, v) /∈
F ′.

Proof. Let v be the first integer value such that lst(F, t, v) ∈ F ′. Let then r >
lst(F, t, v) be the release date that made the time point lst(F, t, v) forbidden.
According to Lemma 6, d, the associated deadline of r, is greater than or equal
to t+ p. So we have

lst(F, t, v) < r ≤ lst(F ′, d, |∆ (r, d)|+Θi(r, d)) < lst(F, t, v) + p

Now let q denote the largest integer such that lst(F ′, d, q) ≥ t. Given this defi-
nition, we have

lst(F ′, d, |∆ (r, d)|+Θi(r, d)) ≥ lst(F ′, t, |∆ (r, d)|+Θi(r, d)− q)

Because t has not been discarded by propagation, we immediately have

lst(F ′, t, |∆ (r, d)|+Θi(r, d)− q) ≥ r

and thus we must have

|∆ (r, d)|+Θi(r, d)− q < v

and because of our hypothesis on v,

lst(F ′, t, |∆ (r, d)|+Θi(r, d)−q) = lst(F, t, |∆ (r, d)|+Θi(r, d)−q) < lst(F, t, v)+p

This contradicts the fact that the distance between two starting times in any
back-schedule is at least p. ut

The following lemma shows that we achieve Arc-B-Consistency on the global
constraint.

Lemma 8 (Feasible Starting Times). If t has not been discarded by the
propagation, there is a feasible schedule in which i starts at t.

Proof. If the instance I ′ is not feasible the Algorithm 4 fails at some iteration.
Let then r and d be the corresponding release date and deadline. First assume
that d < t + p then, when applying the back-scheduling algorithm from d, we
must have at least one starting time in F ′ and not in F (otherwise, we would
have the same lst value). By the same reasoning as in Lemma 6 we could prove
that there is also a deadline d′ ≥ t+ p such that the backward schedule fails.



So now assume that d ≥ t+ p. We have

lst(F ′, d, |∆ (r, d)|+Θi(r, d)) < r.

As we know that i starts exactly at t, we can decompose the backward scheduling
(before t and after t+ p). And we get a better bound on the latest possible start
time, i.e.,

max
q
{lst(F ′, t, q) : lst(F ′, d, |∆ (r, d)|+Θi(r, d)− q) ≥ t} < r.

The back-scheduling algorithm computes exactly the same schedules before t
when applied either to F or to F ′. Moreover, for any v, lst(F, t, v) /∈ F ′. So, the
above equation leads to

max
q
{lst(F, t, q) : lst(F, d, |∆ (r, d)|+Θi(r, d)− q) ≥ t} < r.

So propagation would have detected that t is not a possible starting time. ut

5 A Constraint Propagation Algorithm

For any deadline d, all intervals Ir,d,q and Er,d,q are completed at the same time
ect(F, r, q + 1) − 1. So we define Ir,q as the maximum, over all d, of Ir,d,q. It is
then easy to compute all intervals Ir,q in cubic time. The situation is a bit more
complex for intervals Er,d,q as we cannot merge all these intervals since external
adjustments are only valid for jobs that are not in ∆ (r, d). To solve this issue, we
consider jobs in non-decreasing order of deadlines and we add, at each iteration,
all intervals corresponding to external adjustments associated to this deadline.
This is valid since these intervals are used (Algorithm 5) to adjust release dates
of jobs with a greater deadline.

The algorithm runs in cubic time. Indeed, there are O(n2) values to precom-
pute and each time, this can be done in linear time. Moreover, the union of two
intervals can be done in constant time and finally, the adjustment rk = min{t ≥
rk, t /∈ ∪r,qIr,q ∪Er,q} can be computed in quadratic time since there are O(n2)
intervals to consider. To simplify the presentation of the algorithm, we do not
explicitly define the data structure in which we store the intervals Ir,q and Er,q.
In practice, we rely on a quadratic array indexed by jobs.

A similar algorithm can be used to adjust deadlines.

6 Experiments

Our constraint propagation algorithm has been tested on two disjunctive schedul-
ing problems. The first one is a special case of the Job-Shop scheduling problem
in which all operations on the same machine have the same processing time. The
second one is a combinatorial problem from Air-Traffic Management (ATM). In
both case, we briefly describe the problem and the CP model but we do not de-
scribe the branching scheme nor the heuristics used. The objective of this section
is only to evaluate the efficiency of the Inter-Distance Constraint Propagation
Scheme.



Algorithm 5 An O(n3) Constraint Propagation Algorithm

1: Precompute all lst(F, d, i) and ect(F, r, i) values
2: Initialize Ir,q and Er,q to ∅
3: for all deadline d do

4: for all release date r do

5: for all q ≤ |∆ (r, d)| − 1 do

6: Ir,q = Ir,q ∪ [lst(F, d, |∆ (r, d)| − q) + 1, ect(F, r, q + 1)− 1]
7: for all job k taken in non-decreasing order of deadlines do

8: rk = min{t ≥ rk, t /∈ ∪r,q(Ir,q ∪ Er,q)}
9: for all release date r do

10: for all q ≤ |∆ (r, dk)| do

11: Er,q = Er,q ∪ [lst(F, dk, |∆ (r, dk)| − q + 1) + 1, ect(F, r, q + 1)− 1]

6.1 Job-Shop Scheduling

The Job-Shop Scheduling Problem consists of n jobs that are to be executed us-
ing m machines. Each job consists of m operations to be processed in a specified
order. Each operation requires a specified machine and each machine is required
by a unique activity of each job. The Job-Shop is an optimization problem. The
goal is to determine a solution with minimal makespan and prove the optimality
of the solution. In this paper we study a variant of the problem in which pro-
cessing times of operations that require the same machine are identical. Even
with this restriction, the problem is strongly NP-hard ([11]).

We use a standard model for the Job-Shop (see [3]) where starting times
of operations are integer constrained variables and the makespan is represented
as an integer variable constrained to be greater than or equal to the end of any
job. Arc-B-Consistency is applied on precedence constraints between operations.
Machine constraints are enforced either with Edge-Finding (EF) or with the
Inter-Distance Constraint (IDC). The branching scheme and the heuristics are
those provided by default in Ilog Scheduler, the constraint based scheduling
tool of Ilog.

As for the standard Job-Shop problem, randomly generated instances are
very easy to solve with EF. Among 150 random instances with up to 15 jobs and
15 machines, 34 instances requiring a significant amount of time to be solved
(more than 10 seconds on Dell Latitude D600 running XP) were selected. For
each instance, the two variants (EF and IDC) have been run for up to 3600
seconds. EF is able to solve 23 instances while IDC can solve 29 instances. On
the average, less than 27 seconds were required by IDC to solve the 6 instances
that could not be solved within one hour by EF. Among the 23 instances solved
by both variants, EF requires 588999 backtracks and 249 seconds while IDC
requires 249655 backtracks and 232 seconds. In term of CPU, the relatively
low improvement comes, we believe, from the fact that we compare the highly
optimized Edge-Finding implementation of Ilog Scheduler with a straightforward
implementation of IDC.



6.2 Runway Sequencing with Holding Patterns

We study a scheduling problem that occurs when aircraft reach the final descent
in the “Terminal Radar Approach CONtrol” area (tracon) of an airport with
a single runway. When entering the tracon, a set of disjoint time windows in
which the landing is possible, can be automatically assigned to each aircraft.
Roughly speaking, the distance between two consecutive windows corresponds
to a waiting procedure known as a “Holding Pattern”. The objective is then
to determine landing times, within these time windows, which maximize the
minimum time elapsed between consecutive landings. More formally, the decision
variant of this problem can be described as follows.

The Runway Scheduling Problem

Input integers n, p, (s1, . . . , sn), (r
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1
, d1

1
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1
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1
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n ).
Meaning each job i has processing time p and has to be fully scheduled (i.e.,

started and completed) in one of the intervals [riu, diu]. We wish to find
a schedule such that every job is scheduled non-preemptively, and no two
jobs overlap.

Output a set of starting times S1, . . . , Sn ∈ N such that (1) ∀i ∈ {1, . . . n},
∃j ∈ {1, . . . , si} such that Si ∈ [rij , dij − p] and (2) ∀i, k ∈ {1, . . . n} with
k 6= i, |Si − Sk| ≥ p.

This problem is NP-Complete in the strong sense [2]. We refer to [5], [6] and [2]
for a complete description of the problem together with MIPs and Branch and
Cut procedures to solve it.

We build a constraint based model as follows. For each aircraft i, we have
a decision variable Pi that determines whether i is scheduled in its j-th time
window [rij , dij ], (Pi = j) or not (Pi 6= j). We also associate a start time variable
Si for each job i : Pi ≥ j ⇐⇒ rj ≤ Si and Pi ≤ j ⇐⇒ dj ≥ Si + p.

The fact that jobs do not overlap in time is modeled as an Inter-Distance con-
straint. To solve the problem, we look for an assignment of the Pi variables and
at each node of the search tree we test whether the IDC constraint is consistent
or not (Section 3). This directly ensures that, when all Pi variables are bound,
we have a solution to the scheduling problem. Two variants have been tested.
In the first one, the machine constraint is propagated with Edge Finding (EF)
while in the second one we use the Inter-Distance Constraint (IDC) propagation
algorithm.

Two sets of instances have been generated (instances can be downloaded at
http://www.lix.polytechnique.fr/˜baptiste/flight scheduling data.zip). The first
set of instances corresponds to “mono-pattern” problems in which all aircraft
have the same number of time windows, each of them having the same size and
being equally spaced. The second set of instances corresponds to the general
problem. Instances with up to 90 jobs have been randomly generated (see [2] for
details). For this problem, all tests were made on top of Eclair c©[15]. Within 1
minute of CPU time, 189 and 32 instances of the first and second set of instances



could be solved with EF while with IDC, we can solve respectively 192 and 46
instances. Among instances solved by EF and IDC the number of backtracks is
reduced of 60 % (first set) and 91% (second set) when using IDC. The CPU time
is also decreased of 4 % and 73 %.

7 Conclusion

We have introduced a new global constraint, the “inter-distance constraint” that
ensures that the distance between any pair of variables in some set is at least
equal to a given value. We have introduced a constraint propagation algorithm
that achieves arc-B-consistency on this constraint and we have shown that it
allows to drastically reduce the search space on some combinatorial problems.

Our constraint propagation algorithm is more costly than the edge-finding
algorithm (although it is much more powerful and achieves the best possible
bounds). Its complexity can be reduced to O(n2 log n) but the algorithm requires
specific data structures that are not in the scope of this paper. An open question
is whether the worst case complexity of the constraint propagation algorithm can
be reduced to O(n2).

We also believe that a generalization of this constraint to the situation where
m identical parallel machines are available could be interesting. Such a con-
straint would be immediately useful for car-sequencing problems where “a/b”
constraints (no more than a cars with some special feature among b consecutive
ones) can be expressed in scheduling terms: Schedule identical jobs with process-
ing time b on a parallel identical machines (each time point in the scheduling
model corresponds to a slot in the sequence of cars). The global consistency of
the corresponding constraint can be achieved in polynomial time thanks to a
beautiful algorithm of Simons [22]. However, no specific constraint propagation
algorithm is known.
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