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Abstract

We study a scheduling problem, motivated by air-traffic colntn which
a set of aircrafts are about to land on a single runway. Whemnirap close
to the landing area of the airport, a set of time windows inclilthe landing
is possible, is automatically assigned to each aircrafte dbjective is to
maximize the minimum time elapsed between any two consexiatndings.
We study the complexity of the problem and describe seveedial cases
that can be solved in polynomial time. We also provide a carnptixed
Integer Programming formulation that allows us to solvgdainstances of
the general poblem when all time windows have the same sipallf; we
introduce a general hybrid branch and cut framework, base@anstraint
Programming and Mixed Integer Programming, to solve thélera with
arbitrary time windows. Experimental results are reparted
Keywords: Air-traffic control, Scheduling, Hybrid search

1 Aitraffic Control in the TRACON area

Airport arrival and departure management is a very compieklpm that plays a
crucial role for airports. As both the number of runways dredriumber of air trafic
controllers are limted, the trafic has to be carefully platgeldmit peaks of activity

(take off and landing) while matching as much as possiblenag landing times
requirements. This planing problem, known as the “Time Allstcation” problem

has been widely studied in the literature (see [3] for a mgyieGood plannings
allow airports to reduce delays while keeping safety stedwlhigh.
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However unpredictable delays make it hardly impossiblerézigely schedule
aircrafts in advance. So the initial planning has to be refioe line when air-
crafts are close enough to the airpor,, when they reach the final descent in the
TRACON (Terminal Radar Approach CONontrol). Typically, the TRAR@onN-
trols aircraft approaching and departing between 5 and ¥srof the airport. In
this final scheduling process, air traffic controllers ma&me aircrafts wait be-
fore landing. Unfortunately this “waiting” process is colewp as aicrafts follow
predetermined routes and their speed cannnot change npest(s heaviely con-
strained by the type of aicraft, the altitude, the weatéter). To reach some degree
of flexibility in the process, two kinds of delaying procedsirare used (see [4] for
details):

o First, the speed of the aircratf can be slightly decreasetttease the arrival
time. Second, the flight plan can be lengthened by a “VectorSpacing”:
Instead of following the the shortest route between two {goithe aircraft
makes a turn with a small rotation.

In both cases, this allows air traffic controllers to slighticrease the time
taken by an aircraft to fly from one point to another.

e “Holding Patterns” generate a constant prescribed delagriaicraft. Sev-
eral holding patterns may exist in the samRACON (see Figure 1 for an
example) and an aicraft can enter such an holding patteeraldimes.

When more than one aircraft is holding at the same placeopftés called a
“stack”. The first aircraft entering the stack is cleared® owest practical
altitude and subsequent aircraft are cleared to the nekbbiaflight level.
When aircraft are “peeled off the stack”, they are clearet astholding
from the bottom, and new aircraft enters at the top of thekstas aircraft
are descended within the stack, as the bottom Flightlewsgated, higher
aircraft can be cleared to the next lower available altifushen a lower
aircraft reports leaving that Flightlevel.

Holding patterns are usually not an option of choice for @ffic controllers and
their objective is to reduce the number of holding pattrens.

Relying on delaying mechanisms described above, a set efwmndows in
which the landing is possible can be associated to eaclafiiemtering therrRa-
CON area. Each time window corresponds to a combination of hglgiatterns
together with some vectors for spacing. As holding pattasuslly induce a larger
delay than Vectors for Spacing, we can assume that eackahtarresponds to a
holding pattern (except the first one). Computing all thegedaws is out of the
scope of this paper but this proble is adressed for instangX.
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Figure 1: A simple Holding Pattern as described in pilots uzds

In this paper we study the airport arrival problem with a nginway and we
consider two objective functions:

¢ Minimizing the maximal number of times a plane enters a HgjdPattern.
e Maximizing the minimum time elapsed between two conseedawndings.

We first describe a precise model of this problem (Sectioniftaily introduced by
Bayen and others [5] and we provide some complexity resMlis.then describe
a branch and cut procedure based on constraint programmahgn&ed integer
programming. We show that this formulation outperformsgbee Mixed Integer
Programming formulation proposed in [4].

2 Problem Definition

We assume there areaircrafts in theTRACON. When entering this area, a set of
n,, disjoint time intervalsJ;," , I, is assigned to each aircraftit corresponds to
the possible landing times (taking into account possiblelihg patterns and all
possible speed modifications). We consider two objectinetfans:

e Maximizing the minimum time elapsed between any two conbexland-
ings.

e Assuming a minimal time during any two consecutive landings, minimiz-
ing the maximal number of times a plane enters a holding patte

Note that the decision variants of these two problems aretlgxaentical. The
corresponding problem can then be seen as a simple singleimeagcheduling
problem in whichn “landing” jobs with identical processing time have to be
scheduled within some time windows on a single “runway” niaeh More for-
mally, the problem can be described as follows.

THE RUNWAY SCHEDULING PROBLEM
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input integersn, p, (s1,...,8), (r1,dy, ...,y dit), ..., (rp, dy, oo orin dim).

meaning each job: has processing timg and has to be fully scheduledl €,
started and completed) in one of the intenvalg, d;,,]. We wish to find a
schedule such that every job is scheduled non-preemptiveti/no two jobs
overlap.

output a set of starting times’, ..., S, € Nsuchthat (1) € {1,...n},3j €
{1, R 732'} such thatS; € [Tz'j, dij —p] and (2)Vi, k € {1, R n} with k £ ¢,
|Si — Sk| > p.
Figure 2 illustrates a special case of the runway schedpliolglem where time

windows and diatnces between time windows are identicairc8adts with 3 time
windows are to land on the runway. The shaded bars repre$easiale solution.
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Figure 2: lllustration of the Runway problem.

In the following, we study special cases of the Runway SclimgliProblem in
which there is a single pattern for the time windows: samebem of windows
per aircraft, same window siZeand identical distanceg between windows (see
Figure 2).

Vi<n,s;=s

Vi S ’I’L,Vj § S,dij —Tz'j =1

Vi < n,V] < S§,Ti5 = T4 + (] - 1)T
This problem is reefered to as the iO-PATTERN RUNWAY SCHEDULING
PROBLEM”. It plays a special role since it corresponds to the sitoiattivhere
all aircraft are identical and where a single holding pateronsidered.

To our knowledge the problem has first been studied by Bayaml]ifi, Ye and
Zhang [6], when a single time window only is allowed and thalg®to maximize
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the minimal distance between two consecutive landings.ofised by the authors,
the problem is a special case of the decision variattof p; = p|Lax and hence
can be solved in polynomial time (see [9]).

In [5] a slightly more general problem is considered. HaddiPatterns are
allowed and the time windows do not have the same lengthsolijeetive is either
to minimize the total waiting time for aircraft or to minin@zhe latest landing time.
Constants 5 and 3 approximation algorithms are given fadlubjectives. Finally,
let us mention that a general MIP formulation is provideddh [This formulation
is carefully reviewed in Section 4.

In Section 3 we prove that the problem is NP-Hard and we reg@nve poly-
nomially solvable cases. Finally, we compare a pure Mixeeder Programming
formulation introduced by Bayen and Tomlin to a Branch antifZacedure (Sec-
tion 4). Computational experiments show that our approachpares well to the
pure MIP.

3 Onthe Complexity of the Runway Scheduling Problem

The Runway Scheduling Problem is NP-Complete as soon asgsing times are
larger than 2 and when we have more than three time windoweipeaft. Indeed,
whenp = 2, Vi,s; = 3 andVi < n,Vj < s,d;; — 5 = 2, this problem is
a direct generalization of the problem of scheduling shesks$ with few starting
times [14]. Note also that the more general problem, wheeh g has its own
processing time; is also NP-complete, even if all release dateslasnds = 2.

In the following, we list the special cases that we can saigolynomial time.

3.1 Unit Processing time

This problem can be reduced to a well-known flow problem ingatiite graph

G = (JUT,E) where7 is the set of job verticedy, .., J,, and7 is the set of
time pointst corresponding to the beginning or to the end of a time winddwa o
job. There is an edge betwedpandt if and only if the job can start at time Two
more verticesr, ¢ are added to the network. The sources connected to all jobs
and each time vertex is connected to the sinkinally all capacities are 1 except
on the edges connecting a time veridr £ where the capacity equals the distance
betweent and the next time point il (if no such point exists the capacity is 0).
It is easy to see that there is a feasible schedule if and dnhere is a flow of
capacityn.



Runway Sequencing with Holding Patterns 6

3.2 Single Time Window

This situation corresponds to the well known problém, p; = p|feasibility and it
can be solved in timé&(n log n), by Garey, Johnson, Simons and Tarjan Algorithm
[9]. As this problem plays a crucial role for the runway pehl (espeacially in
Section 6), we briefly describe a simple variant of Garey efgorithm. XXX
Konstantin

3.3 Two Tight Windows per Job

We assume that there are two time windows per job and thatateeltight”, i.e.,
their size is exactly. So we basically have to decide which one to pick. This
assignment problem can be solved by a reduction to the 2f@ahility problem.

To every jobi associate a boolean variabktgewhich is true ifi is scheduled in its
first time window and false if it is scheduled in its secondgimindow. For every
pair of intersecting time windows with associated litekals there will be a clause

a Vv b, which translates the condition that no two jobs can int#rs€he resulting
2-SAT problem can be solved in polynomial time [11].

3.4 Whenp =l and T is fixed (Mono-Pattern)

We describe a dynamic programming algorithm runnin@im”+1s) that solves
the runway problem when = [.

Let us define théype of a jobi asr; mod T. Now consider two jobs, j with
the same type and assume that< r;. It is easy to see that, schedules in which
1 is scheduled beforg are dominant (i.e., if there exists a feasible schedulegthe
is one in whichi is scheduled beforg). Indeed, ifj is scheduled beforg then
we can just exchange the starting times of jobs. Note thairdog to the above
remark, we can restrict our search for a feasible schedules® in which jobs of
the same type are scheduled in order of their release dates.

To simplify the presentation of the algorithm, we assume jiilas are sorted
in non-decreasing order of release date. Suppose thene,gobs of typea €
{0,...,T — 1}, son = >, n,. We identify each joli by a couple(a, b) where
a is the type of the job, andl is the number of jobg > i of typea. We define
the boolean variabl§(¢, ko, ..., k7—1) as follows: It is true if and only if there is
a schedule, idle before timg that contains all job$a, b) with b € {1,... k,}.
Given this definitionS(t, 0, . ..,0) = true. And we look forS (min; r;, ng, . .. ,np—1).

Now, leta = t mod T'. If the starting time of the last window of jofa, k)
is earlier thart then S(¢, ko, ..., kpr—1) = false, since the jolja, k,) cannot be
scheduled in a schedule which is idle befar®therwiseS(t, ko, . . . , ka, - - ., k1—1)
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equals
S(t+1,]6‘0,...,]{5[1,...,]6‘1“_1) \/S(t—l—p,k‘o,...,k‘a—1,...,/€T_1)

because any schedule idle beforis either idle before + 1 as well or contains a
job of typet mod T that starts at.

Note that there are at most relevant values fot, since in the previous for-
mula, we can replacé+ 1, by the starting time of the next window. So there are
O(nT+1s) variables, and they can be computed in constant time (pedwice pro-
cess them in the right order). Moreoversif> N, the problem can be solved in
polynomial time with greedy algorithm even without the citioth p = [.

3.5 WhensT/pis fixed (Mono-Pattern)

We describe a dynamic algorithm, runninglxin?s3172p—222s7/p), So the prob-
lem is polynomial ifsT'/p is fixed.

In this section we are only interested dominating partial schedules which
minimize the completion time among all schedules on the Jamset. Moreover
we want this property to be preserved when removing recelssitre last scheduled
job. Such schedules have in particular the property of blsfteshifted, meaning
every job is scheduled either at the beginning of one of it twindows or right
at the end of another job. In such a schedule the finishing pionets of jobs can
be taken fromthe s& = {r;; +ap:i,a € {1,...,n},j € {1,...,s}} U{tp} to
which the timety = min r;; is added for convenience.

Before running the dynamic algorithm of Figure 3 we verife thery basic
necessary condition: for every time interyal b], the number of jobs which have
all their windows contained ifa,b] (@ < 7,7 + (s — 1)T 4+ 1 < b) does not
exceedb — a)/p. Clearly these jobs must be scheduled in this interval anabst
(b —a)/p jobs fit.

It follows from the construction tha$; contain alldominating partial sched-
ules, each containing all jobs due fat In particularS,,,,. contains all feasible
schedules for the given runway problem, whgrgy is the maximal time fron®.

In order to evaluate the time spent to compute this set, waddthe number
of schedules in each sét. Attime ¢ there are 3 types of jobs. Jobs which are
due att, jobs which are not yet available &t p and the remaining jobs. The later
satisfyr; <t —pandr; + (s — 1)T + [ > t. By the necessary condition checked
earlier for sayu = t — sT andb = t + sT there are at mofts7'/p remaining jobs.
Therefore|S;| < 2257/P, We have|T| = O(sn?). In each of theT)| iterations we
need to explore at mogts?/? schedules and at mo8t7'/p jobs. We represent
schedules by a table afscheduling times with a special value for yet unscheduled
jobs. Schedule sets are represented by search tree basedadies, mapping job
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Dynamic Algorithm 2
Sty = {}
For allt € ©\{tp} in increasing order
Lett € © be the latest time point such that< ¢.
Lett” € © be the latest time point such that< ¢ — p.
LetD = {i:r; + (s — 1)T + 1 < t} be the set of jobs due &t
Let A= {i:r; <t— p} be the set of jobs available at- p.
SetS; = {S € Sy : all jobs in D are scheduled i5'}.
Forall S € Sy
For all jobsi € A not yet scheduled iy
If S+ i contains all jobs inD
and there is no schedule & with the same job set &+ ¢
then add S + i) to S;.

Figure 3: Dynamic algorithm fo¢7'/p fixed.

sets to schedules. Therefore adding a new schedule or olgeitiiere is already
a schedule on the same job set has logarithmic cost, whielisi'/p) in our case.
Therefore total running time i (n?s*12p=22257/p),

3.6  When Time Windows are Well Ordered (Mono-Pattern)

Whenvi, maxr; + [ < minr; + T then the problem can be solved by Linear Pro-
gramming. As this is a special case of a more general sityatie LP formulation
is described in Section 5 and Theorem 2.

We first restrict our study to the Mono-Pattern problem andshv@v that, due
to structural properties of the problem, we have “small” MéPmulation of the
problem (Section 5).

4 Bayen et al. MIP formulation

Bayen, Tomlin, Ye and Zhang have introduced a MIP formutafer maximizing

the minimum time elapsed between two consecutive landBig#\f they work on
the minimization problem, the minimum ellapsed time betwego consecutive
landings is a variablé”. Each job: is associated with a starting time varial)e

Moreover, two sets of integer variables are used:

e 1;, variables are binary variables that indicate whether @firéiis schedule
in one of itsuth first time windows or not.
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e y;; variables are binary sequencing variables that indicatetiven aircraft
precedeg or not.

The complete MIP is then as follows:

min P
t; 2> i1 1<i<n
t; < dis; 1<i<n
ti > vy — Mxj 1 1<i<n,2<u<s;
ti < djy + M(1—d;y,) 1<i<n,1<u<s—1
ti—thP—M,yij 1§]<z§n
ti—tng,(l—yij)—P 1§j<i§n
Ty € {0,1} 1<i<n,1<u<s;—1
vi; € {0,1} 1<i<n,1<i<n

whereM and M’ are two large constrant values chosen as follows: Such lalge
ues usually lead to poor LP relaxation and hence, as we \ilirseur experiments,
to poor performance of the MIP.
M = maxmax(ri, — 7, dis, — di1)
(2

M = 2(m2axdisi—miinri1)

We have tightened this formulation by adding the eyts> x; ,—1 andy;; +y;; =
1.

5 A Small MIP for the Mono-Pattern Problem

We come back to thelecision variant of the mono-pattern problem. So now,
the minimal time ellapsed between two consecutive landisdixed (p) and we
present a MIP formulation for the Mono-Pattern problem. Wferg j-th time win-
dow of every jobi we associate a binary variablg; € {0,1}, stating that job is
processed in this time window or not. In every interialb] at most| (b — a)/p|
jobs can be strictly contained. Then the following inediigdi must hold:

Si
d i =1 1<i<n
u=1 b
Z Ty < | _aJ 1<i<mn,ae{rp}be{dp},a<bd @
[riasdiu]Clas8)] b
T € {0,1} 1<i<n,1l<u<sy

Note that (1) is a MIP with no objective function.
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Figure 4: Two instances of the runway problem witk= [ = T' = 2 which have
only fractional solutions.

Theorem 1. Thereisa solution to (1) if and only if there is a feasible schedule.

Proof. The sufficient condition is obvious. To prove the necessandiion, we
first recall a well-known result of single machine schedylineoryl|r;, d;, pmtn|—:
Consider a set of jobs with arbitrary processing time3, (elease dates{) and
deadlinesd;). There is a feasible preemptive schedule if and only if @argrtime
interval [t1, 2], the sum of the processing times of the jolssich that; < r; and
d; <ty is not greater that, — ¢; (see for instance [8]).

Now, assume we have a solution to the MIP and, foii,dlét j(i) denote the
index such that;;;) = 1. If we definer; = r;;;) andd; = r;;(;) +1 then we know
that over any time intervdt,, t5], the sum of the processing times of the jobs that
have to be processed in this time interval is not greater thant,. Thanks to the
previous remark, this directly ensures that we have a flesapiieemptive schedule
in which jobsi are scheduled betweet ;) andd; = r;;(;) + L.

The preemptive schedule can be easily transformed into goremmptive one.
Indeed, it is well-known that if there is a preemptive fessischedule, then the
preemptive schedule associated to the dispatching ruldiégaDeadline First” is
feasible. Recall that in our case, all time windows have Hmeslengths. Hence
when, according to the “Earliest Deadline First” rule, a érts to be processed,
it is never interrupted. Hence we have a non-preemptivedsdbe O

After having run initial experiments using the MIP formudet, it happened
that the gap between the LP relaxation and the optimal solutias always 0. It
took us some time to build an instance with a non null gap. gufd 4(left) we
give an instance fos = 2 with a fractional solution to the LP for which there is no
integer solution: job 1 must be scheduled in its first timedwein, otherwise there
would be no space left for job 2. For similar reason job 4 messtheduled in
its second time window. And the remaining jobs have only glsitime window
left each, which intersect. For completeness we also showssance which has
fractional but no integer solution far = 3, since the subcage= [ ands = 2 is
polynomial solvable anyway.
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There is however a case for which the LP formulation givesfiacgent condi-
tion for the existence of a schedule. For convenience, weéhsdthe;j-th window
of a job hagank ;.

Theorem 2. If maxr; + 1 < minr; + T (only windows of the same rank can
intersect) then there is a feasible schedule if and only if the LP relaxation of the
MIP has a solution.

Proof. Assume that the LP relaxation of the MIP has a solutioWe will show
that there is a feasible schedule. (The other directionviafrom Theorem 1.) In
fact we will show that there is an integer solution

Assume the jobs are ordered according to release times. Bow;s= 1 if
Jj =1 (mod s) andz;; = 0 otherwise. We claim that this is a solution to the MIP
and that consequently, we have a feasible schedule.

First we observe a property of the linear program. By hypmmthgth time
window of a job does not intersect with thiet 1-th time window of another job.
Therefore inequalities depending arbeginning of aj-th time window and orb
end of aj + 1-th time window can be obtained by adding the inequalitis®eiated
to (a,b’) and(a’,b) whered' is the end of the lategtth time window and:’ the
beginning of the firsfj + 1-th time window. Therefore it is sufficient to keep in
the linear program, inequalities fou, b)) wherea, b correspond to time windows
of the same rank. To show thatis a solution we need to show that the inequality

Z Tij < V)_ aJ ; (2

[rijori HIClart G—1)T,b+(—1)T] p

holds for arbitraryj € {1,...,s} anda,b € [minr;, maxr; + 7.
Let ¢ be the number of jobswith a < r; < b —[. Sincez is a solution we

have
s[5
Z fL‘Z'j § .
frig s HIC at G- )T+ (1)) b
Summing over all window rankg € {0,...,s — 1} we get
=]
c<s .
p
Therefore

c {b—aJ
- < )
S p

Since the right hand side is an integer we have also

=57
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But by construction ofz, we have

> 7]

[Tij ,T»L'j +l] Q [a“l‘ (J_l)T7b+(]_ I)T]

from which inequality (2) follows. O

6 A Branch and Cut for the General Problem

Now we study the general problem and as for the mono-patteiolgm, we can
rely on MIP (1). Unfortunately, Theorem 1 does not hold anyendiowever, the
last part of the proof only does not hold and we still have akeeaersion of this
thorem:

Theorem 3. Thereisa solution to (1) if and only if there is a feasible preemptive
schedule.

Of course all constraints of MIP (1) are still valid in the nopreemptive case
and it is “likely” that the assignement of jobs to windowsaalsads to a non pre-
mmptive schedule. To test this, we can apply e log n) algorithm of Garey,
Johnson, Simons and Tarjan [9].

o If there is non-preemptive schedule then we have found digplto the
runway problem.

e Otherwise, we know that the assignement found by MIP (1) dm¢dead
to a feasible non-preemptive schedule. Hence, we can aditeaati/e” cut
to the MIP stating that the sum of thevariables that were equal to 1 in the
previous solution cannot be greater than 1. We then solve the new MIP
and iterate the same process.

This branch and cut mechanism terminates since, each timeia added, a yet
unexplored assignement will be generated at the nextidera®f course the total
number of added cuts can be very large. To make this mechamigik) several
ingredients have to be added.

e Preprocessing cuts can be used to tighten the inital MIPdtation (1).

e The generation of iterative cuts can be improved to redueddtal number
of iterations.
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6.1 Preprocessing Cuts

We describe two sets of cuts: Disjunctive Cuts [13, 15] andrgetic Cuts. Note
that in both cases, these disjunctive cuts are only valilémbn-preemptive case.
We have tested several other kind of cuts. Some of them watknig to a very
limited number of iterations but the size of the MIP was iasiag so much that
the time required to solve it was too large. In the following @lescribe two sets of
O(n?) cuts.

6.1.1 Disjunctive Cuts

These cuts prevent the simultaneous assignment of a paibsf,jj to some time
windows|r;,, div), [rjv, djv), if the situation is “infeasible”. The feasibility test is
performed as follows:

¢ Relax the time windows of jobis ¢ {i, j} to one single time winow 1, diy, ).
e Tighten the time windows of, j 0 [y, i), [7jv, djov)-

e As in the resulting instance jobs have a single time windbwe,feasibility
test can be achieved thanks to Garey et al. algorithm

As there are)(n?) pair of jobs to consider this leads to @in> logn) (a bit more
in our naive implementation) algorithm to build all the disgtive cuts.

6.1.2 Energetic Cuts

The notion of “energy” has been originally introduced fonstraint propagation
techniques (see [1] for instance). Consider a time intetyats) with ¢1 +p < t,.
Preemtive constraints of MIP (1) ensure that the numberted grheduled in the
interval does not exceed = {%J Now assume that we have a joland a
time windoww such that;,, + (v + 1)p > to andt; + (v + 1)p > d;,, thenitis
impossible to schedule non preemptively the jabwe haver jobs in the interval
[t1,t2). This leads to the cut:

Ty + E Tjy <V
J,0:t1 <1y <djoyp <t2

6.2 lterative Cuts

Recall that an iterative cut is generated when Garey, Johr&mons and Tarjan
Algorithm [9] discards an assignement proposed by the N, the MIP has
build a preemptive schedule but it cannot be changed intogreemptive one).
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A valid iterative cut is a cut which guarantees that the sassggament will
not be generated in the subsequent iterations. Our intui§idhat “small” cuts,
i.e., cuts with few variables, are a priori better than large.cuts

So, we examine the current solution of the MIP and we computenamal
set of jobs (as assigned in the solution) that lead to an gittfieanon-preemptive
scheduling situation. As we do not want to try an exponemighber of sets, we
restrict our search to a quadratic number of sets. Each defirged by two integer
t1,to and is made of jobs whose assigned window is included [in, t;]. More
precisely, we use the following algorithm.

e lterate over all possible release datestfoand all possible deadlines foy.

e Test with Garey, Johnson, Simons and Tarjan Algorithm ifjtis assigned
in the time windows contained if;,¢2) can be scheduled, if not, consider
this set of jobs as a candidate cut.

e Find a minimal cut among the candidates.

7 Experiments

To compare our approach with Bayen et al., we have led ourriempets on the

maximization of the minimum ellapsed time between airstaftll our algorithms

have been designed to work on the decision variant of thiblpno so, we just
apply a dichotomic search on the objective value and solgeessive variants of
the decision problem: We starty by by computing an initighepbound

Pmax =

max; diy, — min; r;;
n—1

and an initial lower boung,,;, = 0 for the objective. Then

2

2. Solve the descision variant of the runway problem withcpssing timep,
i.e., determine a solution with a “minmum ellapsed time betwderrafts”
lower than or equal tp or prove that no such solution exists. If a solution
is found, sepm;, to the value of minmum ellapsed time between aircrafts in
the solution; otherwise, s@t,. to p.

1. Setp = VMJ_

3. Iterate steps 1 and 2 unil,ax = Pmin-

Two sets of instances have been generated (all instancewaitable on the
web XXXX).
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e The first set of instance corresponds to the mono-patterblgaro XXX
Konstantin tu nous expliques en 5 lignes.

e The second set of instances corresponds to the generakprolhstances
with 15, 30, 45, 60, 75 and 90 jobs have been ranomly genetatedrding
to three parameters, . and\) as follows:

— The number of intervals for a given job is a random numberrdie
twen 1 and 5.

— The length of an interval is a random numbetrin

— The distance between two consecutive intervals is a randonbar in
TA.

For each value of, the following combination of parameters have been
testedr € {75,150}, ¢ € {m,6m, 117,167}, A € {7, 6w, 117,167}. This
leads to 64 instances for each size.

We have used llog Cplex 9.0.3 to solve the MIP and all teste Heen per-
formed on a 1.4 GHz PC running Windows XP.

7.1 Mono-Pattern Problems

We first compared the MIP proposed by Bayen et al. (MIP-BY m fitilowing)
with our MIP (MIP-1 in the following). In the first case, a siagMIP is solved
while in the second case we solve several MIPs (as many asithieanof iterations
of the dichotomizing algorithm). In both case the search heen stoped afer
600.00 seconds of CPU time. Our algorithm solves 95 instanaé of 98 while
MIP-BY can solve 23 instances only. Over the instances tbaldcbe solved by
both algorithms, ours found the optimal solution in an ager&PU time of 26.3
seconds and less than 1 node while MIP-BY required 55.1 siscand 57018
nodes.

As stated in Section 4, the initial formulation of Bayen et ahn be tight-
ened by adding the cuts like, > z;,_1. This allows us to slightly improve the

behaviour of the algorithm since 6 more instances are solved

7.2 General Problem

Several variants of the Branch and cut have been tested.

e Either we apply the basic iterative cuts (BAS-CUT) or we Uerhechanism
computing small cuts (SMALL-CUT).
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e Either we do not apply any preprocessing cuts (NO-PP) or vpdyahe
disjunctive cuts (DISJ-PP) or we apply the disjunctive q@lis the energetic
cuts (ENERGY-PP).

This leads to six variants “NO-PP, BAS-CUT”, “DISJ-PP, BEXT", “ENERGY-
PP, BAS-CUT”, “NO-PP, SMALL-CUT", “DISJ-PP, SMALL-CUT”, ENERGY-
PP, SMALL-CUT” plus the the MIP formulation of Bayen et al.gbire 5 reports
the number of instances solved withing a given amount of ape for each of
these 7 programs (search was stoped after 100.00s). Thedests made of the
192 instances with less than 45 jobs.

These results show that Bayen et al. formulation performi$ iwehe first
few seconds of CPU time (more instances are solved by thmauiation than
for any other). Howevever, our Branch and Cut compares vgefic®mn as some
more time is given to solve instances. All versions excepttiost basic one
clearly outperform Bayen et al. formulation. Within the &@nimit, it can sole
108 instances while “NO-PP, BAS-CUT”, “DISJ-PP, BAS-CUTENERGY-PP,
BAS-CUT”, “NO-PP, SMALL-CUT", “DISJ-PP, SMALL-CUT", “ENERGY-PP,
SMALL-CUT” solve respectivel 108, 105, 181, 182, 134, 188 d89 instances.
Note that the 3 instances that could not be solved by “ENERBYSMALL-CUT”
are solved within 150.00 seconds.

1007
[~
Q
90 -
80
—— Bayen
70 1 ——NO-PP, BAS-CUT
0 —— DISJ-PP, BAS-CUT
—— ENERGY-PP, BAS-CUT ]
50 | —— NO-PP, SMALL-CUT 7
—— DISJ-PP, SMALL-CUT /,[
407 —— ENERGY-PP, SMALL-CUT w
o4 R siie
207 '
10
W e . Nb instances Solved
0 — P——"— ‘ | ‘
0 20 40 60 80 100 120 140 160 180

Figure 5: Number of 15, 30 &45 job instances solved within aJdigit
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Surprisingly our MIPS seem to be easy to solve since on thegeel0 nodes
are developped by Cplex Branch and Bound procedure (muchh mae for
Bayen et al. formulation). Another good news is that thel totamber of itera-
tions (.e, the total number of iterative cuts that we have added) is lksp(5 on
the average with a maximum of 104). Following these exparis)dt seems clear
that two ingredients play a crucial role for the branch antd cu

e The disjunctive cuts are extremly powerfull and drastuycedduce the total
number of iterations. Hence they more or less guaranteeptieaimptive
solutions are likely to be transformed in non-preemptiveson

e The choice of small cuts is also important and allows to redhe number
of iterations.

e The usefullness of the Ebnergetic cuts is not very cleabadh it does not
cost much to use them.

Following these results we decided to test the best verdiommoBranch and Cut
“ENERGY-PP, SMALL-CUT” on instances with 60, 75 and 90 jolb2 instances
with 60 jobs, 58 instances with 75 jobs and 36 instances witjpBs are solved
within 10 mn.

8 Conclusion

Some of the programs described in this note are availablégpattvww.Iri.fr/~durr/runway/.
To conclude, we would like to mention that, up to our knowkedipe general
problem is still open.
Although we conjecture that the problem is NP Hard, we hatdaen able to
prove it. However, some very simple generalizations areHdiRd.
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