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Abstract

We study a scheduling problem, motivated by air-traffic control, in which
a set of aircrafts are about to land on a single runway. When coming close
to the landing area of the airport, a set of time windows in which the landing
is possible, is automatically assigned to each aircraft. The objective is to
maximize the minimum time elapsed between any two consecutive landings.
We study the complexity of the problem and describe several special cases
that can be solved in polynomial time. We also provide a compact Mixed
Integer Programming formulation that allows us to solve large instances of
the general poblem when all time windows have the same size. Finally, we
introduce a general hybrid branch and cut framework, based on Constraint
Programming and Mixed Integer Programming, to solve the problem with
arbitrary time windows. Experimental results are reported.
Keywords: Air-traffic control, Scheduling, Hybrid search

1 Aitraffic Control in the TRACON area

Airport arrival and departure management is a very complex problem that plays a
crucial role for airports. As both the number of runways and the number of air trafic
controllers are limted, the trafic has to be carefully planedto limit peaks of activity
(take off and landing) while matching as much as possible airlines landing times
requirements. This planing problem, known as the “Time slotAllocation” problem
has been widely studied in the literature (see [3] for a review). Good plannings
allow airports to reduce delays while keeping safety standards high.
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However unpredictable delays make it hardly impossible to precisely schedule
aircrafts in advance. So the initial planning has to be refined on line when air-
crafts are close enough to the airport,i.e., when they reach the final descent in the
TRACON (Terminal Radar Approach CONontrol). Typically, the TRACON con-
trols aircraft approaching and departing between 5 and 50 miles of the airport. In
this final scheduling process, air traffic controllers make some aircrafts wait be-
fore landing. Unfortunately this “waiting” process is complex as aicrafts follow
predetermined routes and their speed cannnot change much (speed is heaviely con-
strained by the type of aicraft, the altitude, the weather,etc.). To reach some degree
of flexibility in the process, two kinds of delaying procedures are used (see [4] for
details):

• First, the speed of the aircratf can be slightly decreased toincrease the arrival
time. Second, the flight plan can be lengthened by a “Vector For Spacing”:
Instead of following the the shortest route between two points, the aircraft
makes a turn with a small rotation.

In both cases, this allows air traffic controllers to slightly increase the time
taken by an aircraft to fly from one point to another.

• “Holding Patterns” generate a constant prescribed delay for an aicraft. Sev-
eral holding patterns may exist in the sameTRACON (see Figure 1 for an
example) and an aicraft can enter such an holding pattern several times.

When more than one aircraft is holding at the same place, it isoften called a
“stack”. The first aircraft entering the stack is cleared to the lowest practical
altitude and subsequent aircraft are cleared to the next available flight level.
When aircraft are “peeled off the stack”, they are cleared out of holding
from the bottom, and new aircraft enters at the top of the stack. As aircraft
are descended within the stack, as the bottom Flightlevel isvacated, higher
aircraft can be cleared to the next lower available altitude, when a lower
aircraft reports leaving that Flightlevel.

Holding patterns are usually not an option of choice for air traffic controllers and
their objective is to reduce the number of holding pattrens.

Relying on delaying mechanisms described above, a set of time windows in
which the landing is possible can be associated to each aircraft entering theTRA-
CON area. Each time window corresponds to a combination of holding patterns
together with some vectors for spacing. As holding patternsusually induce a larger
delay than Vectors for Spacing, we can assume that each interval corresponds to a
holding pattern (except the first one). Computing all these windows is out of the
scope of this paper but this proble is adressed for instance in XXX.
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Figure 1: A simple Holding Pattern as described in pilots manuals.

In this paper we study the airport arrival problem with a single runway and we
consider two objective functions:

• Minimizing the maximal number of times a plane enters a Holding Pattern.

• Maximizing the minimum time elapsed between two consecutive landings.

We first describe a precise model of this problem (Section 2) initially introduced by
Bayen and others [5] and we provide some complexity results.We then describe
a branch and cut procedure based on constraint programming and mixed integer
programming. We show that this formulation outperforms thepure Mixed Integer
Programming formulation proposed in [4].

2 Problem Definition

We assume there aren aircrafts in theTRACON. When entering this area, a set of
nu disjoint time intervals∪ni

u=1Iiu is assigned to each aircrafti; it corresponds to
the possible landing times (taking into account possible holding patterns and all
possible speed modifications). We consider two objective functions:

• Maximizing the minimum time elapsed between any two consecutive land-
ings.

• Assuming a minimal timep during any two consecutive landings, minimiz-
ing the maximal number of times a plane enters a holding pattern.

Note that the decision variants of these two problems are exactly identical. The
corresponding problem can then be seen as a simple single machine scheduling
problem in whichn “landing” jobs with identical processing timep have to be
scheduled within some time windows on a single “runway” machine. More for-
mally, the problem can be described as follows.

THE RUNWAY SCHEDULING PROBLEM
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meaning each jobi has processing timep and has to be fully scheduled (i.e.,
started and completed) in one of the intervals[riu, diu]. We wish to find a
schedule such that every job is scheduled non-preemptively, and no two jobs
overlap.

output a set of starting timesS1, . . . , Sn ∈ N such that (1)∀i ∈ {1, . . . n}, ∃j ∈
{1, . . . , si} such thatSi ∈ [rij , dij −p] and (2)∀i, k ∈ {1, . . . n} with k 6= i,
|Si − Sk| ≥ p.

Figure 2 illustrates a special case of the runway schedulingproblem where time
windows and diatnces between time windows are identical. 8 aircrafts with 3 time
windows are to land on the runway. The shaded bars represent afeasible solution.
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Figure 2: Illustration of the Runway problem.

In the following, we study special cases of the Runway Scheduling Problem in
which there is a single pattern for the time windows: same numbers of windows
per aircraft, same window sizel and identical distancesT between windows (see
Figure 2).







∀i ≤ n, si = s
∀i ≤ n,∀j ≤ s, dij − rij = l
∀i ≤ n,∀j ≤ s, rij = ri + (j − 1)T

This problem is reefered to as the “MONO-PATTERN RUNWAY SCHEDULING

PROBLEM”. It plays a special role since it corresponds to the situattion where
all aircraft are identical and where a single holding patteris considered.

To our knowledge the problem has first been studied by Bayen, Tomlin, Ye and
Zhang [6], when a single time window only is allowed and the goal is to maximize
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the minimal distance between two consecutive landings. As noticed by the authors,
the problem is a special case of the decision variant of1|ri, pi = p|Lmax and hence
can be solved in polynomial time (see [9]).

In [5] a slightly more general problem is considered. Holding Patterns are
allowed and the time windows do not have the same lengths. Theobjective is either
to minimize the total waiting time for aircraft or to minimize the latest landing time.
Constants 5 and 3 approximation algorithms are given for these objectives. Finally,
let us mention that a general MIP formulation is provided in [4]. This formulation
is carefully reviewed in Section 4.

In Section 3 we prove that the problem is NP-Hard and we reviewsome poly-
nomially solvable cases. Finally, we compare a pure Mixed Integer Programming
formulation introduced by Bayen and Tomlin to a Branch and Cut procedure (Sec-
tion 4). Computational experiments show that our approach compares well to the
pure MIP.

3 On the Complexity of the Runway Scheduling Problem

The Runway Scheduling Problem is NP-Complete as soon as processing times are
larger than 2 and when we have more than three time windows peraircraft. Indeed,
when p = 2, ∀i, si = 3 and∀i ≤ n,∀j ≤ s, dij − rij = 2, this problem is
a direct generalization of the problem of scheduling short tasks with few starting
times [14]. Note also that the more general problem, where each jobi has its own
processing timepi is also NP-complete, even if all release dates are0, ands = 2.

In the following, we list the special cases that we can solve in polynomial time.

3.1 Unit Processing time

This problem can be reduced to a well-known flow problem in a bipartite graph
G = (J ∪ T , E) whereJ is the set of job verticesJ1, .., Jn andT is the set of
time pointst corresponding to the beginning or to the end of a time window of a
job. There is an edge betweenJi andt if and only if the job can start at timet. Two
more verticesσ, ε are added to the network. The sourceσ is connected to all jobs
and each time vertex is connected to the sinkε. Finally all capacities are 1 except
on the edges connecting a time vertext to ε where the capacity equals the distance
betweent and the next time point inT (if no such point exists the capacity is 0).
It is easy to see that there is a feasible schedule if and only if there is a flow of
capacityn.
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3.2 Single Time Window

This situation corresponds to the well known problem1|ri, pi = p|feasibility and it
can be solved in timeO(n log n), by Garey, Johnson, Simons and Tarjan Algorithm
[9]. As this problem plays a crucial role for the runway problem (espeacially in
Section 6), we briefly describe a simple variant of Garey et al. Algorithm. XXX
Konstantin

3.3 Two Tight Windows per Job

We assume that there are two time windows per job and that theyare “tight”, i.e.,
their size is exactlyp. So we basically have to decide which one to pick. This
assignment problem can be solved by a reduction to the 2-Satisfiability problem.
To every jobi associate a boolean variablexi which is true ifi is scheduled in its
first time window and false if it is scheduled in its second time window. For every
pair of intersecting time windows with associated literalsa, b there will be a clause
ā ∨ b̄, which translates the condition that no two jobs can intersect. The resulting
2-SAT problem can be solved in polynomial time [11].

3.4 Whenp = l and T is fixed (Mono-Pattern)

We describe a dynamic programming algorithm running inO(nT+1s) that solves
the runway problem whenp = l.

Let us define thetype of a jobi asri mod T . Now consider two jobsi, j with
the same type and assume thatri ≤ rj . It is easy to see that, schedules in which
i is scheduled beforej are dominant (i.e., if there exists a feasible schedule, there
is one in whichi is scheduled beforej). Indeed, ifj is scheduled beforei, then
we can just exchange the starting times of jobs. Note that according to the above
remark, we can restrict our search for a feasible schedule tothose in which jobs of
the same type are scheduled in order of their release dates.

To simplify the presentation of the algorithm, we assume that jobs are sorted
in non-decreasing order of release date. Suppose there arena jobs of typea ∈
{0, . . . , T − 1}, son =

∑

a na. We identify each jobi by a couple(a, b) where
a is the type of the job, andb is the number of jobsj ≥ i of type a. We define
the boolean variableS(t, k0, . . . , kT−1) as follows: It is true if and only if there is
a schedule, idle before timet, that contains all jobs(a, b) with b ∈ {1, . . . , ka}.
Given this definition,S(t, 0, . . . , 0) = true. And we look forS(mini ri, n0, . . . , nT−1).

Now, let a = t mod T . If the starting time of the last window of job(a, ka)
is earlier thant thenS(t, k0, . . . , kT−1) = false, since the job(a, ka) cannot be
scheduled in a schedule which is idle beforet. OtherwiseS(t, k0, . . . , ka, . . . , kT−1)
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equals

S(t + 1, k0, . . . , ka, . . . , kT−1) ∨ S(t + p, k0, . . . , ka − 1, . . . , kT−1)

because any schedule idle beforet is either idle beforet + 1 as well or contains a
job of typet mod T that starts att.

Note that there are at mostns relevant values fort, since in the previous for-
mula, we can replacet + 1, by the starting time of the next window. So there are
O(nT+1s) variables, and they can be computed in constant time (provided we pro-
cess them in the right order). Moreover, ifs ≥ N , the problem can be solved in
polynomial time with greedy algorithm even without the condition p = l.

3.5 WhensT/p is fixed (Mono-Pattern)

We describe a dynamic algorithm, running inO(n2s3T 2p−222sT/p). So the prob-
lem is polynomial ifsT/p is fixed.

In this section we are only interested indominating partial schedules which
minimize the completion time among all schedules on the samejob set. Moreover
we want this property to be preserved when removing recursively the last scheduled
job. Such schedules have in particular the property of beingleft-shifted, meaning
every job is scheduled either at the beginning of one of its time windows or right
at the end of another job. In such a schedule the finishing timepoints of jobs can
be taken from the setΘ = {rij + ap : i, a ∈ {1, . . . , n}, j ∈ {1, . . . , s}} ∪ {t0} to
which the timet0 = min rij is added for convenience.

Before running the dynamic algorithm of Figure 3 we verify the very basic
necessary condition: for every time interval[a, b], the number of jobs which have
all their windows contained in[a, b] (a ≤ ri, ri + (s − 1)T + l ≤ b) does not
exceed(b− a)/p. Clearly these jobs must be scheduled in this interval and atmost
(b − a)/p jobs fit.

It follows from the construction thatSt contain alldominating partial sched-
ules, each containing all jobs due att. In particularStmax

contains all feasible
schedules for the given runway problem, wheretmax is the maximal time fromΘ.

In order to evaluate the time spent to compute this set, we bound the number
of schedules in each setSt. At time t there are 3 types of jobs. Jobs which are
due att, jobs which are not yet available att− p and the remaining jobs. The later
satisfyri ≤ t − p andri + (s − 1)T + l > t. By the necessary condition checked
earlier for saya = t− sT andb = t + sT there are at most2sT/p remaining jobs.
Therefore|St| ≤ 22sT/p. We have|T | = O(sn2). In each of the|T | iterations we
need to explore at most22sT/p schedules and at most2sT/p jobs. We represent
schedules by a table ofn scheduling times with a special value for yet unscheduled
jobs. Schedule sets are represented by search tree based dictionaries, mapping job
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Dynamic Algorithm 2
St0 = {}.
For all t ∈ Θ\{t0} in increasing order

Let t′ ∈ Θ be the latest time point such thatt′ < t.
Let t′′ ∈ Θ be the latest time point such thatt′ ≤ t − p.
Let D = {i : ri + (s − 1)T + l ≤ t} be the set of jobs due att.
Let A = {i : ri ≤ t − p} be the set of jobs available att − p.
SetSt = {S ∈ St′ : all jobs inD are scheduled inS}.
For allS ∈ St′′

For all jobsi ∈ A not yet scheduled inS
If S + i contains all jobs inD

and there is no schedule inSt with the same job set asS + i
then add(S + i) to St.

Figure 3: Dynamic algorithm forsT/p fixed.

sets to schedules. Therefore adding a new schedule or checking if there is already
a schedule on the same job set has logarithmic cost, which isO(sT/p) in our case.
Therefore total running time isO(n2s3T 2p−222sT/p).

3.6 When Time Windows are Well Ordered (Mono-Pattern)

When∀i,max ri + l ≤ min ri + T then the problem can be solved by Linear Pro-
gramming. As this is a special case of a more general situation, the LP formulation
is described in Section 5 and Theorem 2.

We first restrict our study to the Mono-Pattern problem and weshow that, due
to structural properties of the problem, we have “small” MIPformulation of the
problem (Section 5).

4 Bayen et al. MIP formulation

Bayen, Tomlin, Ye and Zhang have introduced a MIP formulation for maximizing
the minimum time elapsed between two consecutive landings [6]. As they work on
the minimization problem, the minimum ellapsed time between two consecutive
landings is a variableP . Each jobi is associated with a starting time variableti.
Moreover, two sets of integer variables are used:

• xiu variables are binary variables that indicate whether aircraft i is schedule
in one of itsuth first time windows or not.
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• yij variables are binary sequencing variables that indicate whether aircrafti
precedesj or not.

The complete MIP is then as follows:

min P














































ti ≥ ri1 1 ≤ i ≤ n
ti ≤ disi

1 ≤ i ≤ n
ti ≥ riu − Mxi u−1 1 ≤ i ≤ n, 2 ≤ u ≤ si

ti ≤ diu + M(1 − di u) 1 ≤ i ≤ n, 1 ≤ u ≤ si − 1
ti − tj ≥ P − M ′yij 1 ≤ j < i ≤ n
ti − tj ≤ M ′(1 − yij) − P 1 ≤ j < i ≤ n
xiu ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ u ≤ si − 1
yij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ i ≤ n

whereM andM ′ are two large constrant values chosen as follows: Such largeval-
ues usually lead to poor LP relaxation and hence, as we will see in our experiments,
to poor performance of the MIP.

M = max
i

max(risi
− ri1, disi

− di1)

M ′ = 2(max
i

disi
− min

i
ri1)

We have tightened this formulation by adding the cutsxiu ≥ xi u−1 andyij +yji =
1.

5 A Small MIP for the Mono-Pattern Problem

We come back to thedecision variant of the mono-pattern problem. So now,
the minimal time ellapsed between two consecutive landingsis fixed (p) and we
present a MIP formulation for the Mono-Pattern problem. To every j-th time win-
dow of every jobi we associate a binary variablexij ∈ {0, 1}, stating that jobi is
processed in this time window or not. In every interval[a, b] at mostb(b − a)/pc
jobs can be strictly contained. Then the following inequalities must hold:































si
∑

u=1

xiu = 1 1 ≤ i ≤ n

∑

[riu,diu]⊆[a,b]

xiu ≤ b
b − a

p
c 1 ≤ i ≤ n, a ∈ {rjv}, b ∈ {djv}, a < b

xiu ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ u ≤ siu

(1)

Note that (1) is a MIP with no objective function.
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Figure 4: Two instances of the runway problem withp = l = T = 2 which have
only fractional solutions.

Theorem 1. There is a solution to (1) if and only if there is a feasible schedule.

Proof. The sufficient condition is obvious. To prove the necessary condition, we
first recall a well-known result of single machine scheduling theory1|rj , dj , pmtn|−:
Consider a set of jobs with arbitrary processing times (pi), release dates (ri) and
deadlines (di). There is a feasible preemptive schedule if and only if overany time
interval [t1, t2], the sum of the processing times of the jobsi such thatt1 ≤ ri and
di ≤ t2 is not greater thatt2 − t1 (see for instance [8]).

Now, assume we have a solution to the MIP and, for alli, let j(i) denote the
index such thatxij(i) = 1. If we defineri = rij(i) anddi = rij(i) + l then we know
that over any time interval[t1, t2], the sum of the processing times of the jobs that
have to be processed in this time interval is not greater thant2 − t1. Thanks to the
previous remark, this directly ensures that we have a feasible preemptive schedule
in which jobsi are scheduled betweenrij(i) anddi = rij(i) + l.

The preemptive schedule can be easily transformed into a non-preemptive one.
Indeed, it is well-known that if there is a preemptive feasible schedule, then the
preemptive schedule associated to the dispatching rule “Earliest Deadline First” is
feasible. Recall that in our case, all time windows have the same lengths. Hence
when, according to the “Earliest Deadline First” rule, a jobstarts to be processed,
it is never interrupted. Hence we have a non-preemptive schedule.

After having run initial experiments using the MIP formulation, it happened
that the gap between the LP relaxation and the optimal solution was always 0. It
took us some time to build an instance with a non null gap. In Figure 4(left) we
give an instance fors = 2 with a fractional solution to the LP for which there is no
integer solution: job 1 must be scheduled in its first time window, otherwise there
would be no space left for job 2. For similar reason job 4 must be scheduled in
its second time window. And the remaining jobs have only a single time window
left each, which intersect. For completeness we also show aninstance which has
fractional but no integer solution fors = 3, since the subcasep = l ands = 2 is
polynomial solvable anyway.
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There is however a case for which the LP formulation gives a sufficient condi-
tion for the existence of a schedule. For convenience, we saythat thej-th window
of a job hasrank j.

Theorem 2. If max ri + l ≤ min ri + T (only windows of the same rank can
intersect) then there is a feasible schedule if and only if the LP relaxation of the
MIP has a solution.

Proof. Assume that the LP relaxation of the MIP has a solutionx̃. We will show
that there is a feasible schedule. (The other direction follows from Theorem 1.) In
fact we will show that there is an integer solutionx̄.

Assume the jobs are ordered according to release times. Now set x̄ij = 1 if
j ≡ i (mod s) andx̄ij = 0 otherwise. We claim that this is a solution to the MIP
and that consequently, we have a feasible schedule.

First we observe a property of the linear program. By hypothesis j-th time
window of a job does not intersect with thej + 1-th time window of another job.
Therefore inequalities depending ona beginning of aj-th time window and onb
end of aj+1-th time window can be obtained by adding the inequalities associated
to (a, b′) and(a′, b) whereb′ is the end of the latestj-th time window anda′ the
beginning of the firstj + 1-th time window. Therefore it is sufficient to keep in
the linear program, inequalities for(a, b) wherea, b correspond to time windows
of the same rank. To show thatx̄ is a solution we need to show that the inequality

∑

[rij ,rij+l]⊆[a+(j−1)T,b+(j−1)T ]

x̄ij ≤

⌊

b − a

p

⌋

, (2)

holds for arbitraryj ∈ {1, . . . , s} anda, b ∈ [min ri,max ri + T ].
Let c be the number of jobsi with a ≤ ri ≤ b − l. Sincex̃ is a solution we

have
∑

[rij ,rij+l]⊆[a+(j−1)T,b+(j−1)T ]

x̃ij ≤

⌊

b − a

p

⌋

.

Summing over all window ranksj ∈ {0, . . . , s − 1} we get

c ≤ s

⌊

b − a

p

⌋

.

Therefore
c

s
≤

⌊

b − a

p

⌋

.

Since the right hand side is an integer we have also
⌈c

s

⌉

≤

⌊

b − a

p

⌋

.
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But by construction of̄x, we have

∑

[rij ,rij+l]⊆[a+(j−1)T,b+(j−1)T ]

x̄ij ≤
⌈ c

s

⌉

from which inequality (2) follows.

6 A Branch and Cut for the General Problem

Now we study the general problem and as for the mono-pattern problem, we can
rely on MIP (1). Unfortunately, Theorem 1 does not hold any more. However, the
last part of the proof only does not hold and we still have a weaker version of this
thorem:

Theorem 3. There is a solution to (1) if and only if there is a feasible preemptive
schedule.

Of course all constraints of MIP (1) are still valid in the nonpreemptive case
and it is “likely” that the assignement of jobs to windows also leads to a non pre-
mmptive schedule. To test this, we can apply theO(n log n) algorithm of Garey,
Johnson, Simons and Tarjan [9].

• If there is non-preemptive schedule then we have found a solution to the
runway problem.

• Otherwise, we know that the assignement found by MIP (1) doesnot lead
to a feasible non-preemptive schedule. Hence, we can add an “iterative” cut
to the MIP stating that the sum of thex variables that were equal to 1 in the
previous solution cannot be greater thann − 1. We then solve the new MIP
and iterate the same process.

This branch and cut mechanism terminates since, each time a cut is added, a yet
unexplored assignement will be generated at the next iteration. Of course the total
number of added cuts can be very large. To make this mechanismwork, several
ingredients have to be added.

• Preprocessing cuts can be used to tighten the inital MIP formulation (1).

• The generation of iterative cuts can be improved to reduce the total number
of iterations.
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6.1 Preprocessing Cuts

We describe two sets of cuts: Disjunctive Cuts [13, 15] and Energetic Cuts. Note
that in both cases, these disjunctive cuts are only valid in the non-preemptive case.
We have tested several other kind of cuts. Some of them were leading to a very
limited number of iterations but the size of the MIP was increasing so much that
the time required to solve it was too large. In the following we describe two sets of
O(n2) cuts.

6.1.1 Disjunctive Cuts

These cuts prevent the simultaneous assignment of a pair of jobsi, j to some time
windows[riu, diu), [rjv, djv), if the situation is “infeasible”. The feasibility test is
performed as follows:

• Relax the time windows of jobsk /∈ {i, j} to one single time winow[rk1, dknk
).

• Tighten the time windows ofi, j to [riu, diu), [rjv, djv).

• As in the resulting instance jobs have a single time window, the feasibility
test can be achieved thanks to Garey et al. algorithm

As there areO(n2) pair of jobs to consider this leads to anO(n3 log n) (a bit more
in our naive implementation) algorithm to build all the disjunctive cuts.

6.1.2 Energetic Cuts

The notion of “energy” has been originally introduced for constraint propagation
techniques (see [1] for instance). Consider a time interval[t1, t2) with t1 + p ≤ t2.
Preemtive constraints of MIP (1) ensure that the number of jobs scheduled in the

interval does not exceedν =
⌊

t2−t1
p

⌋

. Now assume that we have a jobi and a

time windowu such thatriu + (ν + 1)p > t2 andt1 + (ν + 1)p > diu then it is
impossible to schedule non preemptively the jobi if we haveν jobs in the interval
[t1, t2). This leads to the cut:

xiu +
∑

j,v:t1≤rjv≤djv≤t2

xjv ≤ ν

6.2 Iterative Cuts

Recall that an iterative cut is generated when Garey, Johnson, Simons and Tarjan
Algorithm [9] discards an assignement proposed by the MIP (i.e., the MIP has
build a preemptive schedule but it cannot be changed into a non preemptive one).
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A valid iterative cut is a cut which guarantees that the same assignment will
not be generated in the subsequent iterations. Our intuition is that “small” cuts,
i.e., cuts with few variables, are a priori better than large cuts.

So, we examine the current solution of the MIP and we compute aminimal
set of jobs (as assigned in the solution) that lead to an unfeasible non-preemptive
scheduling situation. As we do not want to try an exponentialnumber of sets, we
restrict our search to a quadratic number of sets. Each set isdefined by two integer
t1, t2 and is made of jobsi whose assigned window is included in[t1, t2]. More
precisely, we use the following algorithm.

• Iterate over all possible release dates fort1 and all possible deadlines fort2.

• Test with Garey, Johnson, Simons and Tarjan Algorithm if thejobs assigned
in the time windows contained in[t1, t2) can be scheduled, if not, consider
this set of jobs as a candidate cut.

• Find a minimal cut among the candidates.

7 Experiments

To compare our approach with Bayen et al., we have led our experiments on the
maximization of the minimum ellapsed time between aircrafts. All our algorithms
have been designed to work on the decision variant of this problem so, we just
apply a dichotomic search on the objective value and solve successive variants of
the decision problem: We starty by by computing an initial upper bound

pmax =

⌊

maxi dini
− mini ri1

n − 1

⌋

and an initial lower boundpmin = 0 for the objective. Then

1. Setp =

⌊

pmin + pmax

2

⌋

.

2. Solve the descision variant of the runway problem with processing timep,
i.e., determine a solution with a “minmum ellapsed time between aircrafts”
lower than or equal top or prove that no such solution exists. If a solution
is found, setpmin to the value of minmum ellapsed time between aircrafts in
the solution; otherwise, setpmax to p.

3. Iterate steps 1 and 2 untilpmax = pmin.

Two sets of instances have been generated (all instances areavailable on the
web XXXX).
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• The first set of instance corresponds to the mono-pattern problem. XXX
Konstantin tu nous expliques en 5 lignes.

• The second set of instances corresponds to the general problem. Instances
with 15, 30, 45, 60, 75 and 90 jobs have been ranomly generated(according
to three parametersπ, ι andλ) as follows:

– The number of intervals for a given job is a random number taken be-
twen 1 and 5.

– The length of an interval is a random number inπι.

– The distance between two consecutive intervals is a random number in
πλ.

For each value ofn, the following combination of parameters have been
testedπ ∈ {75, 150}, ι ∈ {π, 6π, 11π, 16π}, λ ∈ {π, 6π, 11π, 16π}. This
leads to 64 instances for each size.

We have used Ilog Cplex 9.0.3 to solve the MIP and all tests have been per-
formed on a 1.4 GHz PC running Windows XP.

7.1 Mono-Pattern Problems

We first compared the MIP proposed by Bayen et al. (MIP-BY in the following)
with our MIP (MIP-1 in the following). In the first case, a single MIP is solved
while in the second case we solve several MIPs (as many as the numbe of iterations
of the dichotomizing algorithm). In both case the search hasbeen stoped afer
600.00 seconds of CPU time. Our algorithm solves 95 instances out of 98 while
MIP-BY can solve 23 instances only. Over the instances that could be solved by
both algorithms, ours found the optimal solution in an average CPU time of 26.3
seconds and less than 1 node while MIP-BY required 55.1 seconds and 57018
nodes.

As stated in Section 4, the initial formulation of Bayen et al. can be tight-
ened by adding the cuts likexiu ≥ xi u−1. This allows us to slightly improve the
behaviour of the algorithm since 6 more instances are solved.

7.2 General Problem

Several variants of the Branch and cut have been tested.

• Either we apply the basic iterative cuts (BAS-CUT) or we use the mechanism
computing small cuts (SMALL-CUT).



Runway Sequencing with Holding Patterns 16

• Either we do not apply any preprocessing cuts (NO-PP) or we apply the
disjunctive cuts (DISJ-PP) or we apply the disjunctive cutsplus the energetic
cuts (ENERGY-PP).

This leads to six variants “NO-PP, BAS-CUT”, “DISJ-PP, BAS-CUT”, “ENERGY-
PP, BAS-CUT”, “NO-PP, SMALL-CUT”, “DISJ-PP, SMALL-CUT”, “ENERGY-
PP, SMALL-CUT” plus the the MIP formulation of Bayen et al. Figure 5 reports
the number of instances solved withing a given amount of cpu time for each of
these 7 programs (search was stoped after 100.00s). The testbed was made of the
192 instances with less than 45 jobs.

These results show that Bayen et al. formulation performs well in the first
few seconds of CPU time (more instances are solved by this formulation than
for any other). Howevever, our Branch and Cut compares well as soon as some
more time is given to solve instances. All versions except the most basic one
clearly outperform Bayen et al. formulation. Within the time limit, it can sole
108 instances while “NO-PP, BAS-CUT”, “DISJ-PP, BAS-CUT”,“ENERGY-PP,
BAS-CUT”, “NO-PP, SMALL-CUT”, “DISJ-PP, SMALL-CUT”, “ENERGY-PP,
SMALL-CUT” solve respectivel 108, 105, 181, 182, 134, 188 and 189 instances.
Note that the 3 instances that could not be solved by “ENERGY-PP, SMALL-CUT”
are solved within 150.00 seconds.
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Figure 5: Number of 15, 30 &45 job instances solved within a CPU limit
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Surprisingly our MIPS seem to be easy to solve since on the average 10 nodes
are developped by Cplex Branch and Bound procedure (much much more for
Bayen et al. formulation). Another good news is that the total number of itera-
tions (i.e., the total number of iterative cuts that we have added) is kept low (5 on
the average with a maximum of 104). Following these experiments, it seems clear
that two ingredients play a crucial role for the branch and cut:

• The disjunctive cuts are extremly powerfull and drastuically reduce the total
number of iterations. Hence they more or less guarantee thatpreemptive
solutions are likely to be transformed in non-preemptive ones.

• The choice of small cuts is also important and allows to reduce the number
of iterations.

• The usefullness of the Ebnergetic cuts is not very clear although it does not
cost much to use them.

Following these results we decided to test the best version of our Branch and Cut
“ENERGY-PP, SMALL-CUT” on instances with 60, 75 and 90 jobs.62 instances
with 60 jobs, 58 instances with 75 jobs and 36 instances with 90 jobs are solved
within 10 mn.

8 Conclusion

Some of the programs described in this note are available at http://www.lri.fr/~durr/runway/.
To conclude, we would like to mention that, up to our knowledge, the general

problem is still open.
Although we conjecture that the problem is NP Hard, we have not been able to

prove it. However, some very simple generalizations are NP-Hard.
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