Efficient Probabilistic Model Checking of Systems
with Ranged Probabilities

Khalil Ghorbal!, Parasara Sridhar Duggiralal’z, Vineet Kahlon?,
Franjo Ivancié¢!, and Aarti Gupta'

L NEC Laboratories America, Inc.
2 University of Illinois at Urbana Champaign

Abstract. We introduce a new technique to model check reachability properties
on Interval Discrete-Time Markov Chains (IDTMC). We compute a sound over-
approximation of the probabilities of satisfying a given property where the accu-
racy is characterized in terms of error bounds. We leverage affine arithmetic to
propagate the first-order error terms. Higher-order error terms are bounded using
interval arithmetic.

1 Introduction

Analyzing the behavior of real world systems, such as energy management systems or
cloud-based web applications, is of great importance for both designers and managers
of these systems. Many properties of interest such as performance and reliability, are
related to the inherent stochastic behavior of these systems. However, many of these
complex systems do not have a readily available model that captures these behaviors.
Even if such models exist, they are usually deprecated and do not reflect the actual
behavior of the system, partly because these systems get updated and tuned very often
after the initial deployment.

Usually, the only available information about the system are its runtime logs, which
are systematically recorded either for debugging reasons or for helping in their opera-
tional management. Techniques like Statistical Model Checking (SMC) [12l20-22]] can
use these logs to verify whether a system meets a given probabilistic property. Although,
SMC is efficient, it does not provide a model of the system, and instead considers it as
a black-box.

This paper advocates a model-based approach, where the stochastic behavior of
the system is captured using a learned Markov model, specifically an Interval-Valued
Discrete-Time Markov Chain (IDTMC). IDTMCs were introduced in [14,/16] to al-
low a realistic encoding of stochastic systems. More recently, IDTMC (called Abstract
DTMC) were used for model checking of DTMCs for abstraction purposes to overcome
the state space explosion problem [6}15]].

An IDTMC is a classical discrete-time Markov chain with ranged probabilities,
where a transition between two states is associated with an interval in which the ac-
tual transition probability must lie. In accordance with the Unified Markov Chains [14]
(UMC) semantics, an IDTMC is considered as a set of possibly infinitely many Discrete-
Time Markov Chains (DTMC).

A. Finkel, J. Leroux, and L. Potapov (Eds.): RP 2012, LNCS 7550, pp. 107-]120] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

108 K. Ghorbal et al.

In this work, we focus on model checking learned IDTMCs, where the intervals come
mainly from the stochastic uncertainty related to the underlying learning technique.
We use approximation-based techniques to compute a sound over-approximation of the
probabilities of satisfying a given reachability property, where accuracy is characterized
in terms of error bounds. Our technique leverages affine arithmetic, which has been
successfully applied in various different domains (such as abstract interpretation [7,9],
numerical validation [4] or reachability analysis of hybrid systems [8]), to precisely
propagate uncertainties during computations.

2 Preliminaries

We first define a DTMC as well as an IDTMC.

Definition 1 (DTMC). A DTMC is a 4-tuple: M &f (S, so, P,), where S is a finite
set of states, sy € S the initial state, P a stochastic matrix, and { : S — 247 is
a labelling function which assigns to each state s € S a set of atomic propositions
a € AP that are valid in s, and AP denotes a finite set of atomic propositions. The
element p;; of the square matrix P denotes the transition probability from state s; to
state sj. Therefore, p;; € [0,1] and for all i, Zj pij = L.

Definition 2 (IDTMC). An IDTMC is 4-tuple: M &ef (S, si, P, L), where P is an

interval-valued matrix. It is defined as the following set of DTMCs:
{M|M=(S,s;,P{),PeP} .

PCTL is a very expressive logic allowing a combination of standard temporal opera-
tors and probabilities [[11]]. For example, one can express whether the probability of a
given path formula to be satisfied is greater than (or equal to) a given threshold. In this
work, we target non-nested probabilities of reachability properties. Therefore, we only
consider the probabilistic properties Py [¢] for

¢u=true|a|—d| AP
b= X0 | 6 UG
where a € AP, <€ {<, <, >,>},7v € [0, 1] a threshold probability, and k € NU{co}.
The semantics of the P operator, with respect to a DTMC M, is as follows. The
notation s = ¢ means that the state s satisfies the state formula ¢. A path o in M is a

sequence of (possibly infinitely many) states. The ith state, ¢ > 0, of ¢ is denoted by
oli].

s = true true for all states.
skEa <= a € l(s)

s = —¢ s

s o1 Ao = sEpLAsE @
ok X0 ol k¢

o= ¢ USFpy — 3,0<i<k:Vj<i,

si | ¢2 Nsj |E d1

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 109

Let Probas(s,v) denote the probability that a random path o in M starting from s
(o[0] = s) satisfies ¥, i.e. o |= 1.

s = By [Y] <= Probys(s, 1)) 17y

Following the UMC semantics [[14]], an IDTMC is considered as a set of DTMCs. A
property is valid with respect to an IDTMC M if it is valid for every DTMC M € M.

M,skE=¢ VM eM:MskEo .
Therefore, model checking a probabilistic property Puq (1)) requires computing the set:

{plp = Proby(s,¢),YM € M} . (D

2.1 Model Checking a DTMC

We recall in this section the standard techniques used to model check a DTMC [11].
We will then discuss the extension to IDTMCs.

For a DTMC M, if ¢ = X ¢, then Probys(s;, X¢) = Zsj g Dij-

If) = ¢p1 Ups, we first split the set of states as follows.

def

- Syes — {82 | Si ': ¢2}
def
- Sno - {Sz ‘ Si %Qél/\sz 17&(;52}
def

- Smaybe j S \ (Syes U Sno)
If s; € Syes, then Probas(s;, 1) = 1,and if s; € Sy, then Proby(s;,¢) = 0. The set
Smaybe denotes the set of states where any path starting from s; may or may not satisfy
the path formula 1. Therefore, the probability of the satisfiability of the path formula
starting from these states is unknown and needs to be computed.

Let vy [i], the ith component of the vector vy, denote Proby(s;, v, k), that is the

probability that a path of length k, starting from a state s;, satisfies the property . Let

) i def .
i be within I,qype = {i|s; € Simaybe - Then,

vgli] = szgvk: 1] 2)
= Z PijVk— 1 Z DijVk— 1 . (3)
J€Imaybe .]le,aybe
~ -~ -
b;

Since vy_1[j] are known for j & I,,qye (either 0 ot 1), and are independent from k, the
quantity b; is just a constant.
Using a matrix notation for all the states s; € Spaybe, We Obtain

v = P'ug_q1 + b, 4

where the square matrix P’ is simply extracted from the transition probability matrix P
by deleting all the rows ¢, such that s; € Syes U Spo, then deleting the columns % such
that s; € Syes U Sno. The components b; of the vector b, are defined in equation @.

110 K. Ghorbal et al.

Bounded Case. In the bounded case (k < 4o00), we unroll the recursion of equation
@) completely starting with vg = 0. Indeed, the probability that a path of length zero
satisfies the property 1 is zero for all states in Sy, qype. The probability Probas(s;, ¢, k)
is then given by the ith component of vector vy.

Unbounded Case. For the unbounded case, we need to resolve the following system of
linear equations
v=Puv+b.

Observe first that for any given state s; € Syaype, if pis = 1, then we have a deadlock
state and the probability to reach any other state is zero. Therefore, Probys(s;, 1) = 0.
Notice also that if for all ¢, each row of the matrix P’ sums up to 1, then for all 7,
Probys(si,¢) = 0. Indeed, in this case, we have infinite cycles in Sy,qype and the
system will never reach a state that satisfies ¢ by definition of Sy,qyve. For all other
cases, we prove the following proposition.

Proposition 1. Let A be a square matrix of dimension n. x n such that

L4 VZ,j,l S'La] Snaaij € [031]
° Vi,lgign,0<2?=1aij <1
e Ji,1<i<n Y a; <1

Let I,, denote the identity matrix of dimension n. Then the matrix A — I, is invertible.
Proof. Let A € R" be such that
(A-L)A=0 .

We prove by contradiction that the kernel of (A—1,,) is reduced to 0, that is that A = 0 is
the only possible solution. Suppose that || A > 0. Suppose further that | \||cc = | i
where

)

def
1Moo =" max il -

Part 1: We first prove that ¢ is necessarily such that Z?Zl a;; < 1. Part2: We then
prove a contradiction which makes || A||c = 0 and ends the proof.
Part 1. Suppose that ¢ is such that

> ai=1. 5)
j=1

Then, (A — I,)A = 0 gives for the row ¢ of (A — I,),
n
> Naij + Aifai —1) =0, (6)
=15
or equivalently using (@),

n

Z ()‘j -)\i)aij =0 .

=171

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 111

If \; > Aj forall j, j # 4, and since a;; are non-negative and not all null, then the
above equality does not hold. Thus, there exists j such that A; < A;.

Part 2. Recall that || A]|.c = |\i]- We now know that Z?:l a;; < 1. Using again
equation (6), and dividing its both sides by ||\||c > 0, we obtain

n)\j)\Z
— Moo [[Alloo

We know that

, , A
Vi, 1<j<n: <1.
[[Alloo
Therefore, multiplying both sides of the above inequality by a;; > 0 then summing up
all the inequalities we obtain, gives

A n
o< Zaij <1,
N = 2

which contradicts the fact that |A;| = || A]| co- O

Therefore, under the conditions of Proposition[I] the solution is simply given by v =
(I — P")~'b, where I denotes the identity matrix and (I — P’)~! the inverse of the
matrix (I — P’).

3 Model Checking of Bounded Properties

The straightforward extension of model checking DTMCs to IDTMCs using interval
analysis leads to highly imprecise results. We present hereafter our technique to over-
come this loss of precision. We focus first on the bounded case, that is & < +o0. The
unbounded case is later discussed in Section 4l

3.1 Approximate Model Checking

For an IDTMC, we need to compute the set defined in equation (). This can be done
by replacing the real-valued matrix P’ in equation () by an interval-valued matrix P’
in the computation of the updated component of vector vy.

The successive computation of each recursion step during the unrolling inherits from
the loss of precision due to interval arithmetic (IA) [[18]]. This can lead to coarse results,
sometimes even outside of [0, 1].

To overcome this loss of precision, in the bounded case, we use affine arithmetic
(AA) [2]. AA was introduced to overcome the loss of relations in interval arithmetic.
Consider for instance a symbolic variable v known to be within the interval [a, b]. Using
IA, an over-approximation of the expression v — v is given by the interval [a, b] — [a, b]
= [a — b,b — a], which is a coarse approximation of the actual result {0}. In AA, the
interval [a,] is represented using the affine expression:

a+b b—a

9 + 9 €1,

112 K. Ghorbal et al.

where an error symbol ¢; is introduced to capture an uncertainty within [—1, 1]. Now,
observe that using AA, we obtain the exact result for the expression v — v, that is {0}.
This improvement is due to the fact that the relation between both operands of the
subtraction is captured by sharing the same error symbol ;.

Definition 3 (Affine forms). An affine form a of length l is defined by

l
’\dﬁf a a a — a a
a = aytajer+--t+a€=0oy+ o €5,

i=1
where ag, . .., of are real coefficients, called error weights, and ey, . . ., €; are symbolic
error variables, known to be within [—1, 1].

AA is closed under linear transformation operations. However, non-linear operations
need to be linearized.

Definition 4 (Linear operations). Let a and b be two affine forms, let \, (be two finite
real numbers, then

l
def a a
= (af £ af) +) (af £a)e

=1

j= 3
H_
(<2}

l
A E Aaf + Y (Al

=1

l
i+CE (a@+)+ ale
=1

In the following, we improve the computation of the recurrence equation (@) using both
AA and IA. The main idea is to split P into a central matrix P,, and an interval matrix
E, which encodes the uncertainty of the model. Note that P, is a real-valued matrix
while E has ranged probabilities. The matrix P, is built using the centers of the original
intervals (which are the means given by the underlying learning technique). All intervals
in the uncertainty matrix E are symmetric. Each interval component of E, denoted by
[—eij, €], is substituted using the symbol €;; known to be within [—e; ;, e, ;]. The
interval matrix E is then represented by its corresponding affine form matrix E(e). For
each row i of P, and E/(e) respectively, we assume that:

n

n
chij =1 and qu =0 . (7)
i=1

Jj=1

These equalities hold for Markov Chain with symmetric uncertainties related to transi-
tion probabilities. Usually, statistical techniques (such as bootstrapping [3]]) are used to
learn a Markov Chain from a (finite) set of observations (logs for instance) of the real
system. The uncertainty is related to the required confidence and can be made arbitrarily
small using additional observations.

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 113

Using the above notations, the recurrence of () becomes:
vg(e) = (P + E'(€))vk—1(e) + (b + b(e)), (8)

where P/, E’, b and b(e) are derived from P, and E respectively as detailed in Sec-
tion 3.1l equation (@). The updated components of the successive iterations of vy, are
non-linear (precisely polynomial) functions of the perturbations (€;;)1<; j<n. To ex-
actly compute the box vy, we therefore need to solve, n instances (one for each row 7)
of the following (non-linear) optimization problem:

max /min vg;(e)
S.t. GijEEij,lgi,jSTL
n ()

d e =01<i<n
j=1

To reduce the complexity of the propagation of the components vy [i](¢), we compute
the first-order terms exactly using AA, and over-approximate all high-order terms using
IA. Formally, the vector vy (€) of equation (8)) is reduced from a polynomial function of
€;; to a linear function of these perturbations plus an interval which over-approximates
the non-linear error terms:
= def

vg(€) € Py = cx + lk(e) + Oy, ©)
where ¢y, is a constant, [(¢) is the linear part of v (€), and Oy, is an over-approximation
of vg(€) — (cx + lx(€)). The recurrence of the computation of vy, is now split into three
components, ¢, I (€) and [y, updated as follows:

Cr = Péck,1 +b
lk(G) = Pcllkfl(e) + EI(G)C}C71 + b(G) (10)
Ok = Pe0g—1 + E'(Ok—1 + li—1)

The constant ¢y, is calculated from ¢ 1, P, and b. This calculation gives the probability
with which the DTMC defined by P, satisfies the property.

The elements of the vector [(¢€) are expressed as a linear combination of elements in
l,—1(€) and the elements of the matrix E(¢). Therefore, each component of the vector
lk(€) is of the form 3, ; ., cvijéij.

To compute (i, we need to compute the interval vector I;_;. Each component of
ly,—1 is the wrapping interval of the affine expression given by the ith element of ;1.
Therefore, at each step, we have to compute the n objective values of the following
linear programming problems:

max / min Z Q€5
1<i,j<n
S.t. — eij S Eij S eij,l S ’L,] S n (P)

n
e =01<i<n
j=1

114 K. Ghorbal et al.

We can use any off-the-shelf LP Solver, such as GLPK [[I7], to solve (P). However, we
present, in the next section, a specific efficient algorithm. We illustrate first all steps
detailed earlier in a concrete example.

Example 1. Consider an IDTMC defined by the 4-tuple M = (S, s;, P, {). Suppose
that S = {s1, 82, 83,84}, AP = {a,b}, s; = s1, £(s1) = {b}, €(s2) = {a}, £(s3) =
{a N}, £(s4) = {b}, and

0 [0.49,0.51] [0.09,0.11] [0.39, 0.41]
(0.49,0.51] 0 0 [0.49,0.51]
0 [0.79,0.81][0.19,0.21] 0

[0.49,0.51] [0.29,0.31] [0.19,0.21] 0

P =

Suppose we want to verify the PCTL property P<.[t)], where 1) = b U<2(a A b). We
compute Probpg (s;,) for all states s; following the recursion of equation (I0). In this
example Sycs = {3}, Sno = {2} and Spaye = {1,4}. We first extract the square
matrix P, and the error matrix E'(e):

0 050.104 0 €1,2) €1,3) €(1,4)
1050 0 05 _leeny 0 0 epy
Pe=1""0502 0 | ™ EE =7 €3.2) €33) 0
0.50.30.2 0 €(4,1) €(4,2) €(4,3) 0

The matrices P, E’(¢) and the vectors b and b(e) are then given by (equation (3))):

;1004 1N 0 €na
Fe= {0.5 0] E'le) = [6(471) 0
b= (0.1,0.2)t b(e) = (6(1’3),6(4’3))1& .

In this example, all errors €;;, 1 < ¢,j < 4, are within [—0.01,0.01]. The vector [j(e)
represents the first-order error as a linear combination of the €;;. The intervals vector
Oy represents an over-approximation of the second and higher-order errors. Both Iy (€)
and [y are null. The initial vector v is exactly equal to cq. It is constructed using the
probabilities we already know, and by initialization those of Sy, qyse to zero:

Vo = Cy — [0,0]t .

Following (I0), we only update the probabilities of the states of the set Sp,qype (here
the first and the fourth components). We get:

o] . o1
CIPCX{O]+b{O.2}

Similarly for I, (€), we get

li(e) = P, x m + E'(e) x m +b(e) = {6(1,3)]

€(4,3)

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 115
Therefore,

[0.01,0.01]] . O =0.

c1=(0.1,02)% Ii(e) = (e,3), €(a3)); b= {[0.01 0.01]

For the second iteration we obtain:

_10.18] . 6(1’3)—|—0.2€(1’4)+0.46(4’3) . . [—10_4,10_4]
°T {0.25] P la(e) = |:0.56(1’3) +0.1€(41) + €(a3)] D2 =11 104,10

Finally, we obtain:

Probag(s1,) [0.1639, 0.1961]
Probpg(s2,¢)| 0
Probar(ss,)| 1
Probag (s, ¥) [0.2339, 0.2661]

3.2 Bounding the First-Order Error Terms

In problem (P), for each j, the set of constraints involving the variables ¢;;, 1 < i < n
are independent from all other constraints. Therefore, the problem (P) can be equiva-
lently decomposed into n smaller problems (in the worst case) of the form:

max / min E Q€

1<i<n
st. —e; <€ <¢,1<1<n (L)
€ = 0
i=1

where the interval [—e;, ¢;] def €;. Note that due to the symmetric nature of the feasible
region, we see that if the tuple (€1, . . . , €,) maximizes the objective function of[[] then
the tuple (—&y, ..., —&,) minimizes it, and vice versa. In the sequel, we focus on the
maximization problem.

We start by observing that (z) the feasible region is non-empty (as it contains the
tuple (0, . ..,0)), and (22) the objective function is bounded, (3", a;e; being an upper
bound). Thus the set of solutions for problem () is non-empty. Furthermore, ([[J) need
not have a unique solution in general. Indeed, if all «;s are equal, then all feasible
solutions are optimal in that they maximize the objective function.

For a feasible tuple (€1, ..., €,), we say that €; is positively or negatively saturated
accordingly as €; equals e; or —e;, respectively. In order to formulate a linear time algo-
rithm for (I)), we exploit the useful fact that there always exists a maximizing feasible
solution that saturates (positively or negatively) all but possibly one variable, say €.
Then the maximization problem reduces to determining the variables that need to be
saturated positively and the ones that need to be saturated negatively which in turn au-
tomatically determines the values assigned to all the variables ¢;. Finally, we show that
determining the positively and negatively saturated variables reduces to an instance of
the Weighted Median Problem which is known to be solvable in linear time [[1]].

116 K. Ghorbal et al.

Lemma 1 (Saturation Lemma). Given a linear programming problem of the form
of [©), there exists a feasible maximizing solution that leaves at most one variable non-
saturated. All other variables are positively or negatively saturated.

Proof. Suppose that €; and €; are not saturated. Suppose further that ; < ;. We can
increase the objective value by

(Ozi — Oéj) min{ei — €65 — Ej},
if we update the values of ¢; and ¢; as follows:

€; = gi — min{ei — €i,ej — Ej}

€5 = Ej + min{ei - Ei,ej — Ej}

We still have ¢; € [—e;, ¢;], and €; € [—e;, e;]. Moreover, €, + €; = € + €;, then the
above update is feasible (all constraints are respected). Since €; and €; are not saturated,
we have

min{ei — €65 — Ej} £ 0,
hence ¢; # € and ¢; # €; which contradicts the fact that (&1, ...,&,) is an optimal
solution. 0

Following Lemma [Tl it turns out that in order to solve (P), it suffices to determine the
non-saturated index, say k, as well as the sets & and © of positively and negatively satu-
rated variables, respectively. This, in turn, determines a maximizing feasible assignment
to all the variables as follows: If ¢; € © (resp. @), then ¢; = —e; (resp. e;). The value
of the remaining non-saturated variable €, is then deduced as follows:

==Y = e—> €. (1)

1€cUD €0 €D

The problem of finding a maximizing feasible solution for (L) now reduces to deter-
mining the possibly non-saturated variable ¢, which we formulate as an instance of the
Weighted Median Problem.

Intuitively this is easy to see as in order to maximize ([J) we need to assign as large
positive values as possible to the variables ¢;, 1 < ¢ < n, with the largest coefficients ;.
Due to the constraint) ;- €; = 0, if some variables are assigned positive values then
there will exist others that need to be assigned negative values. These negative values
should be assigned to variables ¢; with the smallest coefficients «;. In fact, the bal-
ancing constraint y ., ¢; = 0 implies that, roughly speaking, the sum of the weights,
i.e., values of ¢;, of the positively and negatively assigned variables are balanced. This
immediately leads to an instance of the Weighted Median Problem as follows. The non-
saturated variable ¢; can be identified as a solution to the Weighted Median Problem
where we associate to each ¢; the weight e;, and look for the weighted median ¢, de-

fined by
n
Zei<;Zei§Zei. (12)

€; <€k i=1 €; <€

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 117

Following our discussion above, the variables ¢; with the largest (resp. smallest) coef-
ficients «; need to be p0s1t1vely (resp. negatlvely) saturated. Thus we define the sets ©

and @ as follows: & & {z | o < g}, o & {z | a; > oy, }. Finally we need to show
the optimality of the resulting solution. Formally,

Theorem 1 (Optimality Result). The tuple (€1, ... ,&,), where €, = —e; or & = e;,
accordingly as €; belongs to © or @ , respectively, and ¢}, is defined as in (L) is a
maximizing feasible solution for (OJ).

Proof. We first prove that (€1, ..., €,) is feasible, that is that €, € [—e, ex] (all other
conditions are satisfied by construction). Then we prove that the so defined solution is
optimal.

Feasibility. By definition of the weighted median value, we have

Zei<;Zei§ Z ei:ek—l—Zei

€O i=1 a; <o S

1 n
E eiSQE e; < E ei:ekJrE €;
1ED i=1 ;> 1€D

Using (L)), we subtract the above inequalities. We obtain
—ep + €, <0< e + €,

which is equivalent to —ej, < € < ey.

Optimality. Starting from (€, ..., €,), we prove that any update does not improve
the objective value reached for this particular configuration we started with.

Suppose that €, < ej. We add a non-negative quantity § to €. Since > . & = 0,
the quantity § needs to be subtracted from some ¢&; such that o; > «, indeed all other
€; are saturated to their lowest possible value —e;. Let §; denote the amount we subtract
from €& such that o;; > ay. We have) d; = 0 and the new objective value is

i >ap
equal to
Z ;€ + Z a; (& i)+ ak(é +9)
a;<ap o, >a

—Zazez—l— Z i —ag)d; . (13)

Oc >ap
~ -
A
By definition the quantity A is non-positive. We conclude that adding a non-negative
quantity to €; does not improve the initial objective value.
By a similar reasoning we prove that subtracting a non-negative quantity from ey, or
updating any other ¢; decreases the initial objective value. g

Since the weighted median problem can be solved in linear time [}, the problem (L))
has the same complexity.

118 K. Ghorbal et al.

Proposition 2. The problem () can be solved in O(n).
We now derive the worst-case complexity to compute the over-approximation Py, (see
equation (9)).

Proposition 3. Computing the over-approximation Py, defined in equation (Q), can be
done in O(kn?), where k is the iteration depth, and n the number of states.

Proof. For each iteration of 132-, 1 < i < k, for each line of the square (n x n) matrix
P; we have to solve in the worst case n instances of (L)), which has a linear complexity
(see Proposition[)). Therefore, for k iterations, computing P, requires at most O (kn?)
operations. a

4 Model Checking of Unbounded Properties

For infinite paths, we need to compute the limit of the recursion defined in equation (I0).
c=Plc+b
l(e) = Pll(e) + E'(€)c + b(e) (14)
O=PO+E(O+1)
According to Proposition [T} the matrix P! — I is invertible. Therefore,
c=T—-P) '
I(e) = (I = P)~"(E'(e)c + b(e))

The only remaining component to compute is (. If h(e) denotes the exact high order
perturbation of the vector v, then with respect to equation (), we obtain:

(I - PL— E'()h(e) = E'(e)l(e) -

An over-approximation of h(e) can be derived as the solution of the following system
of interval linear equations:

(I-P —-E)O=El (15)

Such systems were widely studied during the last decades both from a theoretical (solv-
ability and complexity) and practical (implementations and tools) point of views [3L[13]].
The solvability is proved to be NP-hard. However, using numerical techniques to ap-
proximate the set of solutions such as in [[10] can be used to efficiently solve the prob-
lem.

Example 2. Going back to example[Il we now model check the time-unbounded prop-
erty P<~[b U(a A D)]. We have
c = (0.225,0.3125)"

I — 0.396(174) + 1.256(173) + 0.11256(471) + 0.56(473)
0.195€(1,4) + 0.625¢(1 3y + 0.28€(4,1) + 1.25€(4 3)

[— [—0.0226,0.0226]

~ |[-0.0235,0.0235]

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 119

Finally [J is the solution of the following system

[-1 [039,0.41]] 4 _ [[-0.00235,0.00235]
(0.49,0.51] -1 ~ |[-0.00226, 0.00226]

Using PROFIL/BIAS [19], we obtain

0 = (]—0.004149,0.004149]; [—0.00438, 0.00438])"

Which makes
Probag(s1,) [0.1973,0.2526]
Probar(se,)| 0
Probar(ss,)| 1
Probpg(sa,) [0.2855,0.3395]
Observe that

PvCuo .

5 Case Study

We applied our approach to model check

a smart grid management system. We an-

alyzed a model consisting of 21 states, Table 1. IA versus AA+LP
where each state corresponds to a range of

the difference (0) between energy supply #Days 1A AA+LP
and demand. We used our approximate P 7 [0.55,1] [0.83,0.98]
model checking technique to check the

following two pgropertieg(ém and 0,y rep- Py 7 [0.35,1] [0.70,0.80]
resent the minimum and maximum values
of ¢ respectively):

P;: What is the probability that within £ days, the power grid will switch from high
supply mode to low supply mode: P[;(;M <F< Sy USFO<6 < ééM].

P5: What is the probability that within k days, the power grid will switch from low
supply mode to low demand mode: P[0 < 6 < 6 USF 6, <6 < 0]

As can be seen in Table[I] using our approach based on affine arithmetic, we are able to
compute a much tighter probability range for the two properties with negligible com-
putation overhead (all computation took less than 0.1 second).

6 Conclusion

In this paper we have presented a new technique to address the problem of computing
the probability of a reachability property. We leverage affine and interval arithmetic to
propagate the uncertainties of the learned transition probabilities. At each step of the
model checking procedure, the first-order error terms are computed optimally in linear
time via a reduction to the weighted median problem. As a future avenue, we plan to
investigate model checking of properties with multiple P operators.

120

K. Ghorbal et al.

References

12.

13.

14.

17.
18.

19.

20.

21.

22.

. Bleich, C., Overton, M.L.: A linear-time algorithm for the weighted median problem.

Courant Institute of Mathematical Sciences, New York University, New York (1983)

. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In:

SIBGRAPI 1993 (1993)

. Corsaro, S., Marino, M.: Interval linear systems: the state of the art. Computational Statis-

tics 21, 365-384 (2006)

. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications. Brazilian

Mathematics Colloquium monographs. IMPA/CNPq, Rio de Janeiro, Brazil (1997)

. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press (1993)
. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in Probabilistic Systems. In: Valmari, A. (ed.)

SPIN 2006. LNCS, vol. 3925, pp. 71-88. Springer, Heidelberg (2006)

. Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zonotope Intersec-

tion. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212-226.
Springer, Heidelberg (2010)

. Girard, A.: Reachability of Uncertain Linear Systems Using Zonotopes. In: Morari, M.,

Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291-305. Springer, Heidelberg (2005)

. Goubault, E., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.) SAS 2006.

LNCS, vol. 4134, pp. 18-34. Springer, Heidelberg (2006)

. Hansen, E., Sengupta, S.: Bounding solutions of systems of equations using interval analysis.

BIT Numerical Mathematics 21, 203-211 (1981)

. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects

of Computing 6, 512-535 (1994)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic Model
Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73-84.
Springer, Heidelberg (2004)

Jiri, Rohn: Systems of linear interval equations. Linear Algebra and its Applications 126,
39-78 (1989)

Jonsson, B., Larsen, K.: Specification and refinement of probabilistic processes. In: LICS,
pp- 266277 (July 1991)

. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic

systems. Journal of Logic and Algebraic Programming 81(4), 356-389 (2012)

. Kozine, 1.O., Utkin, L.V.: Interval-valued finite markov chains. Reliable Computing 8,

97-113 (2002)

Makhorin, A.: The GNU Linear Programming Kit (GLPK) (2000)

Moore, R.E., Yang, C.T.: Interval analysis I. Technical Report LMSD-285875, Lockheed
Missiles and Space Division, Sunnyvale, CA, USA (1959)

Rump, S.M.: Profil/bias

Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic Systems.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266-280. Springer,
Heidelberg (2005)

Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Systems Using
Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp- 223-235. Springer, Heidelberg (2002)

Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to
Simulink/Stateflow verification. In: HSCC, pp. 243-252 (2010)

	Efficient Probabilistic Model Checking of Systems with Ranged Probabilities
	Introduction
	Preliminaries
	Model Checking a DTMC

	Model Checking of Bounded Properties
	Approximate Model Checking
	Bounding the First-Order Error Terms

	Model Checking of Unbounded Properties
	Case Study
	Conclusion
	References

