
Efficient Probabilistic Model Checking of Systems
with Ranged Probabilities

Khalil Ghorbal1, Parasara Sridhar Duggirala1,2, Vineet Kahlon1,
Franjo Ivančić1, and Aarti Gupta1

1 NEC Laboratories America, Inc.
2 University of Illinois at Urbana Champaign

Abstract. We introduce a new technique to model check reachability properties
on Interval Discrete-Time Markov Chains (IDTMC). We compute a sound over-
approximation of the probabilities of satisfying a given property where the accu-
racy is characterized in terms of error bounds. We leverage affine arithmetic to
propagate the first-order error terms. Higher-order error terms are bounded using
interval arithmetic.

1 Introduction

Analyzing the behavior of real world systems, such as energy management systems or
cloud-based web applications, is of great importance for both designers and managers
of these systems. Many properties of interest such as performance and reliability, are
related to the inherent stochastic behavior of these systems. However, many of these
complex systems do not have a readily available model that captures these behaviors.
Even if such models exist, they are usually deprecated and do not reflect the actual
behavior of the system, partly because these systems get updated and tuned very often
after the initial deployment.

Usually, the only available information about the system are its runtime logs, which
are systematically recorded either for debugging reasons or for helping in their opera-
tional management. Techniques like Statistical Model Checking (SMC) [12,20–22] can
use these logs to verify whether a system meets a given probabilistic property. Although,
SMC is efficient, it does not provide a model of the system, and instead considers it as
a black-box.

This paper advocates a model-based approach, where the stochastic behavior of
the system is captured using a learned Markov model, specifically an Interval-Valued
Discrete-Time Markov Chain (IDTMC). IDTMCs were introduced in [14, 16] to al-
low a realistic encoding of stochastic systems. More recently, IDTMC (called Abstract
DTMC) were used for model checking of DTMCs for abstraction purposes to overcome
the state space explosion problem [6, 15].

An IDTMC is a classical discrete-time Markov chain with ranged probabilities,
where a transition between two states is associated with an interval in which the ac-
tual transition probability must lie. In accordance with the Unified Markov Chains [14]
(UMC) semantics, an IDTMC is considered as a set of possibly infinitely many Discrete-
Time Markov Chains (DTMC).

A. Finkel, J. Leroux, and I. Potapov (Eds.): RP 2012, LNCS 7550, pp. 107–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 K. Ghorbal et al.

In this work, we focus on model checking learned IDTMCs, where the intervals come
mainly from the stochastic uncertainty related to the underlying learning technique.
We use approximation-based techniques to compute a sound over-approximation of the
probabilities of satisfying a given reachability property, where accuracy is characterized
in terms of error bounds. Our technique leverages affine arithmetic, which has been
successfully applied in various different domains (such as abstract interpretation [7, 9],
numerical validation [4] or reachability analysis of hybrid systems [8]), to precisely
propagate uncertainties during computations.

2 Preliminaries

We first define a DTMC as well as an IDTMC.

Definition 1 (DTMC). A DTMC is a 4-tuple: M
def
= (S, s0, P, �), where S is a finite

set of states, s0 ∈ S the initial state, P a stochastic matrix, and � : S → 2AP is
a labelling function which assigns to each state s ∈ S a set of atomic propositions
a ∈ AP that are valid in s, and AP denotes a finite set of atomic propositions. The
element pij of the square matrix P denotes the transition probability from state si to
state sj . Therefore, pij ∈ [0, 1] and for all i,

∑
j pij = 1.

Definition 2 (IDTMC). An IDTMC is 4-tuple: M
def
= (S, si,P , �), where P is an

interval-valued matrix. It is defined as the following set of DTMCs:

{M |M = (S, si, P, �), P ∈ P } .

PCTL is a very expressive logic allowing a combination of standard temporal opera-
tors and probabilities [11]. For example, one can express whether the probability of a
given path formula to be satisfied is greater than (or equal to) a given threshold. In this
work, we target non-nested probabilities of reachability properties. Therefore, we only
consider the probabilistic properties P��γ [ψ] for

φ ::= true | a | ¬φ | φ ∧ φ
ψ ::= Xφ | φ U≤kφ

where a ∈ AP , ��∈ {<,≤, >,≥}, γ ∈ [0, 1] a threshold probability, and k ∈ N∪{∞}.
The semantics of the P operator, with respect to a DTMC M , is as follows. The

notation s |= φ means that the state s satisfies the state formula φ. A path σ in M is a
sequence of (possibly infinitely many) states. The ith state, i ≥ 0, of σ is denoted by
σ[i].

s |= true true for all states.

s |= a ⇐⇒ a ∈ �(s)

s |= ¬φ ⇐⇒ s �|= φ

s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 ∧ s |= φ2

σ |= Xφ ⇐⇒ σ[1] |= φ

σ |= φ1 U≤kφ2 ⇐⇒ ∃i, 0 ≤ i ≤ k : ∀j < i,

si |= φ2 ∧ sj |= φ1

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 109

Let ProbM (s, ψ) denote the probability that a random path σ in M starting from s
(σ[0] = s) satisfies ψ, i.e. σ |= ψ.

s |= P��γ [ψ] ⇐⇒ ProbM (s, ψ) �� γ

Following the UMC semantics [14], an IDTMC is considered as a set of DTMCs. A
property is valid with respect to an IDTMC M if it is valid for every DTMC M ∈ M .

M , s |= φ ⇐⇒ ∀M ∈ M :M, s |= φ .

Therefore, model checking a probabilistic propertyP��γ(ψ) requires computing the set:

{p|p = ProbM (s, ψ), ∀M ∈ M} . (1)

2.1 Model Checking a DTMC

We recall in this section the standard techniques used to model check a DTMC [11].
We will then discuss the extension to IDTMCs.

For a DTMC M , if ψ = Xφ, then ProbM (si,Xφ) =
∑

sj |=φ pij .
If ψ = φ1 Uφ2, we first split the set of states as follows.

– Syes
def
= {si | si |= φ2},

– Sno
def
= {si | si �|= φ1 ∧ si �|= φ2},

– Smaybe
def
= S \ (Syes ∪ Sno).

If si ∈ Syes, then ProbM (si, ψ) = 1, and if si ∈ Sno, then ProbM (si, ψ) = 0. The set
Smaybe denotes the set of states where any path starting from si may or may not satisfy
the path formula ψ. Therefore, the probability of the satisfiability of the path formula ψ
starting from these states is unknown and needs to be computed.

Let vk[i], the ith component of the vector vk, denote ProbM (si, ψ, k), that is the
probability that a path of length k, starting from a state si, satisfies the property ψ. Let

i be within Imaybe
def
= {i | si ∈ Smaybe}. Then,

vk[i] =
n∑

j=1

pijvk−1[j] (2)

=
∑

j∈Imaybe

pijvk−1[j] +
∑

j �∈Imaybe

pijvk−1[j]

︸ ︷︷ ︸
bi

. (3)

Since vk−1[j] are known for j �∈ Imaybe (either 0 ot 1), and are independent from k, the
quantity bi is just a constant.

Using a matrix notation for all the states si ∈ Smaybe, we obtain

vk = P ′vk−1 + b, (4)

where the square matrix P ′ is simply extracted from the transition probability matrix P
by deleting all the rows i, such that si ∈ Syes ∪ Sno, then deleting the columns i such
that si ∈ Syes ∪ Sno. The components bi of the vector b, are defined in equation (3).

110 K. Ghorbal et al.

Bounded Case. In the bounded case (k < +∞), we unroll the recursion of equation
(4) completely starting with v0 = 0. Indeed, the probability that a path of length zero
satisfies the propertyψ is zero for all states in Smaybe. The probabilityProbM (si, ψ, k)
is then given by the ith component of vector vk.

Unbounded Case. For the unbounded case, we need to resolve the following system of
linear equations

v = P ′v + b .

Observe first that for any given state si ∈ Smaybe, if pii = 1, then we have a deadlock
state and the probability to reach any other state is zero. Therefore, ProbM (si, ψ) = 0.
Notice also that if for all i, each row of the matrix P ′ sums up to 1, then for all i,
ProbM (si, ψ) = 0. Indeed, in this case, we have infinite cycles in Smaybe and the
system will never reach a state that satisfies φ2 by definition of Smaybe. For all other
cases, we prove the following proposition.

Proposition 1. Let A be a square matrix of dimension n× n such that

• ∀i, j, 1 ≤ i, j ≤ n, aij ∈ [0, 1]
• ∀i, 1 ≤ i ≤ n, 0 <

∑n
j=1 aij ≤ 1

• ∃i, 1 ≤ i ≤ n,
∑n

j=1 aij < 1

Let In denote the identity matrix of dimension n. Then the matrix A− In is invertible.

Proof. Let λ ∈ R
n be such that

(A− In)λ = 0 .

We prove by contradiction that the kernel of (A−In) is reduced to 0, that is that λ = 0 is
the only possible solution. Suppose that ‖λ‖∞ > 0. Suppose further that ‖λ‖∞ = |λi|,
where

‖λ‖∞ def
= max

1≤i≤n
|λi| .

Part 1: We first prove that i is necessarily such that
∑n

j=1 aij < 1. Part 2: We then
prove a contradiction which makes ‖λ‖∞ = 0 and ends the proof.

Part 1. Suppose that i is such that

n∑

j=1

aij = 1 . (5)

Then, (A− In)λ = 0 gives for the row i of (A− In),

n∑

j=1,j �=i

λjaij + λi(aii − 1) = 0, (6)

or equivalently using (5),

n∑

j=1,j �=i

(λj − λi)aij = 0 .

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 111

If λi > λj for all j, j �= i, and since aij are non-negative and not all null, then the
above equality does not hold. Thus, there exists j such that λi ≤ λj .

Part 2. Recall that ‖λ‖∞ = |λi|. We now know that
∑n

j=1 aij < 1. Using again
equation (6), and dividing its both sides by ‖λ‖∞ > 0, we obtain

n∑

j=1

λj
‖λ‖∞ aij =

λi
‖λ‖∞ .

We know that

∀j, 1 ≤ j ≤ n :
|λj |
‖λ‖∞ ≤ 1 .

Therefore, multiplying both sides of the above inequality by aij ≥ 0 then summing up
all the inequalities we obtain, gives

λi
‖λ‖∞ ≤

n∑

j=1

aij < 1,

which contradicts the fact that |λi| = ‖λ‖∞. ��
Therefore, under the conditions of Proposition 1, the solution is simply given by v =
(I − P ′)−1b, where I denotes the identity matrix and (I − P ′)−1 the inverse of the
matrix (I − P ′).

3 Model Checking of Bounded Properties

The straightforward extension of model checking DTMCs to IDTMCs using interval
analysis leads to highly imprecise results. We present hereafter our technique to over-
come this loss of precision. We focus first on the bounded case, that is k < +∞. The
unbounded case is later discussed in Section 4.

3.1 Approximate Model Checking

For an IDTMC, we need to compute the set defined in equation (1). This can be done
by replacing the real-valued matrix P ′ in equation (4) by an interval-valued matrix P ′

in the computation of the updated component of vector vk.
The successive computation of each recursion step during the unrolling inherits from

the loss of precision due to interval arithmetic (IA) [18]. This can lead to coarse results,
sometimes even outside of [0, 1].

To overcome this loss of precision, in the bounded case, we use affine arithmetic
(AA) [2]. AA was introduced to overcome the loss of relations in interval arithmetic.
Consider for instance a symbolic variable v known to be within the interval [a, b]. Using
IA, an over-approximation of the expression v− v is given by the interval [a, b]− [a, b]
= [a − b, b − a], which is a coarse approximation of the actual result {0}. In AA, the
interval [a, b] is represented using the affine expression:

a+ b

2
+
b− a

2
ε1,

112 K. Ghorbal et al.

where an error symbol ε1 is introduced to capture an uncertainty within [−1, 1]. Now,
observe that using AA, we obtain the exact result for the expression v − v, that is {0}.
This improvement is due to the fact that the relation between both operands of the
subtraction is captured by sharing the same error symbol ε1.

Definition 3 (Affine forms). An affine form â of length l is defined by

â
def
= αa

0 + αa
1ε1 + · · ·+ αa

l εl = αa
0 +

l∑

i=1

αa
i εi,

where αa
0 , . . . , α

a
l are real coefficients, called error weights, and ε1, . . . , εl are symbolic

error variables, known to be within [−1, 1].

AA is closed under linear transformation operations. However, non-linear operations
need to be linearized.

Definition 4 (Linear operations). Let â and b̂ be two affine forms, let λ, ζ be two finite
real numbers, then

â± b̂
def
= (αa

0 ± αb
0) +

l∑

i=1

(αa
i ± αb

i)εi

λâ
def
= λαa

0 +

l∑

i=1

(λαa
i)εi

â+ ζ
def
= (αa

0 + ζ) +

l∑

i=1

αa
i εi

In the following, we improve the computation of the recurrence equation (4) using both
AA and IA. The main idea is to split P into a central matrix Pc, and an interval matrix
E, which encodes the uncertainty of the model. Note that Pc is a real-valued matrix
while E has ranged probabilities. The matrix Pc is built using the centers of the original
intervals (which are the means given by the underlying learning technique). All intervals
in the uncertainty matrix E are symmetric. Each interval component of E, denoted by
[−eij , eij], is substituted using the symbol εij known to be within [−ei,j , ei,j]. The
interval matrix E is then represented by its corresponding affine form matrix E(ε). For
each row i of Pc and E(ε) respectively, we assume that:

n∑

j=1

pcij = 1 and
n∑

j=1

εij = 0 . (7)

These equalities hold for Markov Chain with symmetric uncertainties related to transi-
tion probabilities. Usually, statistical techniques (such as bootstrapping [5]) are used to
learn a Markov Chain from a (finite) set of observations (logs for instance) of the real
system. The uncertainty is related to the required confidence and can be made arbitrarily
small using additional observations.

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 113

Using the above notations, the recurrence of (4) becomes:

vk(ε) = (P ′
c + E′(ε))vk−1(ε) + (b + b(ε)), (8)

where P ′
c, E′, b and b(ε) are derived from Pc and E respectively as detailed in Sec-

tion 3.1, equation (3). The updated components of the successive iterations of vk are
non-linear (precisely polynomial) functions of the perturbations (εij)1≤i,j≤n. To ex-
actly compute the box vk, we therefore need to solve, n instances (one for each row i)
of the following (non-linear) optimization problem:

max /min vki(ε)

s.t. εij ∈ εij , 1 ≤ i, j ≤ n
n∑

j=1

εij = 0, 1 ≤ i ≤ n

()

To reduce the complexity of the propagation of the components vk[i](ε), we compute
the first-order terms exactly using AA, and over-approximate all high-order terms using
IA. Formally, the vector vk(ε) of equation (8) is reduced from a polynomial function of
εij to a linear function of these perturbations plus an interval which over-approximates
the non-linear error terms:

vk(ε) ∈ P̃ k
def
= ck + lk(ε) +�k, (9)

where ck is a constant, lk(ε) is the linear part of vk(ε), and �k is an over-approximation
of vk(ε)− (ck + lk(ε)). The recurrence of the computation of vk is now split into three
components, ck, lk(ε) and �k, updated as follows:

ck = P ′
cck−1 + b

lk(ε) = P ′
clk−1(ε) + E′(ε)ck−1 + b(ε)

�k = P ′
c�k−1 +E′(�k−1 + lk−1)

(10)

The constant ck is calculated from ck−1, P ′
c and b. This calculation gives the probability

with which the DTMC defined by Pc satisfies the property.
The elements of the vector lk(ε) are expressed as a linear combination of elements in

lk−1(ε) and the elements of the matrix E(ε). Therefore, each component of the vector
lk(ε) is of the form

∑
1≤i,j≤n αijεij .

To compute �k, we need to compute the interval vector lk−1. Each component of
lk−1 is the wrapping interval of the affine expression given by the ith element of lk−1.
Therefore, at each step, we have to compute the n objective values of the following
linear programming problems:

max /min
∑

1≤i,j≤n

αijεij

s.t. − eij ≤ εij ≤ eij , 1 ≤ i, j ≤ n
n∑

j=1

εij = 0, 1 ≤ i ≤ n

(P)

114 K. Ghorbal et al.

We can use any off-the-shelf LP Solver, such as GLPK [17], to solve (P). However, we
present, in the next section, a specific efficient algorithm. We illustrate first all steps
detailed earlier in a concrete example.

Example 1. Consider an IDTMC defined by the 4-tuple M = (S, si,P , �). Suppose
that S = {s1, s2, s3, s4}, AP = {a, b}, si = s1, �(s1) = {b}, �(s2) = {a}, �(s3) =
{a ∧ b}, �(s4) = {b}, and

P =

⎡

⎢
⎢
⎣

0 [0.49, 0.51] [0.09, 0.11] [0.39, 0.41]
[0.49, 0.51] 0 0 [0.49, 0.51]

0 [0.79, 0.81] [0.19, 0.21] 0
[0.49, 0.51] [0.29, 0.31] [0.19, 0.21] 0

⎤

⎥
⎥
⎦ .

Suppose we want to verify the PCTL property P≤γ [ψ], where ψ = b U≤2(a ∧ b). We
compute ProbM (si, ψ) for all states si following the recursion of equation (10). In this
example Syes = {3}, Sno = {2} and Smaybe = {1, 4}. We first extract the square
matrix Pc and the error matrix E(ε):

Pc =

⎡

⎢
⎢
⎣

0 0.5 0.1 0.4
0.5 0 0 0.5
0 0.8 0.2 0
0.5 0.3 0.2 0

⎤

⎥
⎥
⎦ and E(ε) =

⎡

⎢
⎢
⎣

0 ε(1,2) ε(1,3) ε(1,4)
ε(2,1) 0 0 ε(2,4)
0 ε(3,2) ε(3,3) 0

ε(4,1) ε(4,2) ε(4,3) 0

⎤

⎥
⎥
⎦

The matrices P ′
c, E′(ε) and the vectors b and b(ε) are then given by (equation (3)):

P ′
c =

[
0 0.4
0.5 0

]

E′(ε) =
[

0 ε(1,4)
ε(4,1) 0

]

b = (0.1, 0.2)t b(ε) = (ε(1,3), ε(4,3))
t .

In this example, all errors εij , 1 ≤ i, j ≤ 4, are within [−0.01, 0.01]. The vector lk(ε)
represents the first-order error as a linear combination of the εij . The intervals vector
�0 represents an over-approximation of the second and higher-order errors. Both l0(ε)
and �0 are null. The initial vector v0 is exactly equal to c0. It is constructed using the
probabilities we already know, and by initialization those of Smaybe to zero:

v0 = c0 = [0, 0]t .

Following (10), we only update the probabilities of the states of the set Smaybe (here
the first and the fourth components). We get:

c1 = P ′
c ×

[
0
0

]

+ b =

[
0.1
0.2

]

Similarly for l1(ε), we get

l1(ε) = P ′
c ×

[
0
0

]

+ E′(ε)×
[
0
0

]

+ b(ε) =

[
ε(1,3)
ε(4,3)

]

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 115

Therefore,

c1 = (0.1, 0.2)t; l1(ε) = (ε(1,3), ε(4,3)); l1 =

[
[−0.01, 0.01]
[−0.01, 0.01]

]

; �1 = 0 .

For the second iteration we obtain:

c2 =

[
0.18
0.25

]

; l2(ε) =

[
ε(1,3) + 0.2ε(1,4) + 0.4ε(4,3)
0.5ε(1,3) + 0.1ε(4,1) + ε(4,3)

]

; �2 =

[
[−10−4, 10−4]
[−10−4, 10−4]

]

Finally, we obtain:
⎡

⎢
⎢
⎣

ProbM (s1, ψ)
ProbM (s2, ψ)
ProbM (s3, ψ)
ProbM (s4, ψ)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

[0.1639, 0.1961]
0
1

[0.2339, 0.2661]

⎤

⎥
⎥
⎦ .

3.2 Bounding the First-Order Error Terms

In problem (P), for each j, the set of constraints involving the variables εij , 1 ≤ i ≤ n
are independent from all other constraints. Therefore, the problem (P) can be equiva-
lently decomposed into n smaller problems (in the worst case) of the form:

max /min
∑

1≤i≤n

αiεi

s.t. − ei ≤ εi ≤ ei, 1 ≤ i ≤ n
n∑

i=1

εi = 0

(L)

where the interval [−ei, ei] def
= εi. Note that due to the symmetric nature of the feasible

region, we see that if the tuple (ε̄1, . . . , ε̄n) maximizes the objective function of L, then
the tuple (−ε̄1, . . . ,−ε̄n) minimizes it, and vice versa. In the sequel, we focus on the
maximization problem.

We start by observing that (ı) the feasible region is non-empty (as it contains the
tuple (0, . . . , 0)), and (ıı) the objective function is bounded, (

∑n
i=1 αiei being an upper

bound). Thus the set of solutions for problem (L) is non-empty. Furthermore, (L) need
not have a unique solution in general. Indeed, if all αis are equal, then all feasible
solutions are optimal in that they maximize the objective function.

For a feasible tuple (ε1, . . . , εn), we say that εi is positively or negatively saturated
accordingly as εi equals ei or −ei, respectively. In order to formulate a linear time algo-
rithm for (L), we exploit the useful fact that there always exists a maximizing feasible
solution that saturates (positively or negatively) all but possibly one variable, say εk.
Then the maximization problem reduces to determining the variables that need to be
saturated positively and the ones that need to be saturated negatively which in turn au-
tomatically determines the values assigned to all the variables εi. Finally, we show that
determining the positively and negatively saturated variables reduces to an instance of
the Weighted Median Problem which is known to be solvable in linear time [1].

116 K. Ghorbal et al.

Lemma 1 (Saturation Lemma). Given a linear programming problem of the form
of (L), there exists a feasible maximizing solution that leaves at most one variable non-
saturated. All other variables are positively or negatively saturated.

Proof. Suppose that ε̄i and ε̄j are not saturated. Suppose further that αi ≤ αj . We can
increase the objective value by

(αi − αj)min{ei − ε̄i, ej − ε̄j},
if we update the values of εi and εj as follows:

εi = ε̄i −min{ei − ε̄i, ej − ε̄j}
εj = ε̄j +min{ei − ε̄i, ej − ε̄j}

We still have εi ∈ [−ei, ei], and εj ∈ [−ej , ej]. Moreover, εi + εj = ε̄i + ε̄j , then the
above update is feasible (all constraints are respected). Since ε̄i and ε̄j are not saturated,
we have

min{ei − ε̄i, ej − ε̄j} �= 0,

hence εi �= ε̄i and εj �= ε̄j which contradicts the fact that (ε̄1, . . . , ε̄n) is an optimal
solution. ��
Following Lemma 1, it turns out that in order to solve (P), it suffices to determine the
non-saturated index, say k, as well as the sets ⊕ and � of positively and negatively satu-
rated variables, respectively. This, in turn, determines a maximizing feasible assignment
to all the variables as follows: If εi ∈ � (resp. ⊕), then εi = −ei (resp. ei). The value
of the remaining non-saturated variable εk is then deduced as follows:

εk = −
∑

i∈�∪⊕
εi =

∑

i∈�
ei −

∑

i∈⊕
ei . (11)

The problem of finding a maximizing feasible solution for (L) now reduces to deter-
mining the possibly non-saturated variable εk which we formulate as an instance of the
Weighted Median Problem.

Intuitively this is easy to see as in order to maximize (L) we need to assign as large
positive values as possible to the variables εi, 1 ≤ i ≤ n, with the largest coefficientsαi.
Due to the constraint

∑n
i=1 εi = 0, if some variables are assigned positive values then

there will exist others that need to be assigned negative values. These negative values
should be assigned to variables εi with the smallest coefficients αi. In fact, the bal-
ancing constraint

∑n
i=1 εi = 0 implies that, roughly speaking, the sum of the weights,

i.e., values of εi, of the positively and negatively assigned variables are balanced. This
immediately leads to an instance of the Weighted Median Problem as follows. The non-
saturated variable εk can be identified as a solution to the Weighted Median Problem
where we associate to each εi the weight ei, and look for the weighted median εk de-
fined by

∑

εi<εk

ei <
1

2

n∑

i=1

ei ≤
∑

εi≤εk

ei . (12)

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 117

Following our discussion above, the variables εi with the largest (resp. smallest) coef-
ficients αi need to be positively (resp. negatively) saturated. Thus we define the sets �
and ⊕ as follows: � def

= {i | αi < αk}, ⊕ def
= {i | αi > αk}. Finally we need to show

the optimality of the resulting solution. Formally,

Theorem 1 (Optimality Result). The tuple (ε̄1, . . . , ε̄n), where ε̄i = −ei or ε̄i = ei,
accordingly as εi belongs to � or ⊕ , respectively, and εk is defined as in (11) is a
maximizing feasible solution for (L).

Proof. We first prove that (ε̄1, . . . , ε̄n) is feasible, that is that ε̄k ∈ [−ek, ek] (all other
conditions are satisfied by construction). Then we prove that the so defined solution is
optimal.

Feasibility. By definition of the weighted median value, we have

∑

i∈�
ei <

1

2

n∑

i=1

ei ≤
∑

αi≤αk

ei = ek +
∑

i∈�
ei

∑

i∈⊕
ei ≤ 1

2

n∑

i=1

ei <
∑

αi≥αk

ei = ek +
∑

i∈⊕
ei

Using (11), we subtract the above inequalities. We obtain

−ek + εk < 0 ≤ ek + εk,

which is equivalent to −ek ≤ εk < ek.
Optimality. Starting from (ε̄1, . . . , ε̄n), we prove that any update does not improve

the objective value reached for this particular configuration we started with.
Suppose that ε̄k ≤ ek. We add a non-negative quantity δ to ε̄k. Since

∑n
i=1 ε̄i = 0,

the quantity δ needs to be subtracted from some ε̄i such that αi > αk, indeed all other
εi are saturated to their lowest possible value −ei. Let δi denote the amount we subtract
from ε̄i such that αi > αk. We have

∑
αi>αk

δi = δ and the new objective value is
equal to

∑

αi<αk

αiε̄i +
∑

αi>αk

αi(ε̄i − δi) + αk(ε̄k + δ)

=
n∑

i=1

αiε̄i +
∑

αi>αk

(αi − αk)δi

︸ ︷︷ ︸
Δ

. (13)

By definition the quantity Δ is non-positive. We conclude that adding a non-negative
quantity to εk does not improve the initial objective value.

By a similar reasoning we prove that subtracting a non-negative quantity from εk, or
updating any other ε̄i decreases the initial objective value. ��
Since the weighted median problem can be solved in linear time [1], the problem (L)
has the same complexity.

118 K. Ghorbal et al.

Proposition 2. The problem (L) can be solved in O(n).

We now derive the worst-case complexity to compute the over-approximation P̃ k (see
equation (9)).

Proposition 3. Computing the over-approximation P̃ k, defined in equation (9), can be
done in O(kn3), where k is the iteration depth, and n the number of states.

Proof. For each iteration of P̃ i, 1 ≤ i ≤ k, for each line of the square (n × n) matrix
P̃ i we have to solve in the worst case n instances of (L), which has a linear complexity
(see Proposition 2). Therefore, for k iterations, computing P̃ k requires at most O(kn3)
operations. ��

4 Model Checking of Unbounded Properties

For infinite paths, we need to compute the limit of the recursion defined in equation (10).

c = P ′
cc+ b

l(ε) = P ′
cl(ε) + E′(ε)c+ b(ε)

� = P ′
c�+E′(�+ l)

(14)

According to Proposition 1, the matrix P ′
c − I is invertible. Therefore,

c = (I − P ′
c)

−1b

l(ε) = (I − P ′
c)

−1(E′(ε)c+ b(ε))

The only remaining component to compute is �. If h(ε) denotes the exact high order
perturbation of the vector vk, then with respect to equation (4), we obtain:

(I − P ′
c − E′(ε))h(ε) = E′(ε)l(ε) .

An over-approximation of h(ε) can be derived as the solution of the following system
of interval linear equations:

(I − P ′
c −E′)� = E′l (15)

Such systems were widely studied during the last decades both from a theoretical (solv-
ability and complexity) and practical (implementations and tools) point of views [3,13].
The solvability is proved to be NP-hard. However, using numerical techniques to ap-
proximate the set of solutions such as in [10] can be used to efficiently solve the prob-
lem.

Example 2. Going back to example 1, we now model check the time-unbounded prop-
erty P≤γ [b U(a ∧ b)]. We have

c = (0.225, 0.3125)t

l =

[
0.39ε(1,4) + 1.25ε(1,3) + 0.1125ε(4,1) + 0.5ε(4,3)
0.195ε(1,4) + 0.625ε(1,3) + 0.28ε(4,1) + 1.25ε(4,3)

]

l =

[
[−0.0226, 0.0226]
[−0.0235, 0.0235]

]

Efficient Probabilistic Model Checking of Systems with Ranged Probabilities 119

Finally � is the solution of the following system

−
[−1 [0.39, 0.41]
[0.49, 0.51] −1

]

� =

[
[−0.00235, 0.00235]
[−0.00226, 0.00226]

]

Using PROFIL/BIAS [19], we obtain

� = ([−0.004149, 0.004149]; [−0.00438, 0.00438])t

Which makes
⎡

⎢
⎢
⎣

ProbM (s1, ψ)
ProbM (s2, ψ)
ProbM (s3, ψ)
ProbM (s4, ψ)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

[0.1973, 0.2526]
0
1

[0.2855, 0.3395]

⎤

⎥
⎥
⎦ .

Observe that
P ′v ⊆ v .

5 Case Study

Table 1. IA versus AA+LP

Days IA AA+LP

P1 7 [0.55, 1] [0.83, 0.98]

P2 7 [0.35, 1] [0.70, 0.80]

We applied our approach to model check
a smart grid management system. We an-
alyzed a model consisting of 21 states,
where each state corresponds to a range of
the difference (δ) between energy supply
and demand. We used our approximate
model checking technique to check the
following two properties (δm and δM rep-
resent the minimum and maximum values
of δ respectively):

P1: What is the probability that within k days, the power grid will switch from high
supply mode to low supply mode: P [12δM ≤ δ ≤ δM U≤k0 ≤ δ ≤ 1

2δM].
P2: What is the probability that within k days, the power grid will switch from low

supply mode to low demand mode: P [0 ≤ δ ≤ 1
2δM U≤k 1

2δm ≤ δ ≤ 0].

As can be seen in Table 1, using our approach based on affine arithmetic, we are able to
compute a much tighter probability range for the two properties with negligible com-
putation overhead (all computation took less than 0.1 second).

6 Conclusion

In this paper we have presented a new technique to address the problem of computing
the probability of a reachability property. We leverage affine and interval arithmetic to
propagate the uncertainties of the learned transition probabilities. At each step of the
model checking procedure, the first-order error terms are computed optimally in linear
time via a reduction to the weighted median problem. As a future avenue, we plan to
investigate model checking of properties with multiple P operators.

120 K. Ghorbal et al.

References

1. Bleich, C., Overton, M.L.: A linear-time algorithm for the weighted median problem.
Courant Institute of Mathematical Sciences, New York University, New York (1983)

2. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In:
SIBGRAPI 1993 (1993)

3. Corsaro, S., Marino, M.: Interval linear systems: the state of the art. Computational Statis-
tics 21, 365–384 (2006)

4. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications. Brazilian
Mathematics Colloquium monographs. IMPA/CNPq, Rio de Janeiro, Brazil (1997)

5. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press (1993)
6. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in Probabilistic Systems. In: Valmari, A. (ed.)

SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)
7. Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zonotope Intersec-

tion. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226.
Springer, Heidelberg (2010)

8. Girard, A.: Reachability of Uncertain Linear Systems Using Zonotopes. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

9. Goubault, É., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

10. Hansen, E., Sengupta, S.: Bounding solutions of systems of equations using interval analysis.
BIT Numerical Mathematics 21, 203–211 (1981)

11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6, 512–535 (1994)

12. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic Model
Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84.
Springer, Heidelberg (2004)

13. Jiri, Rohn: Systems of linear interval equations. Linear Algebra and its Applications 126,
39–78 (1989)

14. Jonsson, B., Larsen, K.: Specification and refinement of probabilistic processes. In: LICS,
pp. 266–277 (July 1991)

15. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic
systems. Journal of Logic and Algebraic Programming 81(4), 356–389 (2012)

16. Kozine, I.O., Utkin, L.V.: Interval-valued finite markov chains. Reliable Computing 8,
97–113 (2002)

17. Makhorin, A.: The GNU Linear Programming Kit (GLPK) (2000)
18. Moore, R.E., Yang, C.T.: Interval analysis I. Technical Report LMSD-285875, Lockheed

Missiles and Space Division, Sunnyvale, CA, USA (1959)
19. Rump, S.M.: Profil/bias
20. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic Systems.

In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer,
Heidelberg (2005)

21. Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Systems Using
Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp. 223–235. Springer, Heidelberg (2002)

22. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to
Simulink/Stateflow verification. In: HSCC, pp. 243–252 (2010)

	Efficient Probabilistic Model Checking of Systems with Ranged Probabilities
	Introduction
	Preliminaries
	Model Checking a DTMC

	Model Checking of Bounded Properties
	Approximate Model Checking
	Bounding the First-Order Error Terms

	Model Checking of Unbounded Properties
	Case Study
	Conclusion
	References

