A positive perspective on term representation

Jui-Hsuan (Ray) Wu and Dale Miller

Inria Saclay & LIX, Institut Polytechnique de Paris

Proofs and Algorithms seminar, Inria Saclay / LIX

27 June 2022
Outline

Introduction

Focusing and synthetic inference rules

Proofs as terms
• Terms (or expressions) exist in several different settings.
Terms

- Terms (or expressions) exist in several different settings. Mathematics (equations, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.
Terms

- Terms (or expressions) exist in several different settings. Mathematics (equations, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

- There are different formats for terms:

 \[(1 + 2) + (1 + (1 + 2))\]
 \[\text{let } x = 1 + 2 \text{ in let } y = (1 + (1 + 2)) \text{ in } x + y\]
 \[\text{let } x = 1 + 2 \text{ in let } y = 1 + x \text{ in } x + y\]
Terms (or expressions) exist in several different settings. Mathematics (equations, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

There are different formats for terms:

- \((1 + 2) + (1 + (1 + 2))\)
- \(\text{let } x = 1 + 2 \text{ in let } y = (1 + (1 + 2)) \text{ in } x + y\)
- \(\text{let } x = 1 + 2 \text{ in let } y = 1 + x \text{ in } x + y\)

(Labelled) Trees? Directed acyclic graphs (DAGs)?
• Terms (or expressions) exist in several different settings. Mathematics (equations, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

• There are **different formats** for terms:

 (1 + 2) + (1 + (1 + 2))
 let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
 let x = 1 + 2 in let y = 1 + x in x + y

• (Labelled) Trees? Directed acyclic graphs (DAGs)?

• What to do with terms? Equality, substitution, evaluation, etc.
Proof theory for term representations

• A framework for describing (unifying) different term representations.
Proof theory for term representations

- A framework for describing (unifying) different term representations.
- What is a canonical term? What is substitution?
Proof theory for term representations

- A framework for describing (unifying) different term representations.
- What is a canonical term? What is substitution?
- Why proof theory?
Proof theory for term representations

- A framework for describing (unifying) different term representations.
- What is a **canonical** term? What is **substitution**?
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
Proof theory for term representations

- A framework for describing (unifying) different term representations.
- What is a canonical term? What is substitution?
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!
Proof theory for term representations

• A framework for describing (unifying) different term representations.

• What is a canonical term? What is substitution?

• Why proof theory?
 ▶ Highly principled and mathematically sound means for describing syntactic structures.
 ▶ Proofs-as-terms, but not proofs-as-programs!

• Sequent calculus: too little structure, too much non-essential information.
Proof theory for term representations

- A framework for describing (unifying) different term representations.
- What is a canonical term? What is substitution?
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!
- Sequent calculus: too little structure, too much non-essential information.
- Focused proof system LJF: large-scale rules, flexibility of polarization.
Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for linear logic.
Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for linear logic.

 - invertible rules ↔ non-invertible rules
 - non-essential information ↔ essential information
 - don’t care ↔ don’t know
 - negative phase ↔ positive phase

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

- LJF and LKF by Liang and Miller (2009).

- Large-scale rules (not phases!): synthetic inference rules and bipoles.
Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for linear logic.

 - invertible rules ↔ non-invertible rules
 - non-essential information ↔ essential information
 - don’t care ↔ don’t know
 - negative phase ↔ positive phase

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.
Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for linear logic.
 - invertible rules \leftrightarrow non-invertible rules
 - non-essential information \leftrightarrow essential information
 - don’t care \leftrightarrow don’t know
 - negative phase \leftrightarrow positive phase

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

- *LJF* and *LKF* by Liang and Miller (2009).
Focusing

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for linear logic.

 invertible rules \iff non-invertible rules
 non-essential information \iff essential information
 don't care \iff don't know
 negative phase \iff positive phase

• Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

• \textit{LJF} and \textit{LKF} by Liang and Miller (2009).

• \textbf{Large-scale} rules (not phases!): \textit{synthetic inference rules} and bipoles.
Two phases: an example in LL

\[
\begin{array}{c}
\vdash A \perp, A \\
\vdash B, B \perp \\
\vdash A \perp, B \perp, A \otimes B \\
\vdash A \perp, B \perp \oplus (C \perp \otimes D \perp), A \otimes B \\
\vdash A \perp, B \perp \oplus (C \perp \otimes D \perp), (A \otimes B) \& (A \otimes (C \Rightarrow D)) \\
\vdash A \perp \Rightarrow (B \perp \oplus (C \perp \otimes D \perp)), (A \otimes B) \& (A \otimes (C \Rightarrow D)) \\
\end{array}
\]
The \textit{LJF} system with only implication

- Formulas are built using atomic formulas and implications.
The *LJF* system with only implication

- Formulas are built using atomic formulas and implications.
- We work with **polarized** formulas.
 - Implications are negative.
 - Atomic formulas are either **positive** or **negative**.
 (forward-chaining / backchaining)
The *LJF* system with only implication

- Formulas are built using atomic formulas and implications.
- We work with **polarized** formulas.
 - Implications are negative.
 - Atomic formulas are either **positive** or **negative**. *(forward-chaining / backchaining)*
- A polarized theory is a theory together with an **atomic bias assignment**.
The *LJF* system with only implication

- Formulas are built using atomic formulas and implications.
- We work with **polarized** formulas.
 - Implications are negative.
 - Atomic formulas are either **positive** or **negative**.
 (forward-chaining / backchaining)
- A polarized theory is a theory together with an **atomic bias assignment**.
- Different polarizations do not affect provability in *LJF*, but give different forms of proofs.
 ▶ If a sequent is provable in *LJF* for some polarization, then it is provable for all such polarizations.
Two kinds of sequents:

- \uparrow-sequents, used with invertible rules
 \[
 \Gamma \uparrow \Theta \vdash \Delta \uparrow \Delta'
 \]

- \downarrow-sequents, used to specify the formula under focus
 \[
 \Gamma \downarrow B \vdash \Delta' \quad \text{left focus}
 \]
 \[
 \Gamma \vdash B \downarrow \quad \text{right focus}
 \]
Two kinds of sequents:

- **⇑-sequents**, used with invertible rules
 \[\Gamma \uparrow \Theta \vdash \Delta \uparrow \Delta' \]

- **⇓-sequents**, used to specify the formula under focus
 \[\Gamma \downarrow B \vdash \Delta' \] left focus
 \[\Gamma \vdash B \downarrow \] right focus

Border sequents:

\[\Gamma \uparrow \cdot \vdash \cdot \uparrow \Delta \sim \Gamma \vdash \Delta \]

▶ Inference rules are collected into large-scale rules (synthetic inference rules) by looking at border sequents in a proof.
The \textit{LJF} system with only implication

\begin{align*}
\text{Decide, Release, and Store Rules} \\
&\frac{N, \Gamma \downarrow N \vdash A}{N, \Gamma \vdash A} D_I \\
&\frac{\Gamma \vdash P \downarrow}{\Gamma \vdash P} D_r \\
&\frac{\Gamma \uparrow P \vdash A}{\Gamma \downarrow P \vdash A} R_I \\
&\frac{\Gamma \vdash N \uparrow}{\Gamma \vdash N \downarrow} R_r \\
&\frac{\Gamma, C \uparrow \Theta \vdash \Delta' \uparrow \Delta}{\Gamma \uparrow \Theta, C \vdash \Delta' \uparrow \Delta} S_I \\
&\frac{\Gamma \uparrow \Theta \vdash A}{\Gamma \uparrow \Theta \vdash A} S_r
\end{align*}

\begin{align*}
\text{Initial Rules} \\
A \text{ positive} &\quad & A \text{ negative} \\
&\frac{A, \Gamma \vdash A \downarrow}{A \vdash A \downarrow} I_r & &\frac{\Gamma \downarrow A \vdash A}{I_l}
\end{align*}

\begin{align*}
\text{Introduction Rules for Implication} \\
&\frac{\Gamma \vdash B \downarrow \Gamma \downarrow B' \vdash A}{\Gamma \downarrow B \supset B' \vdash A} \supset L \\
&\frac{\Gamma \uparrow \Theta, B \vdash B' \uparrow}{\Gamma \uparrow \Theta \vdash B \supset B' \uparrow} \supset R
\end{align*}
Synthetic inference rules

Synthetic inference rule = large-scale rule = \downarrow-phase + \uparrow-phase

Definition

A *left synthetic inference rule* for B is an inference rule of the form

$$
\frac{\Gamma_1 \vdash A_1 \quad \ldots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A} \quad B
$$

justified by a derivation (in LJF) of the form

$$
\frac{\Gamma_1 \vdash A_1 \quad \ldots \quad \Gamma_n \vdash A_n}{\Downarrow \text{phase} \quad \Uparrow \text{phase}} \quad \frac{\Gamma \Downarrow B \vdash A}{\Gamma \vdash A} \quad D_I
$$
Bipoles:

A (left) bipele for a formula \(B \) is a (left) synthetic inference rule such that only atomic formulas are stored in its corresponding derivation (in \(LJF \)).

Order of a formula:

- \(\text{ord}(A) = 0 \) for \(A \) atomic.
- \(\text{ord}(B_1 \supset B_2) = \max(\text{ord}(B_1) + 1, \text{ord}(B_2)) \).

Theorem

Let \(B \) be a negative polarized formula. If \(\text{ord}(B) \leq 2 \), then the left synthetic rule for \(B \) is a bipele.
Axioms as rules

Definition

Let \mathcal{T} be a finite polarized theory of order 2 or less, We define $LJ\langle \mathcal{T} \rangle$ to be the extension of LJ with the left synthetic inference rules for the formulas in \mathcal{T}. More precisely, for every left synthetic inference rule

$$
\frac{B, \Gamma_1 \vdash A_1 \ldots B, \Gamma_n \vdash A_n}{B, \Gamma \vdash A}
$$

with $B \in \mathcal{T}$, the inference rule

$$
\frac{\Gamma_1 \vdash A_1 \ldots \Gamma_n \vdash A_n}{\Gamma \vdash A}
$$

is added to $LJ\langle \mathcal{T} \rangle$.
Definition
Let \mathcal{T} be a finite polarized theory of order 2 or less. We define $LJ\langle \mathcal{T} \rangle$ to be the extension of LJ with the left synthetic inference rules for the formulas in \mathcal{T}. More precisely, for every left synthetic inference rule

$$
B, \Gamma_1 \vdash A_1 \quad \ldots \quad B, \Gamma_n \vdash A_n \quad B, \Gamma \vdash A
$$

with $B \in \mathcal{T}$, the inference rule

$$
\Gamma_1 \vdash A_1 \quad \ldots \quad \Gamma_n \vdash A_n \quad \Gamma \vdash A
$$

is added to $LJ\langle \mathcal{T} \rangle$.

Theorem
$\mathcal{T}, \Gamma \vdash B$ provable in $LJ \iff \Gamma \vdash B$ provable in $LJ\langle \mathcal{T} \rangle$.
An example

Let \mathcal{T} be the collection of formulas
\[D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots \] where a_i are atomic.
An example

Let \mathcal{T} be the collection of formulas

$D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are given the **negative** bias,
An example

Let \(T \) be the collection of formulas
\[D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots \] where \(a_i \) are atomic.

If \(a_i \) are given the negative bias, we have the derivation

\[
\frac{\Gamma \vdash a_0}{\Gamma \vdash a_0 \downarrow} R_r/S_r \quad \cdots \quad \frac{\Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n-1} \downarrow} R_r/S_r \quad \frac{\Gamma \vdash a_n \vdash a_n}{\Gamma \vdash a_n} I_l
\]

\[
\frac{\Gamma \downarrow a_0 \supset \cdots \supset a_n \vdash a_n}{\Gamma \vdash a_n} D_l
\]

and the inference rules in \(LJ\langle T \rangle \) include

\[
\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}
\]
An example

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are given the negative bias, we have the derivation

\[\frac{\Gamma \vdash a_0}{\Gamma \vdash a_0 \ \downarrow} R_r/S_r \] \[\frac{\Gamma \vdash a_{n-1}}{\Gamma \downarrow a_{n-1} \ \downarrow} R_r/S_r \] \[\frac{\Gamma \vdash a_n \vdash a_0 \supset \cdots \supset a_n \vdash a_n}{\Gamma \vdash a_n} D_l \]

and the inference rules in $LJ\langle \mathcal{T} \rangle$ include

\[\frac{\Gamma \vdash a_0 \ \cdots \ \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n} \]

"backchaining"
Let \mathcal{T} be the collection of formulas

$D_1 = a_0 \supset a_1, \ldots, D_n = a_0 \supset \cdots \supset a_n, \ldots$ where a_i are atomic.

If a_i are given the positive bias,
An example

Let \mathcal{T} be the collection of formulas
$D_1 = a_0 ⊃ a_1, \cdots, D_n = a_0 ⊃ \cdots ⊃ a_n, \cdots$ where a_i are atomic.

If a_i are given the positive bias, we have the derivation

\[
\begin{align*}
\Gamma \vdash a_0 \Downarrow & \quad \cdots \quad \Gamma \vdash a_{n-1} \Downarrow \\
\Gamma \Downarrow a_0 \supset \cdots \supset a_n \vdash A & \quad \Gamma \Downarrow a_n \vdash A \\
\Gamma \Downarrow a_0 \supset \cdots \supset a_n \vdash A & \quad \Gamma \vdash A \\
\end{align*}
\]

and the inference rules in $LJ(\mathcal{T})$ include

\[
\begin{align*}
\Gamma, a_0, \cdots, a_{n-1}, a_n \vdash A & \\
\Gamma, a_0, \cdots, a_{n-1} \vdash A \\
\end{align*}
\]
An example

Let \mathcal{T} be the collection of formulas
\[D_1 = a_0 \supset a_1, \ldots, D_n = a_0 \supset \cdots \supset a_n, \ldots \] where a_i are atomic.

If a_i are given the positive bias, we have the derivation

\[
\begin{array}{c}
\Gamma \vdash a_0 \Downarrow \\
\vdots \\
\Gamma \vdash a_{n-1} \Downarrow \\
\Gamma \Downarrow a_0 \supset \cdots \supset a_n \vdash A \\
\Gamma \vdash A
\end{array}
\]

and the inference rules in $LJ\langle \mathcal{T} \rangle$ include

\[
\begin{array}{c}
\Gamma, a_0, \cdots, a_{n-1}, a_n \vdash A \\
\Gamma, a_0, \cdots, a_{n-1} \vdash A
\end{array}
\]

"forward-chaining"
Backchaining and Forward-chaining

What are the proofs of $a_0 \vdash a_n$?
What are the proofs of $a_0 \vdash a_n$?

When a_i are all given the negative bias, we have:

$$
\begin{array}{c}
\Gamma \vdash a_0 \\
\Gamma \vdash a_1 \\
\Gamma \vdash a_2 \\
\Gamma \vdash a_{n-1} \\
\Gamma \vdash a_n \\
\end{array}
$$

▷ a unique proof of exponential size
Backchaining and Forward-chaining

What are the proofs of $a_0 \vdash a_n$?

When a_i are all given the **negative** bias, we have:

$$\frac{\Gamma \vdash a_0}{\Gamma \vdash a_1} \quad \frac{\Gamma \vdash a_0}{\Gamma \vdash a_1} \quad \frac{\Gamma \vdash a_1}{\Gamma \vdash a_2} \quad \cdots \quad \frac{\Gamma \vdash a_0}{\Gamma \vdash a_{n-1}} \quad \frac{\Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$

▷ a unique proof of exponential size

When a_i are all given the **positive** bias, we have:

$$\frac{\Gamma, a_0, a_1 \vdash A}{\Gamma, a_0 \vdash A} \quad \frac{\Gamma, a_0, a_1, a_2 \vdash A}{\Gamma, a_0, a_1 \vdash A} \quad \cdots \quad \frac{\Gamma, a_0, \ldots, a_{n-1}, a_n \vdash A}{\Gamma, a_0, \ldots, a_{n-1} \vdash A}$$

▷ a shortest proof of linear size
Proofs as terms

We want to use terms to annotate proofs.
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $A \supset A \supset A$ in LJ.

How many proofs are there?
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $A \supset A \supset A$ in LJ.

How many proofs are there?

\[
\frac{\frac{\text{init}}{A, A \vdash A}}{A \vdash A \supset A} \supset R
\]

\[
\frac{\frac{\frac{\frac{\text{init}}{A, A \vdash A}}{A \vdash A \supset A}}{A \vdash A \supset A}}{A \vdash A \supset A} \supset R
\]
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $A \supset A \supset A$ in LJ.

How many proofs are there?

\[
\begin{align*}
A, A & \vdash A & \text{init} \\
A & \vdash A \supset A & \supset R \\
\vdash A \supset A \supset A & \supset R
\end{align*}
\]
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $\forall A \supset A \supset A$ in LJ.

How many proofs are there?

\[
\frac{A, A \vdash A}{\vdash A \supset A \supset A} \supset R
\]
\[
\frac{A \vdash A \supset A}{\vdash A \supset A \supset A} \supset R
\]
\[
\Rightarrow \lambda x. \lambda y. x
\]
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $A \supset A \supset A$ in LJ.

How many proofs are there?

$\begin{align*}
\text{init} & \quad A, A \vdash A \\
\text{R} & \quad A \vdash A \supset A \\
\text{R} & \quad \vdash A \supset A \supset A \\
\Rightarrow & \quad \lambda x.\lambda y.y
\end{align*}$
Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula $A \supset A \supset A$ in LJ.

How many proofs are there?

$$\frac{\text{init}}{A, A \vdash A}$$

$$\frac{\vdash A \supset A \supset A}{\vdash A \supset A \supset A}$$

$\Rightarrow \lambda x.\lambda y.y$

\triangleright each formula on the left hand side is given a label.
Untyped \(\lambda \)-terms

We fix a theory \(\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \} \) with \(D \) atomic and consider proofs of sequents of the form \(\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D \)
Untyped λ-terms

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have

\[
\begin{align*}
\Gamma \vdash D & \quad R_r/S_r \\
\Gamma \vdash D & \quad R_r/S_r \\
\Gamma \vdash D & \quad L^2
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash D & \quad \downdownarrows \quad D_l \\
\Gamma, D \vdash D & \quad R_r/S_l/S_r \\
\Gamma \vdash D & \quad I_l \\
\Gamma \vdash D & \quad L
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash (D \supset D) \supset D & \quad \downdownarrows \quad D_l \\
\Gamma \vdash D & \quad I_l
\end{align*}
\]
Untyped \(\lambda \)-terms

We fix a theory \(\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \} \) with \(D \) atomic and consider proofs of sequents of the form \(\mathcal{T}, x_1 : D, \cdots , x_k : D \vdash t : D \)

When \(D \) is given the negative bias, we have

\[
\begin{align*}
\Gamma & \vdash t : D & & \Gamma \vdash u : D & & \Gamma \Downarrow D \vdash D \\
\Gamma & \Downarrow D & & \Gamma \Downarrow D & & \Gamma \Downarrow D \vdash D \\
\Gamma & \Downarrow D \supset D \supset D \vdash D & & \Gamma \vdash D \\
\Gamma & \Downarrow (D \supset D) \supset D \vdash D & & \Gamma \vdash D
\end{align*}
\]

Here we use the \(\lambda \kappa \)-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.
Untyped λ-terms

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have

\[
\frac{\Gamma \vdash t : D}{\Gamma \vdash \lfloor t \rfloor : D \Downarrow} R_r/S_r \quad \frac{\Gamma \vdash u : D}{\Gamma \vdash \lfloor u \rfloor : D \Downarrow} R_r/S_r \quad \frac{\Gamma \Downarrow D \vdash \epsilon : D}{I_l} \quad \Gamma \Downarrow D \vdash \epsilon : D \supset L^2
\]

\[
\frac{\Gamma \Downarrow D \supset D \supset D \vdash \lfloor t \rfloor :: \lfloor u \rfloor :: \epsilon : D}{D_l} \quad \Gamma \vdash \Phi \bowtie (\lfloor t \rfloor :: \lfloor u \rfloor :: \epsilon) : D
\]

\[
\frac{\Gamma, D \vdash D}{\Gamma \vdash D \supset D \Downarrow} R_r/S_r/S_r \quad \frac{\Gamma \Downarrow D \vdash D}{I_l} \quad \frac{\Gamma \Downarrow D \vdash D}{I_l} \quad \frac{\Gamma \Downarrow (D \supset D) \supset D \vdash D}{D_l} \quad \Gamma \vdash D \supset L
\]

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.
Untyped λ-terms

We fix a theory $\mathcal{T} = \{\Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D\}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have

\[
\frac{\Gamma \vdash t : D}{\Gamma \vdash [t] : D \downarrow} \quad R_r / S_r \quad \frac{\Gamma \vdash u : D}{\Gamma \vdash [u] : D \downarrow} \quad R_r / S_r \quad \frac{\Gamma \Downarrow D \vdash \epsilon : D}{\Gamma \Downarrow D \vdash [u] : D \Downarrow} \quad I_i \quad \frac{\Gamma \vdash \Phi \Downarrow ([t] :: [u] :: \epsilon) : D}{D_i}
\]

\[
\frac{\Gamma, x : D \vdash t : D}{\Gamma \vdash D \supset D \Downarrow} \quad R_r / S_l / S_r \quad \frac{\Gamma \Downarrow D \vdash D}{\Gamma \Downarrow (D \supset D) \supset D \vdash D \Downarrow} \quad D_i \quad \frac{\Gamma \Downarrow (D \supset D) \supset D \vdash D}{\Gamma \vdash D \Downarrow} \quad \supset L
\]

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. **Computation in focused intuitionistic logic**. PPDP 2017.
Untyped λ-terms

We fix a theory $T = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $T, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have

\[
\frac{\Gamma \vdash t : D}{\Gamma \vdash [t] : D \downarrow} \quad R_r/S_r \quad \frac{\Gamma \vdash u : D}{\Gamma \vdash [u] : D \downarrow} \quad R_r/S_r \quad \frac{\Gamma \vdash \epsilon : D}{\Gamma \vdash [\epsilon] : D \downarrow} \quad I_l \quad \Gamma \vdash \Phi \downarrow (\cdot) : D \quad D_l
\]

\[
\frac{\Gamma \vdash \lambda x.t : D \supset D \downarrow}{\Gamma \vdash \lambda x.t : D \supset D \downarrow} \quad R_r/S_r/S_r \quad \frac{\Gamma \vdash \epsilon : D}{\Gamma \vdash [\epsilon] : D \downarrow} \quad I_l \quad \Gamma \vdash \Psi \downarrow (\cdot) : D \quad D_l
\]

Here we use the $\lambda\kappa$-calculus\footnote{Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.} to annotate terms.
Untyped λ-terms

We fix a theory $T = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $T, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have

$$
\begin{align*}
\frac{\Gamma \vdash D \downarrow}{\Gamma \vdash D \downarrow} & \quad \frac{\Gamma \vdash D \downarrow}{\Gamma \vdash D \downarrow} \quad \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \quad \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \quad \frac{\Gamma \downarrow D \vdash D}{\Gamma \downarrow D \vdash D} \\
\frac{\Gamma \downarrow D \vdash D \supset D \vdash D}{\Gamma \vdash D} & \quad \frac{\Gamma \downarrow D \vdash D \supset D \vdash D}{\Gamma \vdash D} \\
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} & \quad \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \\
\frac{\Gamma \vdash D \downarrow}{\Gamma \vdash D \downarrow} & \quad \frac{\Gamma \vdash D \downarrow}{\Gamma \vdash D \downarrow} \quad \frac{\Gamma \downarrow D \vdash D}{\Gamma \downarrow D \vdash D} \\
\frac{\Gamma \downarrow (D \supset D) \vdash D}{\Gamma \vdash D} & \quad \frac{\Gamma \downarrow (D \supset D) \vdash D}{\Gamma \vdash D}
\end{align*}
$$

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.
Untyped λ-terms

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$.

When D is given the positive bias, we have

\[
\begin{align*}
& \Gamma \vdash x : D \Downarrow \quad \Gamma \vdash y : D \Downarrow \quad \Gamma, z : D \vdash t : D \\
& \quad \Gamma \Downarrow D \supset D \supset D \vdash D \quad \Gamma \Downarrow D \vdash D \\
& \quad \Gamma \Downarrow D \vdash D \\
& \quad \Gamma, D \vdash D \\
& \quad \Gamma \Downarrow (D \supset D) \supset D \vdash D \\
\end{align*}
\]

Here we use the $\lambda\kappa$-calculus1 to annotate terms.

1Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.
Untyped λ-terms

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$.

When D is given the positive bias, we have

\[
\begin{align*}
\Gamma &\vdash x : D \downarrow & \text{Ir} \quad \Gamma &\vdash y : D \downarrow & \text{Ir} \\
\Gamma &\downarrow D \supset D \supset D \vdash x :: y :: \kappa z.t : D & \quad \text{L}^2
\end{align*}
\]

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\[^1\text{Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. }\text{PPDP 2017}\]
Untyped λ-terms

We fix a theory $\mathcal{T} = \{\Phi : D \supset D \supset D, \psi : (D \supset D) \supset D\}$ with D atomic and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have

$$
\begin{align*}
\Gamma \vdash x : D & \quad \Gamma \vdash y : D & \quad \Gamma, z : D \vdash t : D \\
\Gamma \vdash x :: y :: \kappa z.t : D & \quad \Gamma \vdash \Phi (x :: y :: \kappa z.t) : D & \quad R_l/S_l \\
\Gamma \vdash D \supset D \supset D & \quad \Gamma \vdash D \vdash D & \quad R_l/S_l \\
\Gamma \vdash (D \supset D) \supset D & \quad \Gamma \vdash D & \quad R_l/S_l \\
\Gamma \vdash D & \quad \Gamma \vdash \kappa z.t : D & \quad \Gamma \vdash \kappa z.t : D & \quad \Gamma \vdash D
\end{align*}
$$

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused intuitionistic logic. PPDP 2017.
Untyped λ-terms

We fix a theory $T = \{ \Phi : D \supset D \supset D, \psi : (D \supset D) \supset D \}$ with D atomic and consider proofs of sequents of the form $T, x_1 : D, \cdots, x_k : D \vdash t : D$.

When D is given the positive bias, we have

\[
\frac{\Gamma \vdash x : D \Downarrow}{\Gamma \vdash \iota_r x : D} \quad \frac{\Gamma \vdash y : D \Downarrow}{\Gamma \vdash \iota_r y : D} \quad \frac{\Gamma, z : D \vdash \iota : t : D}{\Gamma \vdash \iota D \supset D \vdash \iota : t : D} \quad \frac{\Gamma \vdash \iota D \supset D \vdash \iota \iota : t : D}{\Gamma \vdash \iota D \supset \iota \iota : t : D} \quad \frac{\Gamma \vdash \psi \iota (\lambda x. t) : D}{\Gamma \vdash \iota D} \quad \frac{\Gamma \vdash \psi \iota (\lambda x. t) : D}{\Gamma \vdash \iota D} \quad \frac{\Gamma, y : D \vdash s : D}{\Gamma \vdash \iota r s : D} \quad \frac{\Gamma \vdash (\lambda x. t) : D \vdash s : D}{\Gamma \vdash \psi \iota (\lambda x. t) \iota : s : D} \quad \frac{\Gamma \vdash (\lambda x. t) : D \vdash s : D}{\Gamma \vdash \psi \iota (\lambda x. t) \iota : s : D}
\]

Here we use the $\lambda\kappa$-calculus\(^1\) to annotate terms.

\(^1\)Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. *Computation in focused intuitionistic logic*. PPDP 2017.
Untyped λ-terms

Two different polarity assignments give **two different term structures**:

- **D is negative:**

 $$x \sim \epsilon \quad \text{nvar } x \quad x$$

 $$\Phi \sim ([t] :: [u] :: \epsilon) \quad \text{napp } t \ u \quad tu$$

 $$\Psi \sim ([\lambda x. t] :: \epsilon) \quad \text{nabs } (x \ \ t) \ \ \lambda x. t$$

 \rightarrow **Top-down / tree-like structure**

- **D is positive:**

 $$\lceil x \rceil \quad \text{pvar } x \quad x$$

 $$\Phi \sim (x :: y :: \kappa z. t) \quad \text{papp } x \ y \ (z \ \ t) \quad \text{name } z = xy \ in \ t$$

 $$\Psi \sim ([\lambda x. t] :: \kappa y. s) \quad \text{pabs } (x \ \ t) \ (y \ \ s) \quad \text{name } y = \lambda x. t \ in \ s$$

 \rightarrow **Bottom-up / DAG structure**
Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

Arguments of app are all names
Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

▷ Arguments of app are all names

name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z

▷ Redundant naming
Some examples for the positive-bias syntax

\[
\text{name } y = \text{app } x \ x \ \text{in name } z = \text{app } y \ y \ \text{in } z
\]

▷ Arguments of app are all names

\[
\text{name } y_1 = \text{app } x \ x \ \text{in name } y_2 = \text{app } x \ x \ \text{in name } z = \text{app } y_1 \ y_2 \ \text{in } z
\]

▷ Redundant naming

\[
\text{name } y_1 = \text{app } x \ x \ \text{in name } y_2 = \text{app } y \ y \ \text{in name } z = \text{app } y_1 \ y_1 \ \text{in } z
\]

▷ Vacuous naming
Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z
▷ Arguments of app are all names

name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
▷ Redundant naming

name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
▷ Vacuous naming

name y1 = app x x in name y2 = app y y in
name z = app y1 y2 in z
name z = abs (x \ name y1 = app y y in y1) in z
▷ Parallel naming
Cut-elimination for $LJ\langle\mathcal{T}\rangle$

The following theorem\(^2\) states that cut is admissible for the extensions of LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $LJ\langle\mathcal{T}\rangle$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $LJ\langle\mathcal{T}\rangle$.

The following theorem\(^2\) states that cut is admissible for the extensions of \(LJ\) with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for \(LJ\langle T\rangle\))

Let \(T\) be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system \(LJ\langle T\rangle\).

The proof is based on a cut elimination procedure for \(LJF\)

\[\triangleright\] This defines the notion of substitution for terms.

The following theorem2 states that cut is admissible for the extensions of LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $LJ\langle T\rangle$)

Let T be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $LJ\langle T\rangle$.

The proof is based on a cut elimination procedure for LJF

- This defines the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination procedure can be presented in a big-step style.

- Cuts are permuted with synthetic rules instead of LJF rules.

Untyped λ-terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of substitutions.

\[
\begin{align*}
type \ nsubst, \ psubst \ & \quad tm \to (\text{val} \to tm) \to tm \to o. \\
nsubst \ T \ (x\ \text{nvar} \ x) \ & \quad T.
\end{align*}
\]

\[
\begin{align*}
nsubst \ T \ (x\ \text{nvar} \ Y) \ (nvar \ Y). \\
nsubst \ T \ (x\ \text{napp} \ (R \ x) \ (S \ x)) \ (napp \ R' \ S') \ & \quad :- \\
& \quad nsubst \ T \ R \ R', \ nsubst \ T \ S \ S'. \\
nsubst \ T \ (x\ \text{nabs} \ y\ \text{nvar} \ R \ x \ y) \ (nabs \ y\ \text{nvar} \ R' \ y) \ & \quad :- \\
& \quad \pi y\ \text{nsubst} \ T \ (x\ \text{R} \ x \ y) \ (R' \ y).
\end{align*}
\]

\[
\begin{align*}
\text{psubst} \ (papp \ U \ V \ K) \ R \ (papp \ U \ V \ H) \ & \quad :- \ \pi x\ \text{psubst} \\
& \quad (K \ x) \ R \ (H \ x).
\end{align*}
\]

\[
\begin{align*}
\text{psubst} \ (pabs \ S \ K) \ R \ (pabs \ S \ H) \ & \quad :- \ \pi x\ \text{psubst} \\
& \quad (K \ x) \ R \ (H \ x).
\end{align*}
\]

\[
\begin{align*}
\text{psubst} \ (p\text{var} \ U) \ R \ (R \ U).
\end{align*}
\]
An example

\[
\begin{align*}
\text{output} & \quad \\
\text{z} & \quad \text{app} \quad \\
\text{y} & \quad \text{app} \\
\text{x} & \quad \\
\text{name } y & = \text{app } x \ x \ \text{in} \\
\text{name } z & = \text{app } y \ y \ \text{in} \ z
\end{align*}
\]
An example

name y = app x x in
name z = app y y in z

name y' = app a a in
name z' = app y' y' in z'
An example

```
name y = app x x in
name z = app y y in z

name y' = app a a in
name z' = app y' y' in
name y = app z' z' in
name z = app y y in z

name y' = app a a in
name z' = app y' y' in z'
```
Untyped λ-terms (equality)

We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?
Untyped λ-terms (equality)

We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?

"White box" approach:

- Look at the actual syntax of proof expressions.
 - not working since we have two different sets of synthetic inference rules.
Untyped λ-terms (equality)

We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?

”White box” approach:
- Look at the actual syntax of proof expressions.
 \Rightarrow not working since we have two different sets of synthetic inference rules.

”Black box” approach:
- Describe *paths* by probing a term.
Path equality

We use λProlog programs to illustrate the idea.

\[\text{npath } T \ P \ (\text{resp. } \text{ppath } T \ P) \text{ if } P \text{ is a path in the } T. \]

```
type npath, ppath tm -> path -> o.

npath (napp M _) (left P) :- npath M P.
npath (napp _ N) (right P) :- npath N P.
npath (nabs R) (bnd P) :- pi x\pi p\ npath (nvar x) p => npath (R x) (P p).

ppath (papp U V K) P :-
  pi x\ (pi P\ ppath (pvar x) (left P) :- ppath (pvar U) P) =>
  (pi P\ ppath (pvar x) (right P) :- ppath (pvar V) P) =>
  ppath (K x) P.
ppath (pabs R K) P :-
  pi x\ (pi Q\ ppath (pvar x) (bnd Q) :-
  pi p\ pi u\ ppath (pvar u) p => ppath (R u) (Q p)) => ppath (K x) P.
```
Related and future work

- Generalize to full \(LJF \).

- Multi-focusing:
 - \(\triangledown \) Parallel actions (parallel name introductions).
 - \(\triangledown \) Maximal multi-focused proofs \(\leftrightarrow \) graphical representations.
 - Conjecture: MMF proofs are isomorphic to \(\lambda \)-graphs in the case for untyped \(\lambda \)-terms.

- Big-step cut-elimination for arbitrary cut formulas
 - \(\triangledown \) At the level of synthetic rules (not phases)!

- Connection with the literature in programming language theory (A-normal form, etc)

- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?

- Proof-theoretic methods for checking term equality.
Related and future work

- Generalize to full LJF.
- Multi-focusing:
 - Parallel actions (parallel name introductions).
 - Maximal multi-focused proofs \leftrightarrow graphical representations.
 - Conjecture: MMF proofs are isomorphic to λ-graphs in the case for untyped λ-terms.
Related and future work

- Generalize to full LJF.
- Multi-focusing:
 - Parallel actions (parallel name introductions).
 - Maximal multi-focused proofs ↔ graphical representations.
 - Conjecture: MMF proofs are isomorphic to λ-graphs in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas
 - At the level of synthetic rules (not phases)!
Related and future work

- Generalize to full \(LJF \).
- Multi-focusing:
 - Parallel actions (parallel \(\text{name} \) introductions).
 - Maximal multi-focused proofs \(\leftrightarrow \) graphical representations.
 - Conjecture: MMF proofs are isomorphic to \(\lambda \)-graphs in the case for untyped \(\lambda \)-terms.
- Big-step cut-elimination for arbitrary cut formulas
 - At the level of \(\text{synthetic rules} \) (not phases)!
- Connection with the literature in programming language theory (A-normal form, etc)
Related and future work

- Generalize to full LJF.
- Multi-focusing:
 - Parallel actions (parallel name introductions).
 - Maximal multi-focused proofs \leftrightarrow graphical representations.
 - Conjecture: MMF proofs are isomorphic to λ-graphs in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas
 - At the level of synthetic rules (not phases)!
- Connection with the literature in programming language theory (A-normal form, etc)
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?
Related and future work

- Generalize to full LJF.
- Multi-focusing:
 - Parallel actions (parallel name introductions).
 - Maximal multi-focused proofs \leftrightarrow graphical representations.
 - Conjecture: MMF proofs are isomorphic to λ-graphs in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas
 - At the level of synthetic rules (not phases)!
- Connection with the literature in programming language theory (A-normal form, etc)
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?
- Proof-theoretic methods for checking term equality.