## An overview of integer factorization

From the dark ages to the modern times

jerome.milan (at) lix.polytechnique.fr
March 2010

## The Dark Ages

Fermat's method

The $\mathrm{p}-1$ method

The $p+1$ method

Pollard's Rho

SQUFOF


## Fermat's method

- Fermat - Around 1643, in a letter to Mersenne
- Write $N=p_{1} p_{2}$ as $N=x^{2}-y^{2}=(x+y)(x-y)$
- If $N$ is not a square then $x \geq\lfloor\sqrt{N}\rfloor+1$


## Fermat's method (simplest form)

Input: integer $N$ to factor
Output: a factor $p$ of $N$

1. $m \leftarrow\lfloor\sqrt{N}\rfloor+1$
2. while (true)
if $m^{2}-N$ is a square then
return $m+\sqrt{m^{2}-N}$
else

$$
m \leftarrow m+1
$$

## Fermat's method

- Basic enhancements
- Replace squarings by additions

$$
(m+1)^{2}-N=m^{2}-N+(2 m+1)
$$

- Better square detection test (e.g. a square $\equiv_{16} 0,1,4$ or 9$)$
- Deduce sieve on $x$
- Runs in $O\left(\frac{\left(\sqrt{N}-p_{1}\right)^{2}}{2 p_{1}}\right)$ with best case in $O(\sqrt{N})$
- Latter enhancements
- R. Lehman (1974) in $O\left(N^{1 / 3}\right)$
- J. McKee (1999) heuristically in $O\left(N^{1 / 4}\right)$
- R. Erra/C. Grenier (2009) in polynomial time if $\left|p_{1}-p_{2}\right|<N^{1 / 3}$


## The p-1 method

- Published by Pollard in 1974 (previously known by D.N \& D.H Lehmer)
- Based on Fermat's little theorem
- If $\operatorname{gcd}(x, p)=1$ then $x^{p-1}=1 \bmod p$
- Let $y=\prod_{i=0}^{r} p_{i}^{e_{i}}$ and $B \in \mathbb{N}$
- $y$ is $B$-smooth $\equiv \forall i \in[0, r], p_{i} \leq B$
- $y$ is $B$-power smooth $\equiv \forall i \in[0, r], p_{i}^{e_{i}} \leq B$
- A special-purpose algorithm
- Succeeds if a $p_{i}-1$ is $B$-power smooth, for some bound $B$
- Runs in $O\left(B \cdot \log B \cdot \log ^{2} N\right)$


## The $\mathrm{p}-1$ method

## Pollard's p-1 (first stage)

Input: integer $N$ to factor bound $B_{1}$
Output: a factor $p$ of $N$ or failure

1. Choose $x$ coprime with $N$
2. for $i=1 . . B_{1}$ do
$x \leftarrow x^{i} \bmod N$
3. $p \leftarrow \operatorname{gcd}(x-1, N)$
4. if $(p \neq 1)$ and $(p \neq N)$ return $p$ else
return failure

## The p-1 method

- First stage example
- $N=421 \times 523$
- $B=7 \quad x=3$
- $\operatorname{gcd}\left(x^{B!}-1, N\right)=421$
- $420=2^{2} \times 3 \times 5 \times 7 \quad$ (420 is 7-power smooth)
- Optional second stage
- If $p-1$ not $B_{1}$-power smooth, first stage will fail
- Second stage allows one factor of $p-1$ to be in $\left[B_{1}, B_{2}\right]$
- Compute $\operatorname{gcd}\left(\left(x^{B!}\right)^{q}-1, N\right)$ for all primes $q$ in $\left[B_{1}, B_{2}\right]$
- Standard continuation, FFT continuation, etc.


## The $\mathrm{p}-1$ method

Pollard's p-1 (second stage - standard continuation)
Input: integer $N$ to factor
$y=x^{B_{1}!} \bmod N$ from first stage
bound $B_{2}$
Output: a factor $p$ of $N$ or failure

1. [Precomputations]

Let $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ be the primes in $\left[B_{1}, B_{2}\right]$
$y_{i} \leftarrow y^{q_{i+1}-q_{i}} \bmod N$ for all $i \in[1, k]$
2. [Gcds]

$$
\begin{aligned}
& z \leftarrow y_{1}^{q_{1}} \bmod N \\
& \text { for } j=1 . . k \text { do } \\
& \qquad \begin{array}{l}
p \leftarrow \operatorname{gcd}(z-1, N) \\
\text { if }(p \neq 1) \text { and }(p \neq N) \text { return } p \\
z \leftarrow z \times y_{i} \bmod N
\end{array} \\
& \text { return failure }
\end{aligned}
$$

## The $\mathrm{p}+1$ method

- H.C. Williams - 1982
- Similar to $\mathrm{p}-1$ but succeeds if $\mathrm{p}+1$ is $B_{1}$-power smooth
- Suppose $p=\prod_{i=1}^{k} q_{i}^{e_{i}}-1$
- Lucas sequence $V_{k}(P, Q)$
- Let $\alpha, \beta$ roots of $x^{2}-P x+Q$ and $\Delta=P^{2}-4 Q$
- $V_{k}(P, Q) \equiv \alpha^{k}+\beta^{k}$
- Fact 1. If $(\operatorname{gcd}(\Delta, N)=1)$ and $((\Delta / p)=-1)$ then $p$ divides $V_{B_{1}!}(P, Q)-2$
- Fact 2. There is an efficient algorithm to compute $V_{k}(P, 1)$ using recursive formulae


## The $\mathrm{p}+1$ method

## Williams' $\mathrm{p}+1$ (first stage)

Input: integer $N$ to factor bound $B_{1}$
Output: a factor $p$ of $N$ or failure

1. Choose $P_{0}$ so that $\operatorname{gcd}\left(P_{0}^{2}-4, N\right)=1$
2. $P_{m} \leftarrow V_{B_{1}!}\left(P_{0}, 1\right)$ // There's an efficient algo for that
// using recursion formulae
3. $p \leftarrow \operatorname{gcd}\left(N, P_{m}-2\right)$
4. if $(p \neq 1)$ and $(p \neq N)$ return $p$
else
return failure

## The $\mathrm{p}+1$ method

- What if $(\Delta / p) \neq-1$ ?
- Degrades as a slow version of Pollard's p-1
- Failure - retry with another $P_{0}$
- Second stage with bound $B_{2}$
- Will work if $p=p_{L} \prod_{i=1}^{k} q_{i}^{e_{i}}-1$ with $p_{L}$ prime in $\left[B_{1}, B_{2}\right]$
- Similar to Pollard's $\mathrm{p}-1$ but computes $\operatorname{gcd}\left(N, T_{j}\right)$ where $T_{\mathrm{j}}$ is a combination of Lucas sequences
- In practice, slower than $\mathrm{p}-1$


## Pollard's Rho

- John Pollard - 1975
- Special-purpose algorithm
- Better when $N$ has small factors
- Complexity: $O(\sqrt{p})$ with $p$ a factor of $N$
- Based on birthday paradox
- Randomly pick $x_{1}, x_{2}, x_{3} \ldots$ in $[0, N]$
- Collision expected after $\simeq \sqrt{\pi N / 2}$ samples


## Pollard's Rho

- Idea - Find self-collision in pseudo random walk $f \bmod N$

- Suppose $N=p_{1} p_{2} \ldots p_{k}$
- If $x_{i}=x_{j} \bmod p$ then $\operatorname{gcd}\left(N, x_{i}-x_{j}\right)$ may give a factor
- Collision expected after $O\left(\sqrt{p_{1}}\right)$ iterations only


## Pollard's Rho

- Floyd's cycle finding algorithm
- Only compare $x_{i}$ and $x_{2 i}$
- $x_{2 i}=x_{i} \Longleftrightarrow I_{c} \mid i$ and $i \geq I_{t}$
- $\exists i, I_{t} \leq i<I_{t}+I_{c}$ such that $x_{2 i}=x_{i}$

- Variants - Brent, Nivasch, distinguished points, etc.
- Open question - which function $f$ ?
- Usually, $f(x)=a x^{2}+b \bmod N$


## Pollard's Rho

## Pollard's Rho (with Floyd's cycle finding)

Input: integer $N$ to factor pseudo random walk function $f$
Output: a factor $p$ of $N$

1. [init]

$$
\begin{aligned}
& x_{i} \leftarrow 1 \\
& x_{2 i} \leftarrow 1
\end{aligned}
$$

2. while $(g=1)$ or $(g=N)$

$$
\begin{aligned}
& x_{i} \leftarrow f\left(x_{i}\right) \\
& x_{2 i} \leftarrow f\left(f\left(x_{2 i}\right)\right) \\
& g \leftarrow \operatorname{gcd}\left(N, x_{2 i}-x_{i}\right)
\end{aligned}
$$

3. return $g$

## SQUFOF - Square Form Factorization

- D. Shanks - around 1975
- Discovered while investigating CFRAC's shortcomings
- Based on infrastructure of real quadratic fields
- Quadratic forms $F(x, y)=a x^{2}+b x y+c y^{2} \equiv(a, b, c)$
- $\rho$ standard reduction operator
- Expressed with continued fraction formalism
- The forms $\left(a_{i}, b_{i}, c_{i}\right)=\rho^{i}\left(a_{0}, b_{0}, c_{0}\right)$ are on a cycle
- Look for $\left(a_{i}, b_{i}, c_{i}\right)$ and $\left(a_{i+1}, b_{i+1}, c_{i+1}\right)$ with $b_{i}=b_{i+1}$
- Yields simple relation giving a factor of $\Delta=b^{2}-4 a c$


## SQUFOF - Square Form Factorization

$$
\begin{align*}
q_{0} & =\lfloor N\rfloor \quad, \quad q_{i}=\left\lfloor\frac{q_{0}+P_{i}}{Q_{i}}\right\rfloor \text { for } i>0  \tag{1}\\
P_{0} & =0 \quad, \quad P_{1}=q_{0}  \tag{2}\\
P_{i} & =q_{i-1} Q_{i-1}-P_{i-1} \text { for } i>1  \tag{3}\\
Q_{0} & =1 \quad, \quad Q_{1}=N-q_{0}^{2}  \tag{4}\\
Q_{i} & =Q_{i-2}-q_{i-1}\left(P_{i-1}-P_{i}\right) \text { for } i>1 \tag{5}
\end{align*}
$$

Moreover we have the pivotal equality:

$$
\begin{equation*}
N=P_{m}^{2}+Q_{m-1} Q_{m} \tag{6}
\end{equation*}
$$

The principal cycle of reduced forms is given by the set of forms $\rho^{i}\left(F_{0}\right)=$ $\left((-1)^{(i-1)} Q_{i-1}, 2 P_{i}, \quad(-1)^{i} Q_{i}\right)$ with the principal form $F_{0}=\left(1,2 q_{0}, q_{0}^{2}-N\right)$.

Using (1) to (5), reverse cycle through the quadratic forms $G_{i}=\rho^{\imath}\left(G_{0}\right)=$ $\left((-1)^{(i-1)} S_{i-1}, 2 R_{i},(-1)^{i} S_{i}\right)$ to find a symmetry point, e.g. a pair of forms $G_{m}, G_{m}+1$ with $R_{m}=R_{m+1}$ (this happens for $m \approx n / 2$ ). Using (3), (5) write $R_{m}=t_{m} S_{m} / 2$ and since $N=R_{m}^{2}+S_{m-1} S_{m}$, we obtain a factorization of $N: N=S_{m} \cdot\left(S_{m-1}+S_{m} t_{m}^{2} / 4\right)$.

## SQUFOF - Square Form Factorization

- Complexity $O\left(N^{1 / 4}\right)$
- Theory is really complicated
- But very easy to implement
- Manipulate numbers of size $2 \sqrt{N}$ at most
- Particularly interesting for double-precision numbers
- Often used in QS or NFS implementation to factor residues


## SQUFOF - Square Form Factorization

## SQUFOF

Input: integer $N$ to factor
Output: a factor $p$ of $N$ or failure

1. [Find square form]
$F \leftarrow F_{0}$
while $F \neq$ square form
// Abort and return failure $F \leftarrow \rho(F) \quad / /$ if takes too long
2. [Inverse square root]
$G_{0} \leftarrow \rho(\sqrt{F})$
$G_{1} \leftarrow \rho\left(G_{0}\right)$
3. [Find symmetry point]
// Needs about half the
while (no symmetry point) // number of iterations $G_{0} \leftarrow \rho\left(G_{0}\right) \quad / /$ needed in step 1. $G_{1} \leftarrow \rho\left(G_{1}\right)$
4. [Deduce factors] // Simple relation with $G_{0}$ and $G_{1}$

## The modern times

## ECM

CFRAC

QS \& variants

NFS

## ECM - Elliptic Curve Method

- H.W. Lenstra (1985) + later improvements (Brent, Montgomery)
- Special-purpose algorithm
- Given $N=p_{1} \ldots p_{k}$, runs asymptotically in $L_{p_{1}}(1 / 2, \sqrt{2}) \cdot M(N)$
- $L_{x}(\alpha, c)=\exp \left((c+o(1)) \cdot(\log x)^{\alpha} \cdot(\log \log x)^{1-\alpha}\right)$
- $M(N) \equiv$ cost of multiplication $\bmod N$
- In a nutshell, $\mathrm{ECM}=$ " $p-1$ on elliptic curves"
- p-1 succeeds if $\# \mathbb{Z}_{p}^{*}$ is $B_{1}$-power smooth
- ECM succeeds if $\# E\left(\mathbb{F}_{p}\right)$ is $B_{1}$-power smooth
- Retry with another curve if failure


## ECM - Elliptic Curve Method

- Crude reminders
- $E_{a, b}\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}$
- Defines a group
- Chord and tangent group law
- Hasse theorem

$$
p+1-2 \sqrt{p} \leq \# E_{a, b}\left(\mathbb{F}_{p}\right) \leq p+1+2 \sqrt{p}
$$

- Elliptic "pseudocurve" $E_{a, b}\left(\mathbb{Z}_{N}\right)$
- Not a group!
- There are points $P_{i}$ and $Q_{i}$ for which $P_{i}+Q_{i}$ is not defined
- Failure to find inverse $\bmod N$ gives a factor


## ECM - Elliptic Curve Method

## ECM (first stage)

Input: integer $N$ to factor bound $B_{1}$
Output: a factor $p$ of $N$ or failure

1. [Choose elliptic curve $E$ and initial point $Q_{0}$ ]
// Several strategies are possible.
// Popular are Suyama's curve parameterization and
Montgomery's point representation
2. Compute $Q \leftarrow\left[B_{1}!\right] Q_{0}$
// If $\# E\left(\mathbb{F}_{p_{1}}\right)$ is $B_{1}$-power smooth this computation
// will fail - non inversible element $x$ in $\mathbb{Z}_{N}$
if $\left(\nexists x^{-1} \bmod N\right)$ then return $\operatorname{gcd}(x, N)$
3. return failure
// Try again with another curve
// or with another bound $B_{1}$

## ECM - Elliptic Curve Method

- Again, second stage with bound $B_{2}$
- Will work if $\# E\left(\mathbb{F}_{p}\right)=p_{L} \prod_{i=1}^{k} q_{i}^{e_{i}} \quad$ with $p_{L}$ prime in $\left[B_{1}, B_{2}\right]$
- Idea
- Let $\left\{q_{k+1}, q_{k+2} \ldots q_{l}\right\}$ be the primes in $\left[B_{1}, B_{2}\right]$
- Precompute $R_{i}=\left[q_{i+1}-q_{i}\right] Q$ for all $i$ in $[k+1, l]$
- Compute

$$
\begin{aligned}
& Q \leftarrow\left[q_{k+1}\right] Q \\
& Q \leftarrow Q+\left[R_{1}\right] Q \\
& Q \leftarrow Q+\left[R_{2}\right] Q
\end{aligned}
$$

- Several variants (birthday paradox, standard continuation)


## Congruence of squares methods

- Basic idea: Kraïtchik in the 1920s
- Find $U, V$ so that $U^{2}=V^{2} \bmod N$
- Then $\operatorname{gcd}(U-V, N)$ yields a (nontrivial?) factor of $N$
- Two stages
- Find congruences
- Collect $F+\epsilon$ relations $r_{i}$ of type $x_{i}^{2}=y_{i} \bmod N$
- Factor the $y_{i}$ on a factor base $\mathcal{B}=\left\{p_{1}, p_{2} \ldots p_{F}\right\}$

$$
y_{i}=\prod_{i=1}^{k} p_{i}^{e_{i}} \quad \bullet e_{i}^{*}=e_{i} \bmod 2
$$

- Each relation $=$ a row in a $(F+\epsilon) \times F$ matrix $\mathcal{M}$
- $\left[e_{1}^{*}, e_{2}^{*}, e_{3}^{*} \ldots e_{F}^{*}\right]$
- Solve linear system
- Compute kernel of $\mathcal{M}$
- Gives collections $\left\{r_{i}\right\}_{j}$ for which $\prod_{i} y_{i}=V^{2}$


## Congruence of squares methods

- Relation selection - keep only smooth $y_{i}$
- Trial division
- Early abort strategy (Pomerance, 1982)
- Trial divide with a fraction of the $p_{i}$ (e.g. primes $\leq \sqrt{p_{F}}$ )
- Abort if cofactor greater than a given bound
- Multiple steps possible
- Smoothness detection batch
- Accumulate several candidates and test in batch
- Franke, Kleinjung, Morain \& Wirth (2004)
- Bernstein (2004)


## Congruence of squares methods

- Large prime variations
- Allow $y_{i}=L \prod_{i} p_{i}^{e_{i}}$ with $L=p_{L_{1}} p_{L_{2}} \ldots p_{L_{L P}}, p_{L_{i}}>p_{F}$
- Usually
- $L P=1$ (single large prime variation)
- Easy to implement
- $L P=2$ (double large prime variation)
- Harder

| $\mathrm{L}_{2}$ |
| :---: |
| $\mathrm{~L}_{2} \mathrm{~L}_{4}$ |
| $\mathrm{~L}_{4}$ |


| $\mathrm{L}_{2} \mathrm{~L}_{5}$ |
| :---: |
| $\mathrm{~L}_{3} \mathrm{~L}_{5}$ |
| $\mathrm{~L}_{3}$ |


| $\mathrm{L}_{3} \mathrm{~L}_{7}$ |
| :--- |
| $\mathrm{~L}_{6} \mathrm{~L}_{9}$ |
| $\mathrm{~L}_{6} \mathrm{~L}_{7}$ |
| $\mathrm{~L}_{3} \mathrm{~L}_{9}$ |

## Congruence of squares methods

- General purpose methods
- One idea, several algorithms
- CFRAC
- QS \& derivatives
- NFS
- Main difference is the way the $x_{i}^{2}=y_{i} \bmod N$ are generated


## CFRAC - Continued Fraction Factorization

- Morrison \& Brillhart (1975) from ideas from Lehmer \& Powers
- A general factoring method
- Runs in $L_{N}(1 / 2, \sqrt{2})$
- Based on continued fraction expansion of $\sqrt{N}$
- Look for $x_{i}^{2}=y_{i} \bmod N$ with $y_{i}$ "small"
- $x_{i}^{2}=y_{i}+k N=y_{i}+k^{\prime} d^{2} N$
- $\left(x_{i} / d\right)^{2}-N=y_{i} / d^{2}$ is "small" $\Rightarrow\left(x_{i} / d\right) \simeq \sqrt{N}$
- Let $\left\langle a_{i} / b_{i}\right\rangle_{\sqrt{N}}$ be the $i$-th continued fraction convergent to $\sqrt{N}$
- $\left|a_{i}^{2}-b_{i}^{2} N\right|<2 \sqrt{N}$
- In some sense, the smallest residues possible


## CFRAC - Continued Fraction Factorization

- Problem
- The sequence $\left\{\left\langle a_{i} / b_{i}\right\rangle_{\sqrt{N}}\right\}_{i}$ is periodic
- Use a correctly chosen multiplier $k$ and factor $k N$
- Choosing a multiplier \& the factor base
- $p \left\lvert\, y_{i} \Rightarrow\left(\frac{k N}{p}\right)=1\right.$
- $\mathcal{B}=\left\{q_{1}, q_{2} \ldots q_{F}\right\}$ with $\left(k N / q_{i}\right)=1$
- Choose $k$ so that $\mathcal{B}$ contains "lots of" small primes


## CFRAC - Continued Fraction Factorization

CFRAC (high level description)
Input: integer $N$ to factor
Output: a factor $p$ of $N$ or failure

1. [Select multiplier $\boldsymbol{k}$ and factor base $\mathcal{B}$ ]
// Balance size of $k$ and number of small primes in $\mathcal{B}$
2. [Generate relations]
// Expand $\sqrt{k N}$ to generate congruence relations
3. [Select relations]
// Keeps relations with $y_{i}$ smooth or a product of
// a smooth number with a few large primes
4. [Linear algebra]
// Compute $\operatorname{gcd}(N, U-V)$ for each solution found

## QS - Quadratic Sieve

- Pomerance - 1982
- Use of a sieve to quickly discard non smooth residues
- Runs in $L_{N}(1 / 2,1)$
- $g(x)=(x+\lfloor\sqrt{N}\rfloor)^{2}-N=u^{2}-N$
- $g(x)$ is $\mathcal{B}$-smooth $\Rightarrow$ relation $g(x)=u^{2} \bmod N$
- $p|g(x) \Rightarrow p| g(x+m . p), m \in \mathbb{Z} \longrightarrow$ sieve
- Sieving
- Solve $x^{2}=N \bmod q_{i}$ for all $q_{i} \in \mathcal{B} \longrightarrow x_{q_{i}}^{(1)}$ and $x_{p_{i}}^{(2)}$
- Sieve with $\left\{x_{q_{i}}^{(1)}, x_{q_{i}}^{(2)}\right\}_{i}$ and keep potentially smooth $g(x)$ for surviving values of $x$ only


## QS - Quadratic Sieve

- Fill sieve

- Scan sieve


Only check if these $g\left(x_{i}\right)$ are smooth
Only the $g\left(x_{i}\right)$ for which Sieve $\left[x_{i}\right] \geq \tau$ are eligible for a smoothness test

## MPQS - Multiple polynomial Quadratic Sieve

- Problem with QS
- $g(x)$ grows linearly (for small $x$ )
- The Multiple Polynomial QS (MPQS)
- Use several polynomials $g_{a, b}(x)=(a . x+b)^{2}-N$
- Switch polynomial when $g_{a, b}(x)$ gets too large
- Effectively sieve in interval $[-M, M$ ]
- Polynomial initialization problem
- Need to compute $\left\{x_{q_{i}}^{(1)}, x_{q_{i}}^{(2)}\right\}_{i}=$ the solutions to $g_{a, b}(x)=0 \bmod q_{i}$ for each new polynomial
- Can become a bottleneck
- Faster than QS but same complexity $L_{N}(1 / 2,1)$


## SIQS - Self Initializing Quadratic Sieve

- The Self Initializing Quadratic Sieve (SIQS)
- Choose family $\left\{g_{a, b_{i}}\right\}$ such that $g_{a, b_{i+1}}$ can be quickly initialized from $g_{a, b_{i}}$
- In a nutshell
- Choose $a=\prod_{i=0}^{s} p_{i}$ so that $a \simeq \sqrt{2 N} / M \quad$ (to minimize $\left.g_{a, b}(x)\right)$
- We want $b^{2}-N=k a \quad$ (since then $\left.a \mid g_{a, b}(x)\right)$
- Gives $2^{s}$ values for $b$ but only $2^{s-1}$ are suitable
- Fully initialize $g_{a, b_{0}}$ (i.e. compute $\left\{x_{q_{i}}^{(1)}, x_{q_{i}}^{(2)}\right\}_{i}$ )
- The $2^{s-1}-1$ other $g_{a, b_{i}}$ can be derived from $g_{a, b_{i-1}}$
- If more polynomial needed, choose another a


## SIQS - Self Initializing Quadratic Sieve

## SIQS (seen from the ionosphere)

Input: integer $N$ to factor
Output: a factor $p$ of $N$ or failure

1. [Select multiplier $\boldsymbol{k}$ and factor base $\mathcal{B}$ ]
2. [Polynomial initialization]
$/ /$ Choose $a=\prod_{i=0}^{s} p_{i} \simeq \sqrt{2 N} / M$
// 1 full poly-init $g_{a, b_{0}}$ for $2^{s-1}-1$ fast poly-init $g_{a, b_{i}}$
3. [Fill Sieve]
// Sieve with the $\left\{x_{q_{i}}^{(1)}, x_{q_{i}}^{(2)}\right\}_{i}$
4. [Scan sieve]
// Scan the sieve, keeps $x_{i}$ for which Sieve $\left[x_{i}\right] \geq \tau$ and perform smoothness detection on $g_{a, b}\left(x_{i}\right)$.
If not enough relations, goto step 2
5. [Linear algebra \& factor deduction]
// Standard to all congruences of square methods

## NFS - Number Field Sieve

- Special NFS (Pollard, 1988)
- Numbers of the form $c_{1} a^{n}+c_{2} b^{n}$
- General NFS (Buhler/Lenstra/Pomerance, 1990)
- Arbitrary numbers
- The fastest methods known
- SNFS
- $L_{N}(1 / 3, \sqrt[3]{32 / 9}) \quad$ in time
- $L_{N}(1 / 3, \sqrt[3]{32 / 9})^{1 / 2}$ in space
- GNFS
- $L_{N}(1 / 3, \sqrt[3]{64 / 9}) \quad$ in time
- $L_{N}(1 / 3, \sqrt[3]{64 / 9})^{1 / 2}$ in space


## NFS - Number Field Sieve

- Basic GNFS in a nutshell (and from high up there)
- Monic irreducible polynomial $f \in \mathbb{Z}[x]$ of degree $d$
- $m \in \mathbb{Z}_{N}$ so that $f(m) \equiv 0 \bmod N$
- $\alpha \in \mathbb{C}$ so that $f(\alpha)=0$
- Ring morphism
- $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{N}$

$$
\sum_{i=0}^{d-1} a_{i} \alpha^{i} \mapsto\left(\sum_{i=0}^{d-1} a_{i} m^{i}\right) \bmod N
$$

- Consider pairs $\theta_{i}, \phi\left(\theta_{i}\right)$ so that
- $\theta_{1} \ldots \theta_{k}=\gamma^{2}$
in $\mathbb{Z}[\alpha]$
(algebraic side)
- $\phi\left(\theta_{1}\right) \ldots \phi\left(\theta_{k}\right)=v^{2} \bmod N$ in $\mathbb{Z}_{N}$
(rational side)


## NFS - Number Field Sieve

- Let $\phi(\gamma)=u \bmod N$
- $u^{2}=\phi(\gamma)^{2}=\phi\left(\gamma^{2}\right)=\phi\left(\theta_{1} \ldots \theta_{k}\right)=\phi\left(\theta_{1}\right) \ldots \phi\left(\theta_{k}\right)=v^{2} \bmod N$
- $u^{2}=v^{2} \bmod N$
- computing algebraic square root $\gamma$ from $\gamma^{2}$ not trivial
- Now, look for $\theta_{i}=a_{i}+b_{i} \alpha$ with $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$

$$
\phi\left(\theta_{i}\right)=a_{i}+b_{i} m
$$

- Sieving rational side
- $g(x)=x+m$
- Let $r$ be a root of $g \bmod p_{i}$
- $p_{i} \mid b \cdot g(a / b) \Leftrightarrow a=r b \bmod p_{i}$
- Sieve along $a$ for each $b$


## NFS - Number Field Sieve

- Sieving algebraic side
- Note $\alpha, \alpha_{2} \ldots \alpha_{d}$ the complex roots of $f$
- $\|a+b \alpha\|=(a+b \alpha) \ldots\left(a+b \alpha_{d}\right)$

$$
\begin{aligned}
& =b^{d}(a / b+\alpha) \ldots\left(a / b+\alpha_{d}\right) \\
& =b^{d} f(a / b)
\end{aligned}
$$

- $p_{i} \mid b^{d} f(a / b) \Leftrightarrow a=r b \bmod p_{i}$ with $r$ a root of $f \bmod p_{i}$
- Sieve along a for each $b$
- Take intersection with rational sieve survivors
- Linear algebra + deducing factors
- As in other congruence of square methods...
- Modulo algebraic square root problem not trivial


## NFS - Number Field Sieve

NFS (seen from the Moon)
Input: integer $N$ to factor
Output: a factor $p$ of $N$ or failure

1. [Polynomial selection]
// Select $f$ and $g$ (usually $g$ of degree 1)
2. [Sieving]
// Sieve for the two polynomials $f$ and $g$
3. [Filtering]
// Prepare the matrix for linear algebra
4. [Linear algebra]
// Usually block Wiedemann or block Lanczos
5. [Square roots]
// Algebraic square root non trivial

## NFS - Number Field Sieve

- Warning
- Lots of details swept under the rug!
- In particular for $x \in \mathbb{Z}[\alpha],\|x\|=a^{2} \nRightarrow x=b^{2}$
- Lots of enhancements
- Polynomial selection methods
- Lattice sieving


## NFS - Number Field Sieve

- Special NFS
- 1990: 9 ${ }^{\text {th }}$ Fermat number $F_{9}=2^{512}+1$
- 2000: $2^{773}+1$
- 2007: $2^{1039}-1$
- General NFS
- 1999: RSA-155
- 2009 : RSA-768 (232 decimal digits)
- Estimated to be about 10 times harder than $2^{1039}-1$


## NFS - Number Field Sieve

- Factoring RSA-768 (232 decimal digits)
- Polynomial selection - 6 months / 80 cores
- Sieving - 24 months / hundreds of cores
- $64 \cdot 10^{9}$ relations (5 TB)
- Filtering - 20 days $/ 2$ cores +10 TB disk space
- Linear algebra - 3 months / 600 cores (estimation)
- $193 \cdot 10^{6} \times 193 \cdot 10^{6}$ matrix ( 105 GB )
- Block Wiedermann, up to 1 TB RAM needed
- Square roots
- A few hours / 12 cores

From "Factorization of a 768-bit RSA modulus", Kleinjung et al., 2010

## Factorization records

\# decimal digits


From "Thirty Years of Integer Factorization", F. Morain, 2001

## Factorization records



Figure 1. Size in bits of the factored numbers depending on the year.

## References

Mathematics of Public Key CryptographySteven Galbraithhttp://www.isg.rhul.ac.uk/~sdg/crypto-book/crypto-book.html
Prime numbers - A computational perspective
Richard Crandall \& Carl Pomerancehttp://www.springer.com/mathematics/numbers/book/978-0-387-25282-7
Prime numbers and Computer Methods for Factorization
Hans Riesel
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-3743-9
Theorems on factorization and primality testing John Pollard

Proceedings of the Cambridge Philosophical Society, vol. 76, issue 03, p. 521, 1974.
Thirty Years of Integer Factorization
François Morainhttp://algo.inria.fr/seminars/sem00-01/morain.ps
A p+1 method of factoring
Hugh WilliamsMathematics of Computation, vol. 39, p. 225-234, 1982.

## References



> Square form factorization
> Jason Gower \& Samuel Wagstaff Jr.
> Mathematics of computation, vol. 77, no. 261, pp. 551-588, 2008.

## Factoring integers with elliptic curves

Hendrik Lenstra
Annals of Mathematics, vol. 126, pp. 649-673, 1987.
Speeding the Pollard and Elliptic Curve Methods of Factorization
Peter Montgomery
Mathematics of Computation, vol. 48, pp. 243-264, 1987.


## A method of factoring and the factorization of $F_{7}$

Michael Morrison \& John Brillhart
Mathematics of Computation, vol. 29, no. 129, pp. 183-205, 1975.


Factoring integers with the self-initializing quadratic sieve Scott Contini
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924


The number field sieve
Arjen Lenstra et al.
http://www.std.org/~msm/common/nfspaper.pdf

## References

## A Tale of Two Sieve

Carl Pomerance
http://www.ams.org/notices/199612/pomerance.pdf
Factorization of a 768-bit RSA modulus
Thorsten Kleinjung et al.
http://eprint.iacr.org/2010/006.pdf

