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The Dark Ages

2

Fermat’s method

The p−1 method

The p+1 method

Pollard’s Rho

SQUFOF



Fermat’s method

• Fermat − Around 1643, in a letter to Mersenne

• Write N = p1 p2  as 

• If N is not a square then 
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N = x2 − y2 = (x + y)(x − y)

x ≥ �
√

N�+ 1

Fermat’s method (simplest form)

Input:
Output:

integer N to factor
a factor p of N

1. 
2. while (true)

  if           is a square then
    return 
  else
  

m ← �
√

N�+ 1

m2 − N
m +

�
m2 − N

m← m + 1



Fermat’s method

• Basic enhancements
• Replace squarings by additions

• Better square detection test (e.g. a square 	      0, 1, 4 or 9)
• Deduce sieve on x

• Runs in                          with best case in 

• Latter enhancements
• R. Lehman (1974) in 

• J. McKee (1999) heuristically in 

• R. Erra/C. Grenier (2009) in polynomial time if 
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(m + 1)2 − N = m2 − N +(2m + 1)

≡16

O

�
(
√

N − p1)2

2p1

�
O(
√

N)

|p1 − p2| < N1/3

O(N1/3)

O(N1/4)



The p−1 method

• Published by Pollard in 1974 (previously known by D.N & D.H Lehmer)

• Based on Fermat’s little theorem

• If                     then  

• Let                 and 

• y is B-smooth 

• y is B-power smooth  

• A special-purpose algorithm

• Succeeds if a           is B-power smooth, for some bound B

• Runs in 
5

gcd(x , p) = 1 xp−1 = 1 mod p

B ∈ N

≡ ∀i ∈ [0, r ], pi ≤ B

≡ ∀i ∈ [0, r ], pei
i ≤ B

pi − 1

O(B · log B · log2
N)

y =
r�

i=0

pei
i



The p−1 method
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Pollard’s p−1 (first stage)

Input: integer N to factor
bound 

Output: a factor p of N or failure

1. Choose    coprime with N
2. for               do               // Compute
       

3.  
4. if  (       ) and (        )
   return 
   else
   return failure

x

x ← x i modN

p ← gcd(x − 1, N)

p �= 1 p �= N
p

xB1! mod Ni = 1..B1

B1



• First stage example

•   

•   

•   

•                                (420 is 7-power smooth)

• Optional second stage 

• If          not     -power smooth, first stage will fail

• Second stage allows one factor of          to be in 

• Compute                            for all primes q in 
• Standard continuation, FFT continuation, etc.

The p−1 method
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N = 421× 523

B = 7

gcd(xB! − 1,N) = 421

x = 3

420 = 22 × 3× 5× 7

p − 1 B1

p − 1 [B1,B2]

gcd((xB!)q − 1,N) [B1,B2]



The p−1 method
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Pollard’s p−1 (second stage – standard continuation)

Input: integer N to factor
                      from first stage
bound 

Output: a factor p of N or failure

1. [Precomputations]
 Let                  be the primes in 
           for all 
2. [Gcds]
 
 for            do
   
   if (       ) and (        ) return p
 
 return failure

B2

y = xB1! mod N

{q1, q2...qk} [B1,B2]

yi ← yqi+1−qi mod N i ∈ [1, k]

j = 1..k
p ← gcd(z − 1,N)

p �= 1 p �= N
z ← z × yi mod N

z ← yq1
1 mod N



The p+1 method

• H.C. Williams – 1982

• Similar to p−1 but succeeds if p+1 is     -power smooth

• Suppose 

• Lucas sequence            

• Let    ,    roots of                    and

•  

• Fact 1. If                        and                     then
   p divides 

• Fact 2. There is an efficient algorithm to compute
   using recursive formulae
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p =
k�

i=1

qei
i − 1

Vk(P,Q) ≡ αk + βk

Vk(P,Q)

α β x2 − Px + Q

B1

Vk(P, 1)

∆ = P2 − 4Q

(gcd(∆, N) = 1) ((∆/p) = −1)

VB1!(P,Q)− 2



The p+1 method
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Williams’ p+1 (first stage)

Input: integer N to factor
bound 

Output: a factor p of N or failure

1. Choose      so that  
2.       // There’s an efficient algo for that
       // using recursion formulae

3.  
4. if  (       ) and (        )
   return 
   else
   return failure

p �= 1 p �= N
p

B1

gcd(P2
0 − 4,N) = 1P0

Pm ← VB1!(P0, 1)

p ← gcd(N,Pm − 2)



The p+1 method
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• What if                   ?

• Degrades as a slow version of Pollard’s p−1

• Failure – retry with another P0

• Second stage with bound B2

• Will work if                           with pL prime in 

• Similar to Pollard’s p−1 but computes gcd(N, Tj)
where Tj is a combination of Lucas sequences

• In practice, slower than p−1

(∆/p) �= −1

p = pL

k�

i=1

qei
i − 1 [B1,B2]



Pollard’s Rho

• John Pollard – 1975

• Special-purpose algorithm

• Better when N has small factors

• Complexity:             with p a factor of N  

• Based on birthday paradox

• Randomly pick                 in

• Collision expected after                 samples

12

O (
√

p)

x1, x2, x3... [0, N]

�
�

πN/2



Pollard’s Rho

• Idea – Find self-collision in pseudo random walk

• Suppose

• If                      then                     may give a factor

• Collision expected after            iterations only
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f mod N

N = p1p2 ... pk

xi = xj mod p gcd(N, xi − xj)

O(
√

p1)

p = gcd(N, xi − xj)

x0

x1

xi ≡N xj

xk

xk+1 = f (xk)



Pollard’s Rho

• Floyd’s cycle finding algorithm

• Only compare     and  

•                        and 

•                          such that

• Variants – Brent, Nivasch, distinguished points, etc.

• Open question – which function f ?

• Usually, 
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�� �2�

lt

lc

x2i = xi ⇐⇒ lc |i i ≥ lt

x2i = xi∃i , lt ≤ i < lt + lc

f (x) = ax2 + b mod N



Pollard’s Rho
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Pollard’s Rho (with Floyd’s cycle finding)

Input: integer N to factor
pseudo random walk function f

Output: a factor p of N

1. [init]
 
 
2. while (       ) or (         )
 
 
 

3. return g

xi ← f (xi )

x2i ← f (f (x2i ))

g ← gcd(N, x2i − xi )

xi ← 1
x2i ← 1

g = 1 g = N



SQUFOF – Square Form Factorization

• D. Shanks − around 1975

• Discovered while investigating CFRAC’s shortcomings

• Based on infrastructure of real quadratic fields

• Quadratic forms 

•    standard reduction operator

• Expressed with continued fraction formalism

• The forms                                  are on a cycle

• Look for               and                       with 

• Yields simple relation giving a factor of 

16

F (x , y) = ax2 + bxy + cy2 ≡ (a, b, c)

ρ

(ai , bi , ci ) = ρi (a0, b0, c0)

(ai , bi , ci ) (ai+1, bi+1, ci+1) bi = bi+1

∆ = b2 − 4ac



2 Implemented algorithms

In this section, we identify and briefly describe the main phases of the imple-

mented algorithms, with the aim of understanding the results presented in the

third section. For a more detailled theoretical background, see the referenced

literature.

2.1 Shanks’s SQuare Form Factorization (SQUFOF)

SQUFOF [9], proposed in the mid-seventies by Shanks as an alternative to the

continued fraction method, factors a number N in O(N1/4). A nice feature is

that most of the computations involve numbers less than 2
√

N which makes it

particularly suited to factor (at most) double precision numbers.

SQUFOF is based on the theory of quadratic forms F (x, y) = ax2 + bxy +

cy2 ≡ (a, b, c), more precisely, on the underlying structure of cycles of reduced

forms (ai, bi, ci) = ρi(a0, b0, c0) where ρ is the standard reduction operator. Find-

ing a point of symmetry in such a cycle leads to a simple relation potentially

giving a factor of N . The theory of quadratic forms is tightly linked to continued

fractions and the reduction operator can be expressed in a similar formalism.

Given a number to factor N , we recall the following relations arising from the

development of
√

N in continued fractions:

q0 = �N� , qi =

�
q0 + Pi

Qi

�
for i > 0 (1)

P0 = 0 , P1 = q0 (2)

Pi = qi−1Qi−1 − Pi−1 for i > 1 (3)

Q0 = 1 , Q1 = N − q
2
0 (4)

Qi = Qi−2 − qi−1(Pi−1 − Pi) for i > 1 (5)

Moreover we have the pivotal equality:

N = P
2
m + Qm−1Qm (6)

The principal cycle of reduced forms is given by the set of forms ρi(F0) =

((−1)(i−1)Qi−1, 2Pi, (−1)iQi) with the principal form F0 = (1, 2q0, q
2
0 − N).

We will now recall the main steps of the algorithm.

[1 - forward: find square form]

Move forward through the cycle starting with the principal form F0 until we

identify a square form Fn = ρn(F0) = (−Q, 2P, S2).

[2 - invsqrt: inverse square root]

Set F−1/2 = (−S, 2P, SQ) and compute the reduction G0 = (−S−1, 2R0, S0)

where S−1 = S, R0 = P + S�(q0 − P )/S� and S0 = (N −R2
0)/S.

[3 - reverse: find symmetry point]

Using (1) to (5), reverse cycle through the quadratic forms Gi = ρi(G0) =

((−1)(i−1)Si−1, 2Ri, (−1)iSi) to find a symmetry point, e.g. a pair of forms

Gm, Gm + 1 with Rm = Rm+1 (this happens for m ≈ n/2). Using (3), (5)
write Rm = tmSm/2 and since N = R2

m+Sm−1Sm, we obtain a factorization
of N : N = Sm · (Sm−1 + Smt2m/4).

As in other factoring methods, one can use a multiplier k, leading to factor
kN instead of N hoping to achieve some speed up. We refer the reader to [9]
for a full theoretical background on SQUFOF. Finally, note that in step 3, we
have a rough estimate of the number of forms to explore. Thus by using form
compositions, one can jump in the cycle to get quickly in the vicinity of the
point of symmetry, a strategy dubbed “fast return” by Shanks [19].

2.2 McKee’s speedup of Fermat’s algorithm

J. McKee proposed in [13] an improvement to Fermat’s venerable algorithm.
Heuristically running in O(N1/4) (instead of O(N1/2)), it is described as a pos-
sibly faster alternative to SQUFOF.

Assuming that N has no factor less than 2N1/4 (which is perfectly acceptable
for the applications we target), define b =

�√
N

�
and Q(x, y) = (x+ by)2−Ny2.

As in Fermat’s algorithm, we seek x and y such that Q(x, y) is a square so that
gcd(x + by −

�
Q(x, y), N) is potentially a proper factor of N. The “greedy”

variant proceeds as follows:

[1. Compute modular square root]
Choose a prime p > 2N1/4 and set x0 and x1 as the solutions to Q(x, 1) ≡ 0
(mod p2).

[2. Find square]
For xi ∈ [x0, x1]: Set x = xi and y = 1. While Q(x, y) is not a square, set
r = �p2/x�, x = xr − p2 and y = r. Abort the loop when y exceeds a given
threshold ymax in the order of N1/4.
If no factor is found, go back to step 1 and choose a different prime p. Abort
the algorithm when p reaches a chosen bound.

2.3 The Elliptic Curve Method (ECM)

ECM was proposed by H.W. Lenstra in 1985 [10] and saw numerous subsequent
improvements, most notably by P. Montgomery [14] and R. Brent [5]. ECM’s
running time essentially depends on the size of the factor to be found, like
Pollard’s rho or p − 1 methods. Given a number N having p as its smallest
factor, ECM’s asymptotic complexity is given by Lp(1/2,

√
2) · M(N) where

Lx(α, c) = exp((c + o(1)) · (log p)α · (log log p)1−α) and M(N) is the cost of
multiplication modulo N .

ECM is actually very similar to the p − 1 algorithm but works on a group
defined by an elliptic curve, which makes it possible to switch to another group
(i.e. curve) if one try fails. We sketch here the main idea of the method using
the so-called “standard continuation”.

2 Implemented algorithms

In this section, we identify and briefly describe the main phases of the imple-

mented algorithms, with the aim of understanding the results presented in the

third section. For a more detailled theoretical background, see the referenced

literature.

2.1 Shanks’s SQuare Form Factorization (SQUFOF)

SQUFOF [9], proposed in the mid-seventies by Shanks as an alternative to the

continued fraction method, factors a number N in O(N1/4). A nice feature is

that most of the computations involve numbers less than 2
√

N which makes it

particularly suited to factor (at most) double precision numbers.

SQUFOF is based on the theory of quadratic forms F (x, y) = ax2 + bxy +

cy2 ≡ (a, b, c), more precisely, on the underlying structure of cycles of reduced

forms (ai, bi, ci) = ρi(a0, b0, c0) where ρ is the standard reduction operator. Find-

ing a point of symmetry in such a cycle leads to a simple relation potentially

giving a factor of N . The theory of quadratic forms is tightly linked to continued

fractions and the reduction operator can be expressed in a similar formalism.

Given a number to factor N , we recall the following relations arising from the

development of
√

N in continued fractions:

q0 = �N� , qi =

�
q0 + Pi

Qi

�
for i > 0 (1)

P0 = 0 , P1 = q0 (2)

Pi = qi−1Qi−1 − Pi−1 for i > 1 (3)

Q0 = 1 , Q1 = N − q
2
0 (4)

Qi = Qi−2 − qi−1(Pi−1 − Pi) for i > 1 (5)

Moreover we have the pivotal equality:

N = P
2
m + Qm−1Qm (6)

The principal cycle of reduced forms is given by the set of forms ρi(F0) =

((−1)(i−1)Qi−1, 2Pi, (−1)iQi) with the principal form F0 = (1, 2q0, q
2
0 − N).

We will now recall the main steps of the algorithm.

[1 - forward: find square form]

Move forward through the cycle starting with the principal form F0 until we

identify a square form Fn = ρn(F0) = (−Q, 2P, S2).

[2 - invsqrt: inverse square root]

Set F−1/2 = (−S, 2P, SQ) and compute the reduction G0 = (−S−1, 2R0, S0)

where S−1 = S, R0 = P + S�(q0 − P )/S� and S0 = (N −R2
0)/S.

[3 - reverse: find symmetry point]

Using (1) to (5), reverse cycle through the quadratic forms Gi = ρi(G0) =

((−1)(i−1)Si−1, 2Ri, (−1)iSi) to find a symmetry point, e.g. a pair of forms

SQUFOF – Square Form Factorization

17



SQUFOF – Square Form Factorization

• Complexity             

• Theory is really complicated

• But very easy to implement

• Manipulate numbers of size         at most

• Particularly interesting for double-precision numbers

• Often used in QS or NFS implementation to factor residues

18

O(N1/4)

2
√

N



SQUFOF – Square Form Factorization
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SQUFOF

Input:
Output:

integer N to factor
a factor p of N or failure

1. [Find square form]

 while       square form  // Abort and return failure
           // if takes too long
2. [Inverse square root]

3. [Find symmetry point]   // Needs about half the
 while (no symmetry point) // number of iterations
           // needed in step 1.

4. [Deduce factors]   // Simple relation with     and 

F ← ρ(F )
F �=

F ← F0

G1 ← ρ(G0)

G0 ← ρ(G0)
G1 ← ρ(G1)

G1G0

G0 ← ρ(
√

F )



The modern times
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ECM

CFRAC

QS & variants

NFS



ECM – Elliptic Curve Method

• H.W. Lenstra (1985) + later improvements (Brent, Montgomery)

• Special-purpose algorithm

• Given N = p1 ... pk , runs asymptotically in 

•  

•             cost of multiplication mod N

• In a nutshell, ECM = “p−1 on elliptic curves”

• p−1 succeeds if         is B1-power smooth

• ECM succeeds if             is B1-power smooth

• Retry with another curve if failure

21

Lx(α, c) = exp((c + o(1)) · (log x)α · (log log x)1−α)

M(N) ≡

Lp1(1/2,
√

2) · M(N)

#Z∗
p

#E (Fp)



ECM – Elliptic Curve Method

• Crude reminders

•  

• Defines a group
• Chord and tangent group law

• Hasse theorem

• Elliptic “pseudocurve”

• Not a group!
• There are points Pi and Qi  for which Pi +Qi

is not defined

• Failure to find inverse mod N gives a factor
22

Ea,b(Fp) =
�
(x , y) ∈ Fp × Fp : y2 = x3 + ax + b

�
∪ {O}

x

y

M1

M2

M3

P

..

D

.

.

Ea,b(ZN)

p + 1− 2
√

p ≤ #Ea,b(Fp) ≤ p + 1 + 2
√

p



ECM – Elliptic Curve Method
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ECM (first stage)

Input: integer N to factor
bound 

Output: a factor p of N or failure

1. [Choose elliptic curve E and initial point Q0]
 // Several strategies are possible.
 // Popular are Suyama’s curve parameterization and
 // Montgomery’s point representation
2. Compute
 // If             is B1-power smooth this computation
 // will fail − non inversible element x in   
 if                      then return gcd(x, N)

3. return failure
 // Try again with another curve
 // or with another bound B1

B1

#E (Fp1)
ZN

Q ← [B1!] Q0

(� x−1 mod N)



ECM – Elliptic Curve Method

• Again, second stage with bound B2

• Will work if                               with pL prime in

• Idea

• Let                         be the primes in

• Precompute                              for all i in 

• Compute

• Several variants (birthday paradox, standard continuation)

24

#E (Fp) = pL

k�

i=1

qei
i [B1,B2]

[B1,B2]{qk+1, qk+2 ... ql}

Ri = [qi+1 − qi ] Q [k + 1, l ]

Q ← [qk+1]Q

Q ← Q + [R1]Q

Q ← Q + [R2]Q



Congruence of squares methods
• Basic idea: Kraïtchik in the 1920s

• Find U, V so that
• Then                     yields a (nontrivial?) factor of N

• Two stages
• Find congruences 

• Collect          relations     of type 
• Factor the    on a factor base

•                          
• Each relation = a row in a                  matrix 

•  
• Solve linear system

• Compute kernel of 
• Gives collections        for which

25

U2 = V 2 mod N

gcd(U − V ,N)

x2
i = yi mod N

yi B = {p1, p2 ... pF}
riF + �

yi =
�k

i=1 pei
i

(F + �)× F M
e∗i = ei mod 2

[e∗1 , e∗2 , e∗3 ... e∗F ]

•  

M
{ri}j

�
i yi = V 2



Congruence of squares methods

• Relation selection – keep only smooth yi

• Trial division

• Early abort strategy (Pomerance, 1982)

• Trial divide with a fraction of the pi  (e.g. primes          ) 

• Abort if cofactor greater than a given bound

• Multiple steps possible

• Smoothness detection batch

• Accumulate several candidates and test in batch

• Franke, Kleinjung, Morain & Wirth (2004)
• Bernstein (2004)

26

≤ √pF



Congruence of squares methods

• Large prime variations
• Allow                   with                         ,
• Usually

•            (single large prime variation)
• Easy to implement

•            (double large prime variation)
• Harder

27

L = pL1pL2 ... pLLP

LP = 1

LP = 2

yi = L
�

i p
ei
i pLi > pF

L2 L5 

L3 L5 

L3 

L3 L7 

L6 L9 

L6 L7 

L3 L9 

L2 

L2 L4 

L4 



Congruence of squares methods

• General purpose methods

• One idea, several algorithms

• CFRAC
• QS & derivatives
• NFS

• Main difference is the way the                      are generated

28

x2
i = yi mod N



CFRAC – Continued Fraction Factorization

• Morrison & Brillhart (1975) from ideas from Lehmer & Powers

• A general factoring method
• Runs in 

• Based on continued fraction expansion of 
• Look for                      with     “small”
•  
•                             is “small” 

• Let               be the i-th  continued fraction convergent to 
•  

• In some sense, the smallest residues possible 

29

LN(1/2,
√

2)
√

N

x2
i = yi mod N yi

x2
i = yi + kN = yi + k �d2N

(xi/d)2 − N = yi/d2 ⇒ (xi/d) �
√

N

�ai/bi �√N

√
N

|a2
i − b2

i N| < 2
√

N



CFRAC – Continued Fraction Factorization

• Problem
• The sequence                   is periodic

• Use a correctly chosen multiplier k and factor kN

• Choosing a multiplier & the factor base
•  
•                           with 

• Choose k so that     contains “lots of” small primes

30

{�ai/bi �√N}i

p|yi ⇒ ( kN
p ) = 1

(kN/qi ) = 1

B
B = {q1, q2 ... qF}



CFRAC – Continued Fraction Factorization
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CFRAC (high level description)

Input: integer N to factor

Output: a factor p of N or failure

1. [Select multiplier k and factor base   ]
 // Balance size of k and number of small primes in 
2. [Generate relations]
 // Expand         to generate congruence relations
3. [Select relations]
 // Keeps relations with yi smooth or a product of
 // a smooth number with a few large primes 
4. [Linear algebra]
 // Compute gcd(N, U-V) for each solution found

B
B

√
kN



QS – Quadratic Sieve

• Pomerance – 1982

• Use of a sieve to quickly discard non smooth residues

• Runs in 

•  

•        is   -smooth     relation

•                                                sieve

• Sieving
• Solve                       for all                      and 
• Sieve with                 and keep potentially smooth 

for surviving values of x only

32

LN(1/2, 1)

g(x) = (x + �
√

N�)2 − N = u2 − N

g(x) B g(x) = u2 mod N⇒

p|g(x)⇒ p|g(x + m.p),m ∈ Z −→

x2 = N mod qi qi ∈ B −→ x (1)
qi

x (2)
pi

g(x){x (1)
qi , x (2)

qi }i



QS – Quadratic Sieve
• Fill sieve

• Scan sieve

x → -5 -4 -3 -2 -1 0 1 2 3 4 5

+ log qi

x (1)
qi

x (2)
qi

+ log qi+ log qi+ log qi + log qi+ log qi+ log qi + log qi

x → -5 -4 -3 -2 -1 0 1 2 3 4 5

Only check if these        are smoothg(xi )

Only the        for which                  are eligible for a smoothness testg(xi ) Sieve[xi ] ≥ τ

33



MPQS – Multiple polynomial Quadratic Sieve

• Problem with QS
•         grows linearly (for small x)

• The Multiple Polynomial QS (MPQS)
• Use several polynomials

• Switch polynomial when           gets too large

• Effectively sieve in interval 

• Polynomial initialization problem

• Need to compute                 = the solutions to
                          for each new polynomial
• Can become a bottleneck

• Faster than QS but same complexity
34

g(x)

ga,b(x) = (a.x + b)2 − N

ga,b(x)

[−M,M]

ga,b(x) = 0 mod qi

LN(1/2, 1)

{x (1)
qi

, x (2)
qi

}i



SIQS – Self Initializing Quadratic Sieve

• The Self Initializing Quadratic Sieve (SIQS)
• Choose family           such that          can be quickly

initialized from 

• In a nutshell
• Choose                  so that                     (to minimize          )

• We want                        (since then            )

• Gives     values for b but only        are suitable 

• Fully initialize         (i.e. compute                ) 

• The              other        can be derived from

• If more polynomial needed, choose another a

35

{ga,bi} ga,bi+1

ga,bi

a =
�s

i=0 pi a �
√

2N/M

b2 − N = ka

2s 2s−1

ga,b0

ga,bi2s−1 − 1 ga,bi−1

ga,b(x)

a|ga,b(x)

{x (1)
qi , x (2)

qi }i



SIQS – Self Initializing Quadratic Sieve

36

SIQS (seen from the ionosphere)

Input: integer N to factor

Output: a factor p of N or failure

1. [Select multiplier k and factor base   ]

2. [Polynomial initialization]
 // Choose 
 // 1 full poly-init       for              fast poly-init
3. [Fill Sieve]
 // Sieve with the 
4. [Scan sieve]
 // Scan the sieve, keeps xi for which
 // and perform smoothness detection on          . 
 // If not enough relations, goto step 2
5. [Linear algebra & factor deduction]
 // Standard to all congruences of square methods
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NFS – Number Field Sieve

• Special NFS (Pollard, 1988)

• Numbers of the form

• General NFS (Buhler/Lenstra/Pomerance, 1990)

• Arbitrary numbers

• The fastest methods known

• SNFS
•                           in time
•                           in space

• GNFS
•                           in time
•                           in space
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NFS – Number Field Sieve

• Basic GNFS in a nutshell (and from high up there)

• Monic irreducible polynomial             of degree d

•            so that                       
•            so that             

• Ring morphism

•                    

• Consider pairs             so that

•                             in         (algebraic side)
•                                       in    (rational side)
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f ∈ Z[x ]

f (m) ≡ 0 mod N

α ∈ C f (α) = 0

m ∈ ZN

�d−1
i=0 aiαi

��d−1
i=0 aimi

�
mod N�→

φ : Z[α]→ ZN

θi ,φ(θi )

Z[α]

ZNφ(θ1) ... φ(θk) = v2 mod N

θ1 ... θk = γ2



NFS – Number Field Sieve

• Let                       

•                                                                                  

•                     

• computing algebraic square root    from     not trivial

• Now, look for                    with  

• Sieving rational side

•                   

• Let r be a root of g mod pi

•                                        
• Sieve along a for each b
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φ(γ) = u mod N

u2 = v2 mod N

u2 = φ(γ)2 = φ(γ2) = φ(θ1 ...θk) = φ(θ1) ... φ(θk) = v2 mod N

γ γ2

θi = ai + biα gcd(ai , bi ) = 1

φ(θi ) = ai + bim

g(x) = x + m

pi |b · g(a/b)⇔ a = rb mod pi



NFS – Number Field Sieve

• Sieving algebraic side

• Note                 the complex roots of f

•  

•                                         with r a root of f mod pi

• Sieve along a for each b
• Take intersection with rational sieve survivors

• Linear algebra + deducing factors

• As in other congruence of square methods...

• Modulo algebraic square root problem not trivial

40

α,α2 ... αd

||a + bα|| = (a + bα) ... (a + bαd)

= bd(a/b + α) ... (a/b + αd)

= bd f (a/b)

pi |bd f (a/b)⇔ a = rb mod pi



NFS – Number Field Sieve
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NFS (seen from the Moon)

Input: integer N to factor

Output: a factor p of N or failure

1. [Polynomial selection]
 // Select f and g (usually g of degree 1)
2. [Sieving]
 // Sieve for the two polynomials f and g
3. [Filtering]
 // Prepare the matrix for linear algebra
4. [Linear algebra]
 // Usually block Wiedemann or block Lanczos
5. [Square roots]
 // Algebraic square root non trivial



NFS – Number Field Sieve

• Warning

• Lots of details swept under the rug!

•  In particular for             , 

• Lots of enhancements

• Polynomial selection methods

• Lattice sieving
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||x || = a2 � x = b2x ∈ Z[α]



NFS – Number Field Sieve

• Special NFS

• 1990 : 9th Fermat number                    

• 2000 :

• 2007 : 

• General NFS

• 1999 : RSA-155

• 2009 : RSA-768 (232 decimal digits)

• Estimated to be about 10 times harder than 
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F9 = 2512 + 1

21039 − 1

2773 + 1

21039 − 1



NFS – Number Field Sieve

• Factoring RSA-768 (232 decimal digits)

• Polynomial selection –   6 months / 80 cores

• Sieving     – 24 months / hundreds of cores

• 64·109 relations (5 TB)

• Filtering    – 20 days     / 2 cores + 10 TB disk space

• Linear algebra   –   3 months / 600 cores (estimation)

• 193·106 × 193·106 matrix (105 GB)

• Block Wiedermann, up to 1 TB RAM needed

• Square roots   – A few hours / 12 cores 
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From “Factorization of a 768-bit RSA modulus”, Kleinjung et al., 2010



Factorization records
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From “Thirty Years of Integer Factorization”, F. Morain, 2001

year

# decimal digits



Factorization records
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★

2007 2010

313

21039 - 1

RSA-768
(232 digits)
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