
An overview of integer factorization
From the dark ages to the modern times

jerome.milan (at) lix.polytechnique.fr

March 2010

The Dark Ages

2

Fermat’s method

The p−1 method

The p+1 method

Pollard’s Rho

SQUFOF

Fermat’s method

• Fermat − Around 1643, in a letter to Mersenne

• Write N = p1 p2 as

• If N is not a square then

3

N = x2 − y2 = (x + y)(x − y)

x ≥ �
√

N�+ 1

Fermat’s method (simplest form)

Input:
Output:

integer N to factor
a factor p of N

1.
2. while (true)

 if is a square then
 return
 else

m ← �
√

N�+ 1

m2 − N
m +

�
m2 − N

m← m + 1

Fermat’s method

• Basic enhancements
• Replace squarings by additions

• Better square detection test (e.g. a square 	 0, 1, 4 or 9)
• Deduce sieve on x

• Runs in with best case in

• Latter enhancements
• R. Lehman (1974) in

• J. McKee (1999) heuristically in

• R. Erra/C. Grenier (2009) in polynomial time if

4

(m + 1)2 − N = m2 − N +(2m + 1)

≡16

O

�
(
√

N − p1)2

2p1

�
O(
√

N)

|p1 − p2| < N1/3

O(N1/3)

O(N1/4)

The p−1 method

• Published by Pollard in 1974 (previously known by D.N & D.H Lehmer)

• Based on Fermat’s little theorem

• If then

• Let and

• y is B-smooth

• y is B-power smooth

• A special-purpose algorithm

• Succeeds if a is B-power smooth, for some bound B

• Runs in
5

gcd(x , p) = 1 xp−1 = 1 mod p

B ∈ N

≡ ∀i ∈ [0, r], pi ≤ B

≡ ∀i ∈ [0, r], pei
i ≤ B

pi − 1

O(B · log B · log2
N)

y =
r�

i=0

pei
i

The p−1 method

6

Pollard’s p−1 (first stage)

Input: integer N to factor
bound

Output: a factor p of N or failure

1. Choose coprime with N
2. for do // Compute

3.
4. if () and ()
 return
 else
 return failure

x

x ← x i modN

p ← gcd(x − 1, N)

p �= 1 p �= N
p

xB1! mod Ni = 1..B1

B1

• First stage example

•

•

•

• (420 is 7-power smooth)

• Optional second stage

• If not -power smooth, first stage will fail

• Second stage allows one factor of to be in

• Compute for all primes q in
• Standard continuation, FFT continuation, etc.

The p−1 method

7

N = 421× 523

B = 7

gcd(xB! − 1,N) = 421

x = 3

420 = 22 × 3× 5× 7

p − 1 B1

p − 1 [B1,B2]

gcd((xB!)q − 1,N) [B1,B2]

The p−1 method

8

Pollard’s p−1 (second stage – standard continuation)

Input: integer N to factor
 from first stage
bound

Output: a factor p of N or failure

1. [Precomputations]
 Let be the primes in
 for all
2. [Gcds]

 for do

 if () and () return p

 return failure

B2

y = xB1! mod N

{q1, q2...qk} [B1,B2]

yi ← yqi+1−qi mod N i ∈ [1, k]

j = 1..k
p ← gcd(z − 1,N)

p �= 1 p �= N
z ← z × yi mod N

z ← yq1
1 mod N

The p+1 method

• H.C. Williams – 1982

• Similar to p−1 but succeeds if p+1 is -power smooth

• Suppose

• Lucas sequence

• Let , roots of and

•

• Fact 1. If and then
 p divides

• Fact 2. There is an efficient algorithm to compute
 using recursive formulae

9

p =
k�

i=1

qei
i − 1

Vk(P,Q) ≡ αk + βk

Vk(P,Q)

α β x2 − Px + Q

B1

Vk(P, 1)

∆ = P2 − 4Q

(gcd(∆, N) = 1) ((∆/p) = −1)

VB1!(P,Q)− 2

The p+1 method

10

Williams’ p+1 (first stage)

Input: integer N to factor
bound

Output: a factor p of N or failure

1. Choose so that
2. // There’s an efficient algo for that
 // using recursion formulae

3.
4. if () and ()
 return
 else
 return failure

p �= 1 p �= N
p

B1

gcd(P2
0 − 4,N) = 1P0

Pm ← VB1!(P0, 1)

p ← gcd(N,Pm − 2)

The p+1 method

11

• What if ?

• Degrades as a slow version of Pollard’s p−1

• Failure – retry with another P0

• Second stage with bound B2

• Will work if with pL prime in

• Similar to Pollard’s p−1 but computes gcd(N, Tj)
where Tj is a combination of Lucas sequences

• In practice, slower than p−1

(∆/p) �= −1

p = pL

k�

i=1

qei
i − 1 [B1,B2]

Pollard’s Rho

• John Pollard – 1975

• Special-purpose algorithm

• Better when N has small factors

• Complexity: with p a factor of N

• Based on birthday paradox

• Randomly pick in

• Collision expected after samples

12

O (
√

p)

x1, x2, x3... [0, N]

�
�

πN/2

Pollard’s Rho

• Idea – Find self-collision in pseudo random walk

• Suppose

• If then may give a factor

• Collision expected after iterations only

13

f mod N

N = p1p2 ... pk

xi = xj mod p gcd(N, xi − xj)

O(
√

p1)

p = gcd(N, xi − xj)

x0

x1

xi ≡N xj

xk

xk+1 = f (xk)

Pollard’s Rho

• Floyd’s cycle finding algorithm

• Only compare and

• and

• such that

• Variants – Brent, Nivasch, distinguished points, etc.

• Open question – which function f ?

• Usually,

14

�� �2�

lt

lc

x2i = xi ⇐⇒ lc |i i ≥ lt

x2i = xi∃i , lt ≤ i < lt + lc

f (x) = ax2 + b mod N

Pollard’s Rho

15

Pollard’s Rho (with Floyd’s cycle finding)

Input: integer N to factor
pseudo random walk function f

Output: a factor p of N

1. [init]

2. while () or ()

3. return g

xi ← f (xi)

x2i ← f (f (x2i))

g ← gcd(N, x2i − xi)

xi ← 1
x2i ← 1

g = 1 g = N

SQUFOF – Square Form Factorization

• D. Shanks − around 1975

• Discovered while investigating CFRAC’s shortcomings

• Based on infrastructure of real quadratic fields

• Quadratic forms

• standard reduction operator

• Expressed with continued fraction formalism

• The forms are on a cycle

• Look for and with

• Yields simple relation giving a factor of

16

F (x , y) = ax2 + bxy + cy2 ≡ (a, b, c)

ρ

(ai , bi , ci) = ρi (a0, b0, c0)

(ai , bi , ci) (ai+1, bi+1, ci+1) bi = bi+1

∆ = b2 − 4ac

2 Implemented algorithms

In this section, we identify and briefly describe the main phases of the imple-

mented algorithms, with the aim of understanding the results presented in the

third section. For a more detailled theoretical background, see the referenced

literature.

2.1 Shanks’s SQuare Form Factorization (SQUFOF)

SQUFOF [9], proposed in the mid-seventies by Shanks as an alternative to the

continued fraction method, factors a number N in O(N1/4). A nice feature is

that most of the computations involve numbers less than 2
√

N which makes it

particularly suited to factor (at most) double precision numbers.

SQUFOF is based on the theory of quadratic forms F (x, y) = ax2 + bxy +

cy2 ≡ (a, b, c), more precisely, on the underlying structure of cycles of reduced

forms (ai, bi, ci) = ρi(a0, b0, c0) where ρ is the standard reduction operator. Find-

ing a point of symmetry in such a cycle leads to a simple relation potentially

giving a factor of N . The theory of quadratic forms is tightly linked to continued

fractions and the reduction operator can be expressed in a similar formalism.

Given a number to factor N , we recall the following relations arising from the

development of
√

N in continued fractions:

q0 = �N� , qi =

�
q0 + Pi

Qi

�
for i > 0 (1)

P0 = 0 , P1 = q0 (2)

Pi = qi−1Qi−1 − Pi−1 for i > 1 (3)

Q0 = 1 , Q1 = N − q
2
0 (4)

Qi = Qi−2 − qi−1(Pi−1 − Pi) for i > 1 (5)

Moreover we have the pivotal equality:

N = P
2
m + Qm−1Qm (6)

The principal cycle of reduced forms is given by the set of forms ρi(F0) =

((−1)(i−1)Qi−1, 2Pi, (−1)iQi) with the principal form F0 = (1, 2q0, q
2
0 − N).

We will now recall the main steps of the algorithm.

[1 - forward: find square form]

Move forward through the cycle starting with the principal form F0 until we

identify a square form Fn = ρn(F0) = (−Q, 2P, S2).

[2 - invsqrt: inverse square root]

Set F−1/2 = (−S, 2P, SQ) and compute the reduction G0 = (−S−1, 2R0, S0)

where S−1 = S, R0 = P + S�(q0 − P)/S� and S0 = (N −R2
0)/S.

[3 - reverse: find symmetry point]

Using (1) to (5), reverse cycle through the quadratic forms Gi = ρi(G0) =

((−1)(i−1)Si−1, 2Ri, (−1)iSi) to find a symmetry point, e.g. a pair of forms

Gm, Gm + 1 with Rm = Rm+1 (this happens for m ≈ n/2). Using (3), (5)
write Rm = tmSm/2 and since N = R2

m+Sm−1Sm, we obtain a factorization
of N : N = Sm · (Sm−1 + Smt2m/4).

As in other factoring methods, one can use a multiplier k, leading to factor
kN instead of N hoping to achieve some speed up. We refer the reader to [9]
for a full theoretical background on SQUFOF. Finally, note that in step 3, we
have a rough estimate of the number of forms to explore. Thus by using form
compositions, one can jump in the cycle to get quickly in the vicinity of the
point of symmetry, a strategy dubbed “fast return” by Shanks [19].

2.2 McKee’s speedup of Fermat’s algorithm

J. McKee proposed in [13] an improvement to Fermat’s venerable algorithm.
Heuristically running in O(N1/4) (instead of O(N1/2)), it is described as a pos-
sibly faster alternative to SQUFOF.

Assuming that N has no factor less than 2N1/4 (which is perfectly acceptable
for the applications we target), define b =

�√
N

�
and Q(x, y) = (x+ by)2−Ny2.

As in Fermat’s algorithm, we seek x and y such that Q(x, y) is a square so that
gcd(x + by −

�
Q(x, y), N) is potentially a proper factor of N. The “greedy”

variant proceeds as follows:

[1. Compute modular square root]
Choose a prime p > 2N1/4 and set x0 and x1 as the solutions to Q(x, 1) ≡ 0
(mod p2).

[2. Find square]
For xi ∈ [x0, x1]: Set x = xi and y = 1. While Q(x, y) is not a square, set
r = �p2/x�, x = xr − p2 and y = r. Abort the loop when y exceeds a given
threshold ymax in the order of N1/4.
If no factor is found, go back to step 1 and choose a different prime p. Abort
the algorithm when p reaches a chosen bound.

2.3 The Elliptic Curve Method (ECM)

ECM was proposed by H.W. Lenstra in 1985 [10] and saw numerous subsequent
improvements, most notably by P. Montgomery [14] and R. Brent [5]. ECM’s
running time essentially depends on the size of the factor to be found, like
Pollard’s rho or p − 1 methods. Given a number N having p as its smallest
factor, ECM’s asymptotic complexity is given by Lp(1/2,

√
2) · M(N) where

Lx(α, c) = exp((c + o(1)) · (log p)α · (log log p)1−α) and M(N) is the cost of
multiplication modulo N .

ECM is actually very similar to the p − 1 algorithm but works on a group
defined by an elliptic curve, which makes it possible to switch to another group
(i.e. curve) if one try fails. We sketch here the main idea of the method using
the so-called “standard continuation”.

2 Implemented algorithms

In this section, we identify and briefly describe the main phases of the imple-

mented algorithms, with the aim of understanding the results presented in the

third section. For a more detailled theoretical background, see the referenced

literature.

2.1 Shanks’s SQuare Form Factorization (SQUFOF)

SQUFOF [9], proposed in the mid-seventies by Shanks as an alternative to the

continued fraction method, factors a number N in O(N1/4). A nice feature is

that most of the computations involve numbers less than 2
√

N which makes it

particularly suited to factor (at most) double precision numbers.

SQUFOF is based on the theory of quadratic forms F (x, y) = ax2 + bxy +

cy2 ≡ (a, b, c), more precisely, on the underlying structure of cycles of reduced

forms (ai, bi, ci) = ρi(a0, b0, c0) where ρ is the standard reduction operator. Find-

ing a point of symmetry in such a cycle leads to a simple relation potentially

giving a factor of N . The theory of quadratic forms is tightly linked to continued

fractions and the reduction operator can be expressed in a similar formalism.

Given a number to factor N , we recall the following relations arising from the

development of
√

N in continued fractions:

q0 = �N� , qi =

�
q0 + Pi

Qi

�
for i > 0 (1)

P0 = 0 , P1 = q0 (2)

Pi = qi−1Qi−1 − Pi−1 for i > 1 (3)

Q0 = 1 , Q1 = N − q
2
0 (4)

Qi = Qi−2 − qi−1(Pi−1 − Pi) for i > 1 (5)

Moreover we have the pivotal equality:

N = P
2
m + Qm−1Qm (6)

The principal cycle of reduced forms is given by the set of forms ρi(F0) =

((−1)(i−1)Qi−1, 2Pi, (−1)iQi) with the principal form F0 = (1, 2q0, q
2
0 − N).

We will now recall the main steps of the algorithm.

[1 - forward: find square form]

Move forward through the cycle starting with the principal form F0 until we

identify a square form Fn = ρn(F0) = (−Q, 2P, S2).

[2 - invsqrt: inverse square root]

Set F−1/2 = (−S, 2P, SQ) and compute the reduction G0 = (−S−1, 2R0, S0)

where S−1 = S, R0 = P + S�(q0 − P)/S� and S0 = (N −R2
0)/S.

[3 - reverse: find symmetry point]

Using (1) to (5), reverse cycle through the quadratic forms Gi = ρi(G0) =

((−1)(i−1)Si−1, 2Ri, (−1)iSi) to find a symmetry point, e.g. a pair of forms

SQUFOF – Square Form Factorization

17

SQUFOF – Square Form Factorization

• Complexity

• Theory is really complicated

• But very easy to implement

• Manipulate numbers of size at most

• Particularly interesting for double-precision numbers

• Often used in QS or NFS implementation to factor residues

18

O(N1/4)

2
√

N

SQUFOF – Square Form Factorization

19

SQUFOF

Input:
Output:

integer N to factor
a factor p of N or failure

1. [Find square form]

 while square form // Abort and return failure
 // if takes too long
2. [Inverse square root]

3. [Find symmetry point] // Needs about half the
 while (no symmetry point) // number of iterations
 // needed in step 1.

4. [Deduce factors] // Simple relation with and

F ← ρ(F)
F �=

F ← F0

G1 ← ρ(G0)

G0 ← ρ(G0)
G1 ← ρ(G1)

G1G0

G0 ← ρ(
√

F)

The modern times

20

ECM

CFRAC

QS & variants

NFS

ECM – Elliptic Curve Method

• H.W. Lenstra (1985) + later improvements (Brent, Montgomery)

• Special-purpose algorithm

• Given N = p1 ... pk , runs asymptotically in

•

• cost of multiplication mod N

• In a nutshell, ECM = “p−1 on elliptic curves”

• p−1 succeeds if is B1-power smooth

• ECM succeeds if is B1-power smooth

• Retry with another curve if failure

21

Lx(α, c) = exp((c + o(1)) · (log x)α · (log log x)1−α)

M(N) ≡

Lp1(1/2,
√

2) · M(N)

#Z∗
p

#E (Fp)

ECM – Elliptic Curve Method

• Crude reminders

•

• Defines a group
• Chord and tangent group law

• Hasse theorem

• Elliptic “pseudocurve”

• Not a group!
• There are points Pi and Qi for which Pi +Qi

is not defined

• Failure to find inverse mod N gives a factor
22

Ea,b(Fp) =
�
(x , y) ∈ Fp × Fp : y2 = x3 + ax + b

�
∪ {O}

x

y

M1

M2

M3

P

..

D

.

.

Ea,b(ZN)

p + 1− 2
√

p ≤ #Ea,b(Fp) ≤ p + 1 + 2
√

p

ECM – Elliptic Curve Method

23

ECM (first stage)

Input: integer N to factor
bound

Output: a factor p of N or failure

1. [Choose elliptic curve E and initial point Q0]
 // Several strategies are possible.
 // Popular are Suyama’s curve parameterization and
 // Montgomery’s point representation
2. Compute
 // If is B1-power smooth this computation
 // will fail − non inversible element x in
 if then return gcd(x, N)

3. return failure
 // Try again with another curve
 // or with another bound B1

B1

#E (Fp1)
ZN

Q ← [B1!] Q0

(� x−1 mod N)

ECM – Elliptic Curve Method

• Again, second stage with bound B2

• Will work if with pL prime in

• Idea

• Let be the primes in

• Precompute for all i in

• Compute

• Several variants (birthday paradox, standard continuation)

24

#E (Fp) = pL

k�

i=1

qei
i [B1,B2]

[B1,B2]{qk+1, qk+2 ... ql}

Ri = [qi+1 − qi] Q [k + 1, l]

Q ← [qk+1]Q

Q ← Q + [R1]Q

Q ← Q + [R2]Q

Congruence of squares methods
• Basic idea: Kraïtchik in the 1920s

• Find U, V so that
• Then yields a (nontrivial?) factor of N

• Two stages
• Find congruences

• Collect relations of type
• Factor the on a factor base

•
• Each relation = a row in a matrix

•
• Solve linear system

• Compute kernel of
• Gives collections for which

25

U2 = V 2 mod N

gcd(U − V ,N)

x2
i = yi mod N

yi B = {p1, p2 ... pF}
riF + �

yi =
�k

i=1 pei
i

(F + �)× F M
e∗i = ei mod 2

[e∗1 , e∗2 , e∗3 ... e∗F]

•

M
{ri}j

�
i yi = V 2

Congruence of squares methods

• Relation selection – keep only smooth yi

• Trial division

• Early abort strategy (Pomerance, 1982)

• Trial divide with a fraction of the pi (e.g. primes)

• Abort if cofactor greater than a given bound

• Multiple steps possible

• Smoothness detection batch

• Accumulate several candidates and test in batch

• Franke, Kleinjung, Morain & Wirth (2004)
• Bernstein (2004)

26

≤ √pF

Congruence of squares methods

• Large prime variations
• Allow with ,
• Usually

• (single large prime variation)
• Easy to implement

• (double large prime variation)
• Harder

27

L = pL1pL2 ... pLLP

LP = 1

LP = 2

yi = L
�

i p
ei
i pLi > pF

L2 L5

L3 L5

L3

L3 L7

L6 L9

L6 L7

L3 L9

L2

L2 L4

L4

Congruence of squares methods

• General purpose methods

• One idea, several algorithms

• CFRAC
• QS & derivatives
• NFS

• Main difference is the way the are generated

28

x2
i = yi mod N

CFRAC – Continued Fraction Factorization

• Morrison & Brillhart (1975) from ideas from Lehmer & Powers

• A general factoring method
• Runs in

• Based on continued fraction expansion of
• Look for with “small”
•
• is “small”

• Let be the i-th continued fraction convergent to
•

• In some sense, the smallest residues possible

29

LN(1/2,
√

2)
√

N

x2
i = yi mod N yi

x2
i = yi + kN = yi + k �d2N

(xi/d)2 − N = yi/d2 ⇒ (xi/d) �
√

N

�ai/bi �√N

√
N

|a2
i − b2

i N| < 2
√

N

CFRAC – Continued Fraction Factorization

• Problem
• The sequence is periodic

• Use a correctly chosen multiplier k and factor kN

• Choosing a multiplier & the factor base
•
• with

• Choose k so that contains “lots of” small primes

30

{�ai/bi �√N}i

p|yi ⇒ (kN
p) = 1

(kN/qi) = 1

B
B = {q1, q2 ... qF}

CFRAC – Continued Fraction Factorization

31

CFRAC (high level description)

Input: integer N to factor

Output: a factor p of N or failure

1. [Select multiplier k and factor base]
 // Balance size of k and number of small primes in
2. [Generate relations]
 // Expand to generate congruence relations
3. [Select relations]
 // Keeps relations with yi smooth or a product of
 // a smooth number with a few large primes
4. [Linear algebra]
 // Compute gcd(N, U-V) for each solution found

B
B

√
kN

QS – Quadratic Sieve

• Pomerance – 1982

• Use of a sieve to quickly discard non smooth residues

• Runs in

•

• is -smooth relation

• sieve

• Sieving
• Solve for all and
• Sieve with and keep potentially smooth

for surviving values of x only

32

LN(1/2, 1)

g(x) = (x + �
√

N�)2 − N = u2 − N

g(x) B g(x) = u2 mod N⇒

p|g(x)⇒ p|g(x + m.p),m ∈ Z −→

x2 = N mod qi qi ∈ B −→ x (1)
qi

x (2)
pi

g(x){x (1)
qi , x (2)

qi }i

QS – Quadratic Sieve
• Fill sieve

• Scan sieve

x → -5 -4 -3 -2 -1 0 1 2 3 4 5

+ log qi

x (1)
qi

x (2)
qi

+ log qi+ log qi+ log qi + log qi+ log qi+ log qi + log qi

x → -5 -4 -3 -2 -1 0 1 2 3 4 5

Only check if these are smoothg(xi)

Only the for which are eligible for a smoothness testg(xi) Sieve[xi] ≥ τ

33

MPQS – Multiple polynomial Quadratic Sieve

• Problem with QS
• grows linearly (for small x)

• The Multiple Polynomial QS (MPQS)
• Use several polynomials

• Switch polynomial when gets too large

• Effectively sieve in interval

• Polynomial initialization problem

• Need to compute = the solutions to
 for each new polynomial
• Can become a bottleneck

• Faster than QS but same complexity
34

g(x)

ga,b(x) = (a.x + b)2 − N

ga,b(x)

[−M,M]

ga,b(x) = 0 mod qi

LN(1/2, 1)

{x (1)
qi

, x (2)
qi

}i

SIQS – Self Initializing Quadratic Sieve

• The Self Initializing Quadratic Sieve (SIQS)
• Choose family such that can be quickly

initialized from

• In a nutshell
• Choose so that (to minimize)

• We want (since then)

• Gives values for b but only are suitable

• Fully initialize (i.e. compute)

• The other can be derived from

• If more polynomial needed, choose another a

35

{ga,bi} ga,bi+1

ga,bi

a =
�s

i=0 pi a �
√

2N/M

b2 − N = ka

2s 2s−1

ga,b0

ga,bi2s−1 − 1 ga,bi−1

ga,b(x)

a|ga,b(x)

{x (1)
qi , x (2)

qi }i

SIQS – Self Initializing Quadratic Sieve

36

SIQS (seen from the ionosphere)

Input: integer N to factor

Output: a factor p of N or failure

1. [Select multiplier k and factor base]

2. [Polynomial initialization]
 // Choose
 // 1 full poly-init for fast poly-init
3. [Fill Sieve]
 // Sieve with the
4. [Scan sieve]
 // Scan the sieve, keeps xi for which
 // and perform smoothness detection on .
 // If not enough relations, goto step 2
5. [Linear algebra & factor deduction]
 // Standard to all congruences of square methods

B

a =
�s

i=0 pi �
√

2N/M

2s−1 − 1

{x (1)
qi , x (2)

qi }i

ga,b(xi)

ga,b0 ga,bi

Sieve[xi] ≥ τ

NFS – Number Field Sieve

• Special NFS (Pollard, 1988)

• Numbers of the form

• General NFS (Buhler/Lenstra/Pomerance, 1990)

• Arbitrary numbers

• The fastest methods known

• SNFS
• in time
• in space

• GNFS
• in time
• in space

37

c1an + c2bn

LN(1/3, 3
�

32/9)

LN(1/3, 3
�

64/9)

LN(1/3, 3
�

64/9)1/2

LN(1/3, 3
�

32/9)1/2

NFS – Number Field Sieve

• Basic GNFS in a nutshell (and from high up there)

• Monic irreducible polynomial of degree d

• so that
• so that

• Ring morphism

•

• Consider pairs so that

• in (algebraic side)
• in (rational side)

38

f ∈ Z[x]

f (m) ≡ 0 mod N

α ∈ C f (α) = 0

m ∈ ZN

�d−1
i=0 aiαi

��d−1
i=0 aimi

�
mod N�→

φ : Z[α]→ ZN

θi ,φ(θi)

Z[α]

ZNφ(θ1) ... φ(θk) = v2 mod N

θ1 ... θk = γ2

NFS – Number Field Sieve

• Let

•

•

• computing algebraic square root from not trivial

• Now, look for with

• Sieving rational side

•

• Let r be a root of g mod pi

•
• Sieve along a for each b

39

φ(γ) = u mod N

u2 = v2 mod N

u2 = φ(γ)2 = φ(γ2) = φ(θ1 ...θk) = φ(θ1) ... φ(θk) = v2 mod N

γ γ2

θi = ai + biα gcd(ai , bi) = 1

φ(θi) = ai + bim

g(x) = x + m

pi |b · g(a/b)⇔ a = rb mod pi

NFS – Number Field Sieve

• Sieving algebraic side

• Note the complex roots of f

•

• with r a root of f mod pi

• Sieve along a for each b
• Take intersection with rational sieve survivors

• Linear algebra + deducing factors

• As in other congruence of square methods...

• Modulo algebraic square root problem not trivial

40

α,α2 ... αd

||a + bα|| = (a + bα) ... (a + bαd)

= bd(a/b + α) ... (a/b + αd)

= bd f (a/b)

pi |bd f (a/b)⇔ a = rb mod pi

NFS – Number Field Sieve

41

NFS (seen from the Moon)

Input: integer N to factor

Output: a factor p of N or failure

1. [Polynomial selection]
 // Select f and g (usually g of degree 1)
2. [Sieving]
 // Sieve for the two polynomials f and g
3. [Filtering]
 // Prepare the matrix for linear algebra
4. [Linear algebra]
 // Usually block Wiedemann or block Lanczos
5. [Square roots]
 // Algebraic square root non trivial

NFS – Number Field Sieve

• Warning

• Lots of details swept under the rug!

• In particular for ,

• Lots of enhancements

• Polynomial selection methods

• Lattice sieving

42

||x || = a2 � x = b2x ∈ Z[α]

NFS – Number Field Sieve

• Special NFS

• 1990 : 9th Fermat number

• 2000 :

• 2007 :

• General NFS

• 1999 : RSA-155

• 2009 : RSA-768 (232 decimal digits)

• Estimated to be about 10 times harder than

43

F9 = 2512 + 1

21039 − 1

2773 + 1

21039 − 1

NFS – Number Field Sieve

• Factoring RSA-768 (232 decimal digits)

• Polynomial selection – 6 months / 80 cores

• Sieving – 24 months / hundreds of cores

• 64·109 relations (5 TB)

• Filtering – 20 days / 2 cores + 10 TB disk space

• Linear algebra – 3 months / 600 cores (estimation)

• 193·106 × 193·106 matrix (105 GB)

• Block Wiedermann, up to 1 TB RAM needed

• Square roots – A few hours / 12 cores

44

From “Factorization of a 768-bit RSA modulus”, Kleinjung et al., 2010

Factorization records

45

From “Thirty Years of Integer Factorization”, F. Morain, 2001

year

decimal digits

Factorization records

46

★

2007 2010

313

21039 - 1

RSA-768
(232 digits)

References
Mathematics of Public Key Cryptography
Steven Galbraith
http://www.isg.rhul.ac.uk/~sdg/crypto-book/crypto-book.html

Prime numbers − A computational perspective
Richard Crandall & Carl Pomerance
http://www.springer.com/mathematics/numbers/book/978-0-387-25282-7

Theorems on factorization and primality testing
John Pollard
Proceedings of the Cambridge Philosophical Society, vol. 76, issue 03, p. 521, 1974.

Thirty Years of Integer Factorization
François Morain
http://algo.inria.fr/seminars/sem00-01/morain.ps

A p+1 method of factoring
Hugh Williams
Mathematics of Computation, vol. 39, p. 225-234, 1982.

Prime numbers and Computer Methods for Factorization
Hans Riesel
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-3743-9

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://algo.inria.fr/seminars/sem00-01/morain.ps
http://algo.inria.fr/seminars/sem00-01/morain.ps
http://livepage.apple.com/
http://livepage.apple.com/

Square form factorization
Jason Gower & Samuel Wagstaff Jr.
Mathematics of computation, vol. 77, no. 261, pp. 551-588, 2008.

Factoring integers with elliptic curves
Hendrik Lenstra
Annals of Mathematics, vol. 126, pp. 649-673, 1987.

A method of factoring and the factorization of F7

Michael Morrison & John Brillhart
Mathematics of Computation, vol. 29, no. 129, pp. 183–205, 1975.

Factoring integers with the self-initializing quadratic sieve
Scott Contini
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924

Speeding the Pollard and Elliptic Curve Methods of Factorization
Peter Montgomery
Mathematics of Computation, vol. 48, pp. 243–264, 1987.

The number field sieve
Arjen Lenstra et al.
http://www.std.org/~msm/common/nfspaper.pdf

References

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924

References
A Tale of Two Sieve
Carl Pomerance
http://www.ams.org/notices/199612/pomerance.pdf

Factorization of a 768-bit RSA modulus
Thorsten Kleinjung et al.
http://eprint.iacr.org/2010/006.pdf

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6924
http://arxiv.org/pdf/quant-ph/9508027v2
http://arxiv.org/pdf/quant-ph/9508027v2

