A new algorithm for Higher-order model checking

Jérémy Ledent Martin Hofmann

1/25

For first order programs (M. Hofmann & W. Chen)

Let X be a set of events and F a set of procedure identifiers.

» Syntax of expressions:

ex=al|flee|e+ e where a € Y and f € F

2/25

For first order programs (M. Hofmann & W. Chen)
Let X be a set of events and F a set of procedure identifiers.
» Syntax of expressions:
ex=al|flee|e+ e where a € ¥ and f € F

» Program: an expression ef for every f € F.

Examples:

2/25

For first order programs (M. Hofmann & W. Chen)

Let X be a set of events and F a set of procedure identifiers.

» Syntax of expressions:
ex=al|flee|e+ e where a € Y and f € F

» Program: an expression ef for every f € F.

Examples:

Il
[SHIS)

;9
(& f)

)

f
g

IS
< I8
S

b
+

<

L(f) = (abc)*abd U {(abc)*}
L(u) ={a}

2/25

For first order programs (M. Hofmann & W. Chen)
Let X be a set of events and F a set of procedure identifiers.
» Syntax of expressions:
ex=al|flee|e+ e where a € Y and f € F

» Program: an expression ef for every f € F.

Examples:
[=abyg u = a;v
g =d+(cf) v
L.(f) = (abv'ev')*abv'd L,(f) ={(abv'ev')¥}
L.(u) =@ Ly (u) = {a(v)*}

2/25

Policy Automaton

#define TIMEOUT 65536
while (true) {
int i,s; i = s = 0;
while (i++ < TIMEOUT && s == 0) {
s = auth(Q);
}
work () ;
}

3/25

Policy Automaton

#define TIMEOUT 65536
while (true) {
int i,s; i = s = 0;
while (i++ < TIMEOUT && s == 0) {
s = auth(); /*x a */
} /*x c *x/
work(); /* b =/

3/25

Policy Automaton

#define TIMEOUT 65536
while (true) {
int i,s; i = s = 0;
while (i++ < TIMEOUT && s == 0) {
s = auth(); /*x a */
} /*x c *x/
work(); /* b =/

“If ¢ occurs infinitely often, then b occurs infinitely often.”

3/25

Blchi type system

Let GFb = (a*b)¥ be a type asserting “b occurs infinitely often”.

Consider the procedure:

f=af
Assuming f : GF'b, we can derive (a; f) : aGFb, and since
aGFb = GFb, that means we have a derivation

f:GFb + (a;f): GFb

4/25

Blchi type system

Let GFb = (a*b)¥ be a type asserting “b occurs infinitely often”.

Consider the procedure:

f=af
Assuming f : GF'b, we can derive (a; f) : aGFb, and since
aGFb = GFb, that means we have a derivation

f:GFb + (a;f): GFb
Under “usual” typing rules, this would allow us to establish
F f: GFb

which is clearly wrong.

4/25

Blchi type system

Idea:
[:X F e T(X)

Fofrgfp(AX. T(X))

5/25

Blchi type system

Idea:
[:X F e T(X)

Fofrgfp(AX. T(X))

f=(af)+b

Looks like a language equation X = aX + b
Smallest solution: X = a*b
Greatest solution: X = a*b+ a* = L(f)

5/25

Blchi type system

Idea:
[:X F e T(X)

F o fefp(AX. T(X))

f=(@f)+b

Looks like a language equation X = aX + b
Smallest solution: X = a*b
Greatest solution: X = a*b+ a* = L(f)

For first-order programs:
TX)=U-X+V

gfp(T)=U"V + U”

5/25

Blichi Abstraction
Let £, =P(X*) and £, = P(X¥).
Given the policy automaton A, we can construct complete lattices
M. and M, such that:
» They are finite.

6/25

Blichi Abstraction
Let £, =P(X*) and £, = P(X¥).
Given the policy automaton A, we can construct complete lattices
M. and M, such that:
» They are finite.
» They are related to £, £, by a galois insertion. There are
Qyfw * 2*/w — m*/w and Vo Jw - Qﬁ*/w — 2*/w such that

’Y*/w(a*/w(L)) 2L and O‘*/w(’Y*/w(U)) =U

6/25

Blichi Abstraction
Let £, =P(X*) and £, = P(X¥).
Given the policy automaton A, we can construct complete lattices
M. and M, such that:
» They are finite.
» They are related to £, £, by a galois insertion. There are
Qyfw * 2*/w — m*/w and Vo Jw - Qﬁ*/w — 2*/w such that
’Y*/w(a*/w(L)) 2L and O‘*/w(’Y*/w(U)) =U
» LCL(A) < a(L) C a(L(A4))

6/25

Bilichi Abstraction
Let £, = P(3%) and £, = P(X¥).

Given the policy automaton A, we can construct complete lattices
M. and M, such that:

» They are finite.
» They are related to £, £, by a galois insertion. There are
Qyfw * 2*/w — m*/w and Vo Jw - Qﬁ*/w — 2*/w such that
’Y*/w(a*/w(L)) 2L and O‘*/w(’Y*/w(U)) =U
> LC L(A) < a(L) C a(L(A))
» The abstraction function « preserves unions, concatenation,
least fixpoints and w-iteration (but not greatest fixpoints !):

(—)
M, ——— M,

1

(=)

Ly —— £,

6/25

Buchi Abstraction

Define the equivalence relation ~4 on X% as follows: u ~_4 v iff
Ve,d. (¢ —d = ¢—d)N(g—rd = ¢—rd)

and extend it to X* such that [¢] = {¢}.

7/25

Buchi Abstraction

Define the equivalence relation ~4 on X% as follows: u ~_4 v iff
Ve,d. (¢ —d = ¢—d)N(g—rd = ¢—rd)

and extend it to X* such that [¢] = {¢}.

» Equivalence classes are regular languages.
» There's a finite number of classes.

7/25

Blchi Abstraction
Define the equivalence relation ~4 on X% as follows: u ~_4 v iff
Ve,d. (¢ —d = ¢—d)N(g—rd = ¢—rd)
and extend it to X* such that [¢] = {¢}.
» Equivalence classes are regular languages.

» There's a finite number of classes.
» For every class C, either C'N Ly(A) = @ or C C L,(A).

7/25

Buchi Abstraction

Define the equivalence relation ~ 4 on X7 as follows: u ~4 v iff
Ve,d. (¢ —d = ¢—d)N(g—rd = ¢—rd)

and extend it to X* such that [¢] = {¢}.

» Equivalence classes are regular languages.

There's a finite number of classes.

» For every class C, either C'N Ly(A) = @ or C C L,(A).

For every C, D, either CD* N L,(A) = @ or CD* C L,(A).
For every w € 3¢, there are C, D such that w € CD¥.

v

v

v

The sets CD“ behave almost like classes, but they may overlap !

7/25

Blichi Abstraction
Define M, = P(T*/ ~4)

wWV)=J C

cey
a(l)={C|CNL+o)

8/25

Blichi Abstraction
Define M, = P(T*/ ~4)

wWV)=J C

cey
a(l)={C|CNL+o)

and M, = {V C (X*/ ~4) x (X*/ ~4) | V is closed}

wV)= | cp¥
(C,D)ev

au(L) =cl {(C,D)| CD* N L # o}

8/25

Extending to Higher-order

Terms:

ex=zlalese]e+elfixe|lr.e|e e

9/25

Extending to Higher-order

Terms:

ex=zlalese]e+elfixe|lr.e|e e

Types:
T =0 |T1—7T2

Typing rules:

T'kFer:mm—>m T'hFe:n Tz:mikFe:m

I'kz:T'(z) kel ex:m 'k Az.e:m — 7
'Fe:T— 71 I'Fer:0o T'Fex:o I'Fer:o The:o

I'Ffixe:T I'kFa:o I'Fe+ex:o T'ke;ex:o

9/25

Extending to Higher-order

Terms:

ex=zlalese]e+elfixe|lr.e|e e

Types:
T =0 |T1—7T2

Typing rules:

I'ter:mm =17 T'hFe:m

Tz:mikFe:m

I'kz:T'(z) Fkelex:m

'Fe:m— 1

I'Fer:0o T'Fex:o

I'FXze:mi — 1

I'Fer:o The:o

I'Ffixe:T I'kFa:o I'e+e:o

Program: closed term of type o.

T'ke;ex:o

9/25

Examples
First order: only use fix : (0 = 0) — o.
> fix(Af. (a;f) + b)
> fix(M. a; by fix(Ag. d + (¢ f)))

10/25

Examples
First order: only use fix : (0 = 0) — o.
> fix(Af. (a;f) + b)
> fix(M. a; by fix(Ag. d + (¢ f)))

Call-by-value versus call-by-name:
» e=(Az.ag;2) b — L.(e) ={ab}

10/25

Examples
First order: only use fix : (0 = 0) — o.
> fix(Af. (a;f) + b)
> fix(M. a; by fix(Ag. d + (¢ f)))

Call-by-value versus call-by-name:
» e=(Az.ag;2) b — L.(e) ={ab}

Non context-free examples:
> e = fix(AfAz. (¢; f(b; 75 ¢))+7)

L€ d) = {a"b"dc" | n >0} Ly(¢ d) = {a*}

10/25

Examples
First order: only use fix : (0 = 0) — o.
> fix(Af. (a;f) + b)
> fix(M. a; by fix(Ag. d + (¢ f)))

Call-by-value versus call-by-name:
» e=(Az.ag;2) b — L.(e) ={ab}

Non context-free examples:
> e = fix(AfAz. (¢; f(b; 75 ¢))+7)

L.(¢ d) = {a"b"dc™ | n > 0} L,(e d) = {a*}
» ¢ =fix(\z. (¢ d);x)
L(e) =0 Lu(é") = (Lo(¢ d)* U {a*)

10/25

Related Work

Higher-order model checking (Ong & Kobayashi, Walukiewicz &
Salvati, Mellies & Grellois).

» AY, higher-order recursion schemes, higher-order pushdown
automata with collapse.

» Model-checking of temporal logic, p-calculus formulas.

» Relies heavily on tree properties, even if we are only interested
in traces.

11/25

Related Work

Higher-order model checking (Ong & Kobayashi, Walukiewicz &
Salvati, Mellies & Grellois).

» AY, higher-order recursion schemes, higher-order pushdown
automata with collapse.

» Model-checking of temporal logic, p-calculus formulas.

» Relies heavily on tree properties, even if we are only interested
in traces.

Example: \Y.
, Bohm-tree of (M c¢):
Choose first-order constants a
a:0—0—o0 / \
b:o— o0 c a
c:o b SN _

M=Y\.Az.az (f (bx))) ‘c

11/25

GFP semantics
We define the category GFP

» Its objects A are pairs (A, A,) of complete lattices.

» A morphism f: A — B is a pair (fs, f.,) where
o fu: A, — B,
o f,: A, x A, — B,

12/25

GFP semantics
We define the category GFP

» Its objects A are pairs (A, A,) of complete lattices.
» A morphism f: A — B is a pair (fs, f.,) where

o fu: A, — B,

o f,: A, x A, — B,

Composition h = g o f is given by
> hi(ax) = gi(fi(ax))
> e (xs aw) = gu(fe(ax), fu(ax, a,))

12/25

GFP semantics
We define the category GFP
» Its objects A are pairs (A, A,) of complete lattices.
» A morphism f: A — B is a pair (fs, f.,) where

o fu: A, — B,
o f,: A, x A, — B,

Composition h = g o f is given by
> hi(ax) = gi(fi(ax))
> e (xs aw) = gu(fe(ax), fu(ax, a,))

Proposition
GFP is cartesian-closed. J
Cartesian products Function spaces

» (A x B), = A, x B, » (A= B)., = B

s (Ax By = Aux B, - (A= B), = BA<A

12/25

GFP semantics

GFP has the following fixpoint combinator for every A:
fixy: (A= A)— A

where
> (fixa)«(fo) = Up(f)
> (fixa)w(f, L) = gfp(Naw. Lo (Up(f), aw))

Proposition

This is indeed a fixpoint: f(fixa(f)) = fixa(f) holds in the internal
language of GFP

app o (ida= 4, fixa) = fixy

13/25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

14 /25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

Interpretation of contexts:
Toacontext I'=2x; : 7q,..., %, : T, associate the object

IT] =[] % ... % [m]

14 /25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

Interpretation of contexts:
Toacontext I'=2x; : 7q,..., %, : T, associate the object

IT] =[] % ... % [m]

Interpretation of terms:
To a derivation I' F e : 7, associate a morphism [e] : [T'] — [7]

14 /25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

Interpretation of contexts:
Toacontext I'=2x; : 7q,..., %, : T, associate the object

IT] =[] % ... % [m]

Interpretation of terms:
To a derivation I' F e : 7, associate a morphism [e] : [T'] — [7]

> [a] = ({e},2)

14 /25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

Interpretation of contexts:
Toacontext I'=2x; : 7q,..., %, : T, associate the object

IT] =[] % ... % [m]

Interpretation of terms:
To a derivation I' F e : 7, associate a morphism [e] : [T'] — [7]

> [a] = ({a}, @)
> [+]«(Xs, Vi) = XL U Y
[+]w(Xs, Y, X,, Vo) = X, U Y,

14 /25

GFP semantics

Interpretation of types:
To every type 7, associate an object [7] of GFP

[o] = (L4, £0) and [o — 7] =[o] = [7]

Interpretation of contexts:
Toacontext I'=2x; : 7q,..., %, : T, associate the object

IT] =[] % ... % [m]

Interpretation of terms:
To a derivation I' F e : 7, associate a morphism [e] : [T'] — [7]

> [a] = ({a}, @)

> [+ (Xs, Vi) = XL U Y,
[[]] (Y*,Xw,y) X, UY,
> (X, Ya) = X, Y.
[[ﬂ (X*,Y*,Xw7Y) -XC,_,UAXZKYLJ

14 /25

GFP semantics

Reminder: a program is a closed term of type o.

Let e be a program, then [e] : 1 — [o] is (isomorphic to) an
element of £, x £,,.

Theorem

Let e be a program, write (Ly, L,,) = [€] its interpretation in GFP.
Then we have L.(e) = L, and L, (e) = L.

15/25

GFP semantics

Reminder: a program is a closed term of type o.

Let e be a program, then [e] : 1 — [o] is (isomorphic to) an
element of £, x £,,.

Theorem

Let e be a program, write (Ly, L,,) = [€] its interpretation in GFP.
Then we have L.(e) = L, and L, (e) = L.

If we choose [o] = (M., M,,) instead, everything is computable.

But a doesn’t commute with greatest fixpoints :-(

15/25

Affine Functions

For first-order fixpoints:

The denotation of f : 0 — o has two components:

- [f]: 8 — £,
b [fle : S0 X L0 — £,
[fix f] involves some gfp of [f]..

16 /25

Affine Functions

For first-order fixpoints:
The denotation of f : 0 — o has two components:

- [f]: 8 — £,
b [fle : S0 X L0 — £,
[fix f] involves some gfp of [f]..

But every function F': £, x £, — £, that actually occurs as the
interpretation of a term is affine: there exists A : £, — £, and
B: £, — £, such that

F(z,X)=A(z)- XU B(x)

Then gfp(F(z,—)) = A(z)*B(z) U A(z)“ commutes with a.

16 /25

Affine Functions
For higher-order fixpoints:

Consider f : (T — 0) — (T — 0), then

o= [= o« x (Il x [7]w = £u) = ([7]s x [7]w = £4)

17/25

Affine Functions
For higher-order fixpoints:

Consider f : (T — 0) — (T — 0), then

o= [= o« x (Il x [7]w = £u) = ([7]s x [7]w = £4)

A function F: S x (T = £,) — (T = £,) that occurs as the
interpretation of a term will have the form:

F(s,X)=At. A(s,t)U | B(s,t,t')- X(¢)
teT

17/25

Affine Functions
For higher-order fixpoints:

Consider f : (T — 0) — (T — 0), then

o= [= o« x (Il x [7]w = £u) = ([7]s x [7]w = £4)

A function F: S x (T = £,) — (T = £,) that occurs as the
interpretation of a term will have the form:

F(s,X)=At. A(s,t)U | B(s,t,t')- X(¢)

teT
Then
etp(F(- U HB 8, tiy tit1)
(tk)ETN =0
to=t
U U B(s,t,t1) - B(s, t1, ta) -+ B(s, ta1, tn) - A(s, tn)

t1,...,tn€T

17/25

w-semigroups (Perrin, Pin)

An w-semigroup is a pair of sets S = (S, S.) equipped with:
» a mapping S+ X Sy — Sy called binary product
» a mapping Sy X S, — S, called mixed product
» a mapping 7 : Sﬂ\rI — S, called infinite product
such that
» S with the binary product is a semigroup
» for each s,t € Sy and u € S, s(tu) = (st)u

» for every increasing sequence (k,)n € NY and (s,), € SY,
one has 7((sn)n) = 7™((tn)n) where to = sos1 ... sk, and
bl = Sky41 -« Skyis

> s-7(80, 81, 82,...) = 7(s, S0, S1, 52, - - -)

18/25

w-semigroups (Perrin, Pin)

An w-semigroup is a pair of sets S = (S, S.) equipped with:
» a mapping S+ X Sy — Sy called binary product
» a mapping Sy X S, — S, called mixed product
» a mapping 7 : Sﬂ\rI — S, called infinite product
such that
» S with the binary product is a semigroup
» for each s,t € Sy and u € S, s(tu) = (st)u

» for every increasing sequence (k,)n € NY and (s,), € SY,
one has 7((sn)n) = 7™((tn)n) where to = sos1 ... sk, and
bl = Sky41 -« Skyis

> s-7(80, 81, 82,...) = 7(s, S0, S1, 52, - - -)
Remark: An w-semigroup is in particular a Wilke algebra.

18/25

2N is an w-semigroup
Examples of w-semigroups:
» (X7, %) with the usual products

19/25

2N is an w-semigroup
Examples of w-semigroups:
» (X7, %) with the usual products
» (£4,£,) with the usual products

19/25

2N is an w-semigroup
Examples of w-semigroups:
» (X7, %) with the usual products
» (£4,£,) with the usual products
> (M4, M,,): the infinitary product is defined as follows.

Given (s,) € MY, define

#(50)n) = 0 ([7+(50)
n=0

19/25

2N is an w-semigroup
Examples of w-semigroups:
» (X7, %) with the usual products
» (£4,£,) with the usual products
> (M4, M,,): the infinitary product is defined as follows.

Given (s,) € MY, define

#(50)n) = 0 ([7+(50)
n=0

Proposition
The abstraction function o : £ — 9 is a morphism of
w-semigroups. In particular, for (Ly)nen a family of languages,

oo

aw(H Ly) = m((ax(Ln))n)

=0

19/25

Back to affine functions

Idea:
Restrict to the sub-category of GFP
Xarg

» whose objects are of the form (X, £5,™%)

» whose morphisms f : X — Y have an infinitary component
for X X Qf‘“g — Q;/“g which is affine w.r.t. its second
argument.

20/25

Back to affine functions

Idea:
Restrict to the sub-category of GFP
Xarg

» whose objects are of the form (X, £5,™%)

» whose morphisms f : X — Y have an infinitary component
for X X Qf‘“g — Q;/“g which is affine w.r.t. its second
argument.

What is an affine function ?

20/25

Back to affine functions

Idea:

Restrict to the sub-category of GFP
» whose objects are of the form (X, Sf‘“g)

» whose morphisms f : X — Y have an infinitary component
for X X Qf‘“g — Q;/“g which is affine w.r.t. its second
argument.

What is an affine function ?

— a function of the form f(z) = ax + b.

20/25

Back to affine functions

Idea:
Restrict to the sub-category of GFP

» whose objects are of the form (X, Sf‘“g)

» whose morphisms f : X — Y have an infinitary component
for X X Qf‘“g — Q;/“g which is affine w.r.t. its second
argument.

What is an affine function ?

— a function of the form f(z) = ax + b.
— a pair (a, b).

20/25

The category AFFg
Let S = (S+,S.) be an w-semigroup.
» Objects are pairs (X, Xarg)
» A morphism f: X — Y is given by
o i X. > Vi
o furg : Xy X Yarg — Suy x S

21/25

The category AFFg
Let S = (S+,S.) be an w-semigroup.
» Objects are pairs (X, Xarg)
» A morphism f: X — Y is given by
o i X. > Vi
o furg : Xy X Yarg — Suy x S

Notation: we decompose f,;¢ in two components
fo: Xi X Yarg = S0 and fy 1 Xy X Yy x XP — Ss

arg

21/25

The category AFFg
Let S = (S+,S.) be an w-semigroup.
» Objects are pairs (X, Xarg)
» A morphism f: X — Y is given by
o i X. > Vi
o furg : Xy X Yarg — Suy x S

Notation: we decompose f,;¢ in two components
fo: Xu X Yarg = S0 and fp 1 Xy X Yy X Xgrg — S,

There is a functor Ext : AFFs — GFP defined as:
> Ext(X,, Xarg) = (X,, SO)

> Ext(fo, farg) = (fur fis) Where £, : Xo X S0 — S0 is
defined as

fw(vaan) fC z 77 U fp T,) X(g)

€€Xarg

21/25

The category AFFg

Composition is defined so that Ext(g o f) = Ext(g) o Ext(f).

22/25

The category AFFg

Composition is defined so that Ext(g o f) = Ext(g) o Ext(f).

The cartesian product (X x Y) is given by:
» (XAIxY)=X.xY,
> (X X Y)arg = Xarg + Yarg

22/25

The category AFFg

Composition is defined so that Ext(g o f) = Ext(g) o Ext(f).

The cartesian product (X x Y) is given by:
» (XAIxY)=X.xY,
> (X X Y)arg = Xarg + Yarg

The function space (X = Y) is given by:
YargXX;cx)rpg)

» (X =Y),=X.= (Y. xS
» (X = Yarg = Xi X Yarg

22/25

The category AFFg

Composition is defined so that Ext(g o f) = Ext(g) o Ext(f).

The cartesian product (X x Y) is given by:
» (XAIxY)=X.xY,
> (X X Y)arg = Xarg + Yarg

The function space (X = Y) is given by:
Yargxxgrpg

» (X =Y),=X.= (Y. xS)
» (X = Yarg = Xi X Yarg

Proposition
The category AFFgs is cartesian-closed. J

22/25

Affine Semantics
Base type: [o] = (S«, {*})

23/25

Affine Semantics

Base type: [o] = (S«, {*})
Terms:
> [a]«(*) = a
[alarg (%) = (9,9)
> [+]«(s1, 52) = s1Us
[+larg(s1, 82,%) = (2, M.¢€)
> [;]4(s1, 82) = 518
inlx+— ¢
[Jarg(s1, 82, %) = (@, An. case(n) { . 31)

23/25

Affine Semantics

Base type: [o] = (S«, {*})
Terms:
> [a]«() = a
[a]arg (%) = (2,9)
> [+]«(s1, 52) = 5 Usp
[[+]]arg(51732,*) = (@,)\7].6)
> [5]+(s1,82) = 5189
) = (oo {2
Remarks:

» One needs an element a € S,: pick {a} for £, and [a] for M,.

23/25

Affine Semantics

Base type: [o] = (S«, {*})
Terms:
> [a]«() = a
[a]arg (%) = (2,9)
> [+]«(s1, 52) = 5 Usp
[[+]]arg(51732,*) = (@,)\7].6)
> [5]+(s1,82) = 5189
) = (oo {2
Remarks:

» One needs an element a € S,: pick {a} for £, and [a] for M,.

» The fixpoint operator can be defined accordingly.

23/25

Putting it all together
Theorem J

For every program e, we have [¢] °FP = Ext([e]*).

24 /25

Putting it all together

Theorem

For every program e, we have [¢] °FP = Ext([e]*).

Corollary

For every program e, [e]* = (L. (e), Ly(¢)).

24 /25

Putting it all together

Theorem

For every program e, we have [¢] °FP = Ext([e]*).

Corollary

For every program e, [e]* = (L. (e), Ly(¢)).

Theorem

For every program e, a([e]*) = [e]™.

24 /25

Putting it all together

Theorem

For every program e, we have [¢] °FP = Ext([e]*).

Corollary

For every program e, [e]* = (L. (e), Ly(¢)).

Theorem

For every program e, a([e]*) = [e]™.

Corollary

Let e be a program, and write [e]™ = (X., X,,).
Then L*/w(e) C L*/W(A) < X*/w C Oz*/w(*/w(.A))
Moreover, [e]™ is effectively computable.

24 /25

Thanks !

