Brief announcement: On the impossibility of detecting concurrency

Éric Goubault Jérémy Ledent Samuel Mimram

École Polytechnique, Paris

DISC 2018, New Orleans October 16, 2018

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Write \mathcal{T} for the set of all execution traces.

• A concurrent specification is a subset $\sigma \subseteq \mathcal{T}$.

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Write \mathcal{T} for the set of all execution traces.

- ▶ A concurrent specification is a subset $\sigma \subseteq \mathcal{T}$.
- A program implements a specification σ if all the traces that it can produce belong to σ .

- ▶ **Input:** a sequential specification σ (e.g. list, queue, ...).
- ▶ **Output:** a concurrent specification $Lin(\sigma)$.

- ▶ **Input:** a sequential specification σ (e.g. list, queue, ...).
- ▶ **Output:** a concurrent specification $Lin(\sigma)$.

- ▶ **Input:** a sequential specification σ (e.g. list, queue, ...).
- ▶ **Output:** a concurrent specification $Lin(\sigma)$.

- ▶ **Input:** a sequential specification σ (e.g. list, queue, ...).
- ▶ **Output:** a concurrent specification $Lin(\sigma)$.

 $\mathsf{Lin}(\sigma) = \{ T \text{ concurrent trace} \mid T \text{ is linearizable w.r.t. } \sigma \}$

- ▶ **Input:** a sequential specification σ (e.g. list, queue, ...).
- ▶ **Output:** a concurrent specification $Lin(\sigma)$.

 $Lin(\sigma) = \{T \text{ concurrent trace } | T \text{ is linearizable w.r.t. } \sigma \}$

Some objects are not linearizable!

Their specification cannot be expressed as $Lin(\sigma)$, for any σ .

Set-linearizability (Neiger)

Set-linearizability (Neiger)

▶ Can specify: exchanger, immediate snapshot, set agreement.

Set-linearizability (Neiger)

- ► Can specify: exchanger, immediate snapshot, set agreement.
- ► Cannot specify: validity, write-snapshot.

Set-linearizability (Neiger)

- ► Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

Set-linearizability (Neiger)

- ▶ Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

Can specify every task!

Expansion of intervals

A concurrent specification satisfies the expansion property if:

Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

if we expand the intervals,

then the resulting trace is still correct.

Similar to the one available in Java¹: "A synchronization point at which threads can pair and swap elements within pairs". Here, we consider a wait-free variant.

¹java.util.concurrent.Exchanger<V>

Similar to the one available in Java¹: "A synchronization point at which threads can pair and swap elements within pairs". Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

¹java.util.concurrent.Exchanger<V>

The following execution is correct:

The following execution is correct:

Hence, according to the expansion property,

should be considered correct too!

▶ In a reasonable computational model:

Theorem

The semantics $\llbracket P \rrbracket$ of any program P has the expansion property.

▶ In a reasonable computational model:

Theorem

The semantics $\llbracket P \rrbracket$ of any program P has the expansion property.

 Linearizability-based techniques can only produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ , $\mathsf{Lin}(\sigma)$ has the expansion property.

▶ In a reasonable computational model:

Theorem

The semantics $\llbracket P \rrbracket$ of any program P has the expansion property.

 Linearizability-based techniques can only produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ , $Lin(\sigma)$ has the expansion property.

We write ConcSpec for the set of concurrent specifications satisfying the expansion property (and prefix-closure, etc).

Theorem

The maps Lin and U form a Galois connection: for every $\sigma \in \mathsf{SeqSpec}$ and $\tau \in \mathsf{ConcSpec}$,

$$\mathsf{Lin}(\sigma) \subseteq \tau \qquad \iff \qquad \sigma \subseteq \mathsf{U}(\tau).$$

Applications:

By the properties of Galois connections,

$$Lin(U(Lin(\sigma))) = Lin(\sigma)$$

This yields a simple criterion to check whether a given specification τ is linearizable: check whether $\text{Lin}(\mathsf{U}(\tau)) = \tau$.

Applications:

By the properties of Galois connections,

$$Lin(U(Lin(\sigma))) = Lin(\sigma)$$

This yields a simple criterion to check whether a given specification τ is linearizable: check whether $Lin(U(\tau)) = \tau$.

The Galois connection for interval linearizability has the following corollary:

Theorem

ConcSpec is the set of interval-linearizable specifications.

Thanks!