
Brief announcement: On the impossibility of
detecting concurrency

Éric Goubault Jérémy Ledent Samuel Mimram

École Polytechnique, Paris

DISC 2018, New Orleans
October 16, 2018

1 / 8



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

2 / 8



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

2 / 8



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

2 / 8



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

2 / 8



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .
I A program implements a specification σ if all the traces that
it can produce belong to σ.

2 / 8



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

3 / 8



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

3 / 8



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

3 / 8



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

3 / 8



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

3 / 8



Concurrent variants of linearizability
Set-linearizability (Neiger)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

P0

P1

P2

I Can specify every task!

4 / 8



Concurrent variants of linearizability
Set-linearizability (Neiger)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.

I Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

P0

P1

P2

I Can specify every task!

4 / 8



Concurrent variants of linearizability
Set-linearizability (Neiger)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

P0

P1

P2

I Can specify every task!

4 / 8



Concurrent variants of linearizability
Set-linearizability (Neiger)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

P0

P1

P2

I Can specify every task!

4 / 8



Concurrent variants of linearizability
Set-linearizability (Neiger)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

P0

P1

P2

I Can specify every task!
4 / 8



Overview
Concurrent specifications

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

exchanger

set-agreement

immediate snapshot

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

Prefix-closed concurrent specifications

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

Prefix-closed concurrent specifications

Some more “obvious” properties + expansion property

5 / 8



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

Prefix-closed concurrent specifications

Interval-linearizability

5 / 8



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

6 / 8



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

6 / 8



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.
6 / 8



Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
7 / 8



Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
7 / 8



Example: the Exchanger object

The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

7 / 8



Example: the Exchanger object

The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

7 / 8



Results

I In a reasonable computational model:

Theorem
The semantics JP K of any program P has the expansion property.

I Linearizability-based techniques can only produce
specifications which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) has the expansion
property.

We write ConcSpec for the set of concurrent specifications
satisfying the expansion property (and prefix-closure, etc).

8 / 8



Results

I In a reasonable computational model:

Theorem
The semantics JP K of any program P has the expansion property.

I Linearizability-based techniques can only produce
specifications which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) has the expansion
property.

We write ConcSpec for the set of concurrent specifications
satisfying the expansion property (and prefix-closure, etc).

8 / 8



Results

I In a reasonable computational model:

Theorem
The semantics JP K of any program P has the expansion property.

I Linearizability-based techniques can only produce
specifications which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) has the expansion
property.

We write ConcSpec for the set of concurrent specifications
satisfying the expansion property (and prefix-closure, etc).

8 / 8



Results

SeqSpec ConcSpec>

Lin

U

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ).

8 / 8



Results

Applications:
I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

8 / 8



Results

Applications:
I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

8 / 8



Thanks!

8 / 8


