Brief announcement: On the impossibility of detecting concurrency

Éric Goubault Jérémie Ledent Samuel Mimram

École Polytechnique, Paris

DISC 2018, New Orleans
October 16, 2018
Concurrent specifications

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

\[\text{push}(0) \]
\[\text{ok} \]
\[\text{push}(2) \]
\[\text{ok} \]
\[\text{pop()} \]
\[0 \]
\[\text{pop()} \]
\[2 \]

\[P_0 \]
\[P_1 \]
\[P_2 \]

\[\text{Write} \]
\[T \]

▶ A concurrent specification is a subset \(\sigma \subseteq T \).

▶ A program implements a specification \(\sigma \) if all the traces that it can produce belong to \(\sigma \).
Concurrent specifications

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

\[
\text{push}(0) \quad \text{ok} \\
\text{push}(2) \quad \text{ok} \\
\text{pop()} \quad 0 \\
\text{pop()} \quad 2 \\
\]

Write \(T \) for the set of all execution traces. ▶ A concurrent specification is a subset \(\sigma \subseteq T \). ▶ A program implements a specification \(\sigma \) if all the traces that it can produce belong to \(\sigma \).
Concurrent specifications

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

- P_0: `push(0)` OK \rightarrow pop() \rightarrow 2
- P_1: \rightarrow pop() 0 \rightarrow push(2) \rightarrow OK
- P_2: \rightarrow
Concurrent specifications

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Write \mathcal{T} for the set of all execution traces.

- A *concurrent specification* is a subset $\sigma \subseteq \mathcal{T}$.

[Diagram showing execution traces with push(0), pop(), push(2), and pop() operations.]
Concurrent specifications

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Write \mathcal{T} for the set of all execution traces.

- A *concurrent specification* is a subset $\sigma \subseteq \mathcal{T}$.
- A program implements a specification σ if all the traces that it can produce belong to σ.

Linearizability (Herlihy & Wing, 1990)

- **Input**: a sequential specification σ (e.g. list, queue, ...).
- **Output**: a concurrent specification $\text{Lin}(\sigma)$.

Some objects are not linearizable! Their specification cannot be expressed as $\text{Lin}(\sigma)$, for any σ.
Linearizability (Herlihy & Wing, 1990)

Input: a sequential specification σ (e.g. list, queue, ...).

Output: a concurrent specification $\text{Lin}(\sigma)$.

<table>
<thead>
<tr>
<th>P_0</th>
<th>[]</th>
<th>[]</th>
<th>\rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>[]</td>
<td>[]</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>P_2</td>
<td>[]</td>
<td>[]</td>
<td>\rightarrow</td>
</tr>
</tbody>
</table>
Linearizability (Herlihy & Wing, 1990)

- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification $\text{Lin}(\sigma)$.

Some objects are not linearizable! Their specification cannot be expressed as $\text{Lin}(\sigma)$, for any σ.

![Diagram showing the transformation from SeqSpec to ConcSpec](image-url)
Input: a sequential specification σ (e.g. list, queue, ...).

Output: a concurrent specification $\text{Lin}(\sigma)$.

$\text{Lin}(\sigma) = \{ T \text{ concurrent trace} | T \text{ is linearizable w.r.t. } \sigma \}$
Linearizability (Herlihy & Wing, 1990)

- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification $\text{Lin}(\sigma)$.

\[
\text{Lin}(\sigma) = \{ T \text{ concurrent trace} \mid T \text{ is linearizable w.r.t. } \sigma \}
\]

Some objects are not linearizable!
Their specification cannot be expressed as $\text{Lin}(\sigma)$, for any σ.
Concurrent variants of linearizability

Set-linearizability (Neiger)

- Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)

- Can specify every task!
Concurrent variants of linearizability

Set-linearizability (Neiger)

- Can specify: exchanger, immediate snapshot, set agreement.
Concurrent variants of linearizability

Set-linearizability (Neiger)

- Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.
Concurrent variants of linearizability

Set-linearizability (Neiger)

- Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañeda, Raynal)
Concurrent variants of linearizability

Set-linearizability (Neiger)

- Can specify: exchanger, immediate snapshot, set agreement.
- Cannot specify: validity, write-snapshot.

Interval-linearizability (Rajsbaum, Castañoeda, Raynal)

- Can specify every task!
Overview

Concurrent specifications
Overview

Concurrent specifications

Linearizability

stack
queue
test&set
Overview

Concurrent specifications

Linearizability
- stack
- queue
- test&set
- immediate snapshot
- exchanger
- set-agreement
Overview

Concurrent specifications

Set-linearizability

Linearizability

- immediate snapshot
- exchanger
- set-agreement

- stack
- queue
- test&set
Overview

Concurrent specifications

- Linearizability
 - stack
 - queue
 - test&set
- Set-linearizability
 - immediate snapshot
 - exchanger
 - set-agreement
 - write-snapshot
 - validity
Overview

Concurrent specifications

- Interval-linearizability
- Set-linearizability
- Linearizability

- stack
- queue
- test&set

- immediate snapshot
- exchanger
- set-agreement

- write-snapshot
- validity
Overview

Concurrent specifications

Prefix-closed concurrent specifications

Interval-linearizability

Set-linearizability

Linearizability

stack
queue
test&set

immediate snapshot
exchanger
set-agreement

write-snapshot
validity
Overview

Concurrent specifications

Prefix-closed concurrent specifications

Some more “obvious” properties + expansion property

Interval-linearizability
Set-linearizability
Linearizability
stack
queue
test&set
immediate snapshot
exchanger
set-agreement
write-snapshot
validity
Overview

Concurrent specifications

Prefix-closed concurrent specifications

Interval-linearizability

Set-linearizability

Linearizability

- stack
- queue
- test&set

Immediate snapshot
- exchanger
- set-agreement

Write-snapshot
- validity
Expansion of intervals

A concurrent specification satisfies the expansion property if:

If we expand the intervals,

then the resulting trace is still correct.
Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

\[
\begin{align*}
 P_0 & \rightarrow [a, b] \rightarrow [e, f] \rightarrow [j, \ell] \\
 P_1 & \rightarrow [c, d] \rightarrow [h, k] \\
 P_2 & \rightarrow [g, i] \\
\end{align*}
\]
Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

if we \textit{expand} the intervals,

then the resulting trace is still correct.
Example: the Exchanger object

Similar to the one available in Java\(^1\): “A synchronization point at which threads can pair and swap elements within pairs”. Here, we consider a wait-free variant.

\(^1\)java.util.concurrent.Exchanger\(<V>\)
Example: the Exchanger object

Similar to the one available in Java\(^1\): “A
\textit{synchronization point at which threads can pair and swap elements within pairs}”. Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

\begin{equation}
\begin{aligned}
P_0 & \quad \text{exchange}(0) \quad 2 \quad \text{exchange(‘a’) \quad FAIL} \\
\quad & \quad \text{exchange(42) \quad FAIL} \quad \text{exchange(‘b’) \quad ‘c’} \\
P_1 & \quad \text{exchange(2) \quad 0} \quad \text{exchange(‘c’) \quad ‘b’} \\
P_2 & \quad \end{aligned}
\end{equation}

\(^1\)\texttt{java.util.concurrent.Exchanger\langle V\rangle}
Example: the Exchanger object

The following execution is correct:

\[P_0 \quad \text{exchange}(0) \quad \text{FAIL} \]
\[P_1 \quad \text{exchange}(1) \quad \text{FAIL} \]
\[P_2 \quad \text{exchange}(2) \quad \text{FAIL} \]

Hence, according to the expansion property, the execution should be considered correct too!
Example: the Exchanger object

The following execution is correct:

\[\text{exchange}(0) \quad \text{FAIL} \]
\[\begin{array}{c}
P_0 \\
\hline
\end{array} \quad \begin{array}{c}
\text{exchange}(1) \quad \text{FAIL} \\
P_1 \\
\hline
\end{array} \quad \begin{array}{c}
\text{exchange}(2) \quad \text{FAIL} \\
P_2 \\
\hline
\end{array}\]

Hence, according to the expansion property,

\[\text{exchange}(0) \quad \text{FAIL} \]
\[\begin{array}{c}
P_0 \\
\hline
\end{array} \quad \begin{array}{c}
\text{exchange}(1) \quad \text{FAIL} \\
P_1 \\
\hline
\end{array} \quad \begin{array}{c}
\text{exchange}(2) \quad \text{FAIL} \\
P_2 \\
\hline
\end{array}\]

should be considered correct too!
Results

- In a reasonable computational model:

Theorem

The semantics $[P]$ of any program P has the expansion property.
Results

- In a reasonable computational model:

Theorem

The semantics $[P]$ of any program P has the expansion property.

- Linearizability-based techniques can only produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ, $\text{Lin}(\sigma)$ has the expansion property.
Results

▶ In a reasonable computational model:

Theorem

The semantics $[P]$ of any program P has the expansion property.

▶ Linearizability-based techniques can only produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ, Lin(σ) has the expansion property.

We write ConcSpec for the set of concurrent specifications satisfying the expansion property (and prefix-closure, etc).
The maps Lin and U form a Galois connection: for every $\sigma \in \text{SeqSpec}$ and $\tau \in \text{ConcSpec}$,

$$\text{Lin}(\sigma) \subseteq \tau \iff \sigma \subseteq U(\tau).$$
Results

Applications:

- By the properties of Galois connections,

\[\text{Lin}(U(\text{Lin}(\sigma))) = \text{Lin}(\sigma) \]

This yields a simple criterion to check whether a given specification \(\tau \) is linearizable: check whether \(\text{Lin}(U(\tau)) = \tau \).
Results

Applications:

▶ By the properties of Galois connections,

\[\text{Lin}(\text{U}(\text{Lin}(\sigma))) = \text{Lin}(\sigma) \]

This yields a simple criterion to check whether a given specification \(\tau \) is linearizable: check whether \(\text{Lin}(\text{U}(\tau)) = \tau \).

▶ The Galois connection for interval linearizability has the following corollary:

Theorem

ConcSpec *is the set of interval-linearizable specifications.*
Thanks!