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1 Introduction

Automated deduction in first-order logic finds almost all its roots in
Herbrand’s work, starting with Herbrand’s interpretations, a clausal
calculus, and rules for unification. J.A. Robinson’s key contribu-
tion was the formulation of resolution and its completeness proof, in
which semantic trees were semi-apparent. Robinson and Wos intro-
duced the specific treatment of equality commonly called paramod-
ulation. The systematic introduction of orderings to cut the search
space is due to Lankford. Kowalski studied in more details the case
of Horn clauses, while Peterson gave the first proof that paramod-
ulation inside variables was superfluous, assuming a term ordering
order-isomorphic to the natural numbers. Knuth studied the case of
equality unit clauses, under the name of completion. All these works
were done by using standard proof techniques, including semantic
trees [Kow69].

Further progress required more powerful proof techniques.
The first was proposed by Huet with Noetherian orderings on

terms, allowing the use of the powerful noetherian induction prin-
ciple to establish a strong theory of abstract and concrete rewrit-
ing, another name for the case of equality unit clauses [Hue80]. The
? Partially supported by the RNTL project Prouvé and the ACI Rossignol.
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method was then extended by Jouannaud and Kirchner who intro-
duced induction on proofs abstracted by multisets of terms [JK86].
Bachmair, Dershowitz and Hsiang made the last step with the proof
reduction method [BD94]. This tool allowed this subfield to make
very fast progress until a new bottleneck was encoutered with con-
strained equality unit clauses.

The second proof method was proposed by Hsiang and Rusinow-
itch [HR86], who invented transfinite semantic trees, a generalization
of semantic trees generated from a transfinite ordering on the Her-
brand base. They were able to generalize Peterson’s result to arbi-
trary well-founded orderings. Considering again the case of equality
unit clauses, they showed the completeness of ordered completion,
an old conjecture of Lankford, which was found to have many theo-
retical applications by providing with a true semi-decision procedure
for equality based on computing normal forms. Being conceptually
complex constructions, transfinite semantic trees did not make their
way through in the scientific community.

The third was proposed by Bachmair and Ganzinger, which al-
lowed to make tremendous progress in all directions ever since, to
a point that people did not find the need to look for new methods.
Bachmair and Ganzinger’s model generation technique [BG01a] is
based on forcing a specific interpretation which can be seen as char-
acterizing the satisfiability property of a given set of clauses. Many
groups throughout the world studied and used this method, which
was found a bit mysterious at first. Our goal here is to shed a new
light on this important approach, by adopting a presentation based
on semantic trees which we think is easy to grasp.

As transfinite semantic trees, Bachmair and Ganzinger’s model
generation technique is based on a well-founded ordering on terms
which can be transfinite. It aims at showing the refutation-completeness
property of a set of inference rules I used for generating the empty
clause from a given unsatisfiable set S of clauses. The ordering is
used to restrict the possible inferences to those involving maximal
atoms.

Our first problem was to construct finite semantic trees with
transfinite orderings. The answer is provided by Herbrand’s com-
pactness theorem3: only finitely many ground instances of S suffice.

3 The solution was hinted at by Michael Rusinowitch in a discussion with the first
author.
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These ground instances generate finitely many atoms which define
interpretations which are finitely refuted, hence a finite semantic
tree. A consequence of this construction is that the ordering need
not be total, nor well-founded: it needs only be strict. It can then be
completed into a total strict ordering on the finite set of atoms. The
well-foundedness assumption becomes however necessary in presence
of an equality predicate.

Our second problem was to guess which node in the semantic tree
of an unsatisfiable set of ground clauses would allow us to make an
inference. The answer is easy: the model generation technique builds
an interpretation which defines indeed a path in the semantic tree
ending in an inference node.

The third problem was to show that this inference decreases the
semantic tree in some well-founded ordering, allowing to conclude
by induction that the tree could be reduced in finite time to its root,
hence showing that the empty clause had been generated. Building
well-founded orderings on the semantic tree is much easier than on
the set of clauses itself, allowing us again to slightly improve over
the existing literature in some cases.

We do not think that our contribution lies in any improvement
over the current literature. Our first main contribution, as we feel,
is to show that all these concepts elaborated by Ganzinger and his
collaborators are intrinsic to the entire field of automated deduc-
tion, rather than specific to his model generation proof method as
one might have thought. And the second is the use of a single proof
method to obtain them all, suggesting that some of these restric-
tions may be combined. We will treat here a few basic results only:
ordered resolution, ordered resolution with selection, ordered linear
resolution, and ordered resolution and paramodulation. We consider
the systematic use of our technique as an exercice which will allow
the reader to better grasp the subtleties of Ganzinger’s work.

2 Ordered Resolution with Selection

The semantic tree technique makes it relatively clear that not only
resolution is complete, but also ordered resolution, where only lit-
erals that are maximal in their respective clauses are resolved upon
[CL73]. This is a very effective restriction of resolution. We recall
the completeness argument for ordered resolution in Section 2.1. We
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also improve it, by showing that ordered resolution is complete for
any stable ordering (even, say, not well-founded).

Another very effective restriction is ordered resolution with se-
lection, where a selection function is used to denote selected ex-
ceptions to the ordering restriction. This refinement of resolution
generalizes both ordered resolution and hyperresolution. It has been
known for a long time to resist semantic tree arguments, and Bach-
mair and Ganzinger’s forcing technique [BG01a] provided an elegant
completeness argument. We show how the two techniques blend nat-
urally together in Section 2.2. In Section 2.3, we deal briefly with
redundancy elimination strategies, an important part of Bachmair
and Ganzinger’s work in automated deduction. We sketch how our
technique generalizes to the completeness of linear resolution in Sec-
tion 2.4, a refinement of resolution whose completeness was tradi-
tionally thought to require different arguments.

2.1 Ordered Resolution

Let % be any stable quasi-ordering on atoms which restricts to an
ordering on ground atoms. By stable, we mean that for any two atoms
A, B, if A % B, then Aσ % Bσ for every substitution σ. Let - be
the converse of %, � the strict part of %, and ≺ the converse of �.
The rule of ordered resolution is as follows, where clauses are sets of
literals separated by ∨, and the two premises are assumed renamed,
without loss of generality, so as to have no variable in comon.

+A1 ∨ . . . + Am ∨ C − A′

1 ∨ . . . ∨ −A′

m′ ∨ C′

Cσ ∨ C′σ

m ≥ 1, n ≥ 1,

σ = mgu(A1 = A2 = . . . = Am =
A′

1 = . . . = A′

m′ ),
Aiσ 6- B, A′

i′σ 6- B ∀B ∈ Cσ ∨ C′σ,

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′

We write mgu(E) the most general unifier of any given set of term
equations. As usual, we let σ be more general than θ if and only if
θ = σσ′ for some substitution σ′, and we write σ v θ.

Ordered resolution is sound and complete, in the sense that, start-
ing from a set S of clauses, we may deduce the empty clause 2 by
finitely many applications of the above rule if and only if S is unsat-
isfiable. We may in fact restrict m′ to be 1 (no negative factoring),
or m to be 1 (no positive factoring) without breaking completeness,
but not both. Alternative presentations split this rule in one binary
ordered resolution rule, and additional positive/negative factoring
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rules. We shall do this in later sections. For now, the current presen-
tation will be more practical.

Soundness is trivial. Completeness is, of course, harder, so let’s
start by showing how semantic trees can be used to show that ordered
resolution is complete when % is enumerable, i.e., when it satisfies
the following property:

(∗) there is an enumeration A0
1, A

0
2, . . . , A

0
i , . . . of ground atoms

such that i > j whenever A0
i � A0

j .

This much had been known since [Joy76]. Plain, unordered resolu-
tion, will in particular be complete, since this is the case where % is
just the equality relation on atoms, which is clearly enumerable. We
shall show that property (∗) is not required later.

Let A0
1, A

0
2, . . . , A

0
i , . . . be any given enumeration of ground atoms

satisfying (∗). A partial interpretation I on this enumeration is a
finite list ±1A

0
1,±2A

0
2, . . . ,±kA

0
k. If A0

i occurs under the + sign, then
A0

i is true in I; A0
i is false if it occurs under the − sign, and undefined

otherwise.
The Herbrand tree is the binary tree whose vertices are partial in-

terpretations. The partial interpretation I = ±1A
0
1,±2A

0
2, . . . ,±kA

0
k

has two sons ±1A
0
1,±2A

0
2, . . . ,±kA

0
k,−A0

k+1 and ±1A
0
1,±2A

0
2, . . . ,

±kA
0
k, +A0

k+1—provided A0
k+1 exists, otherwise I is a leaf. The root

of the tree is the empty partial interpretation ε.
The maximal paths of the Herbrand tree are naturally in bijection

with Herbrand interpretations., i.e., sets of ground atoms. If IH is a
Herbrand interpretation, we follow the maximal path going through
ε, then ±1A

0
1, then ±1A

0
1,±2A

0
2, . . . , where ±i is + if A0

i ∈ IH , −
otherwise. Conversely, any path goes through nodes that mention
each atom A with a unique sign; collect those that occur with the +
sign, thus defining a Herbrand interpretation.

Figure 1 shows a (finite) semantic tree on the three atoms r, q,
p in this order. I.e., A0

1 = r, A0
2 = q, A0

3 = p. Vertex 1 is the empty
partial interpretation ε, vertex 2 is −r, 3 is +r, 4 is −r,−q, etc.

Let us say that a ground clause C is false at vertex I = ±1A
0
1,

±2A
0
2, . . . ,±kA

0
k if and only if, for every literal ±A of C, the opposite

literal ∓A is listed in I. In Figure 1, the clause +r ∨ −q is false at
−r, +q (vertex 5), and also, say, at −r, +q,−p (vertex 10).

Let S be an unsatisfiable set of clauses: for every Herbrand in-
terpretation IH , there is a ground instance Cθ of a clause C ∈ S
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Fig. 1. A semantic tree

such that IH makes Cθ false. Since the value of Cθ depends on the
truth value of only finitely many atoms, there is a partial interpreta-
tion, i.e., a vertex along IH where Cθ is false—e.g., vertex 10 makes
+r∨−q false, assuming +r∨−q is a ground instance of some clause
in S. A failure node is any highest vertex in the Herbrand tree that
makes some ground instance Cθ of some clause C ∈ S false.

By König’s Lemma, if S is unsatisfiable, then the closed tree TS

obtained from the Herbrand tree by cutting it at failure nodes is
finite. The compactness theorem for first-order logic obtains easily:
only finitely elements of S account for the finitely many leaves of TS.

Given a finite closed tree TS, either the root ε is a failure node,
so that S must contain the empty clause 2; or there must be a
lowest non-failure vertex I, called an inference node. For example,
−r,−q (vertex 4) in Figure 1 is an inference node. Its two sons,
which must be of the form I,−A and I, +A respectively, must be
failure nodes for some ground instances of first-order clauses C+

and C− respectively, in S, say C+θ+ and C−θ−. By the definition of
failure nodes, C+θ+ must be a disjunction of +A with some literals
above A (i.e., appearing before A in the enumeration A0

1, A0
2, . . . ),

and C−θ− must be a disjunction of −A with some literals above
A again. Write C+ as +A1 ∨ . . . + Am ∨ C, where +A1, . . . , +Am

are the literals L in C+ such that Lθ+ = +A, and write C− as
−A′

1 ∨ . . . ∨ −A′
m′ ∨ C ′, where −A′

1, . . . , −A′
m′ are the literals L′ in

C− such that L′θ− = −A. Renaming apart the free variables of C+
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and C−, in particular, A1, . . . , Am, A′
1, . . . , A

′
n are unifiable. Call σ

their most general unifier; since % is stable, and using assumption
(∗) above, Aiσ 6- B and A′

i′σ 6- B for every atom B in Cσ ∨ C ′σ,
1 ≤ i ≤ m, 1 ≤ i ≤ m′. So the ordered resolution rule applies,
and we may generate the resolvent Cσ ∨ C ′σ. E.g., in Figure 1, the
inference node −r,−q (vertex 4) allows one to resolve between the
two clauses whose respective ground instances decorate the failure
nodes below it, namely +p and +q ∨ −p, yielding a clause with +q

as ground instance.

Let S ′ be S union Cσ ∨ C ′σ. Since Cσ ∨ C ′σ is now false at the
inference node I, TS′ is a closed tree with strictly less vertices than
TS. This process must therefore terminate; then ε will be a failure
node, at which point 2 has been inferred: completeness obtains.

There are several degrees of freedom that we can exploit in this
argument. First, the usual argument goes by considering the ground
instances of clauses in S (which form an unsatisfiable set), showing
that propositional ordered resolution is complete for the latter, then
lifting propositional resolution refutations to the first-order level by
so-called lifting . The argument above shows that we can reason di-
rectly at the level of first-order clauses, considering ground instances
on the fly. While this makes no difference in ordered resolution, this
is definitely needed when selection functions are introduced (Sec-
tion 2.2), because nothing like stability will be required of selection
functions.

Second, assumption (∗) can be completely dispensed with, as we
promised, using compactness: if S is unsatisfiable, then some finite
set of ground instances of S is already unsatisfiable. Clearly, this
finite set uses only finitely many ground atoms A0

1, . . . , A0
n, and

we can replay the argument above by using only these atoms. Now
it is easy to enumerate them in such a way that A0

i � A0
j implies

i > j, whether (∗) holds or not: just find a topological sort of the A0
i

with respect to the ordering �. (This is where we are using that %
restricts to an ordering on ground atoms.)

Third, the way we pick interesting nodes (here, inference nodes)
in the tree clearly dictates what constraints we may add to the res-
olution rule while retaining completeness. Picking inference nodes is
a good match for ordered resolution. Other forms of resolution will
require us to find other vertices in TS. In the context of semantic
trees, the import of the Bachmair-Ganzinger forcing method can be
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seen as a clever way of finding alternative vertices in TS. This is
simple and elegant: any vertex I is just a partial interpretation, and
we shall find it by constructing I as a partial interpretation, alter-
natively as specifying which ground atoms should be true and which
should be false while going down the closed tree TS.

Fourth, and finally, we are free to apply alternative termination
arguments. Taking the notations above, we have argued that we
could produce a finite ordered resolution refutation by showing that
we could rewrite TS into another closed tree TS′ by generating the
right ordered resolvent. This terminates because the size |TS| of TS

is greater than that of TS′. However, any well-founded measure of
finite closed trees TS would work equally well. This is precisely what
we shall exploit next.

2.2 Ordered Resolution with Selection

Let sel be any fixed selection function, by which we mean any func-
tion that maps each clause C to a possibly empty subset of the
negative literals in C—the selected literals in C. The idea is that,
if sel (C) is non-empty, then we require to resolve on all selected
literals; if sel (C) = ∅, then we revert to resolving upon �-maximal
literals. On the other hand, we additionally require that the other
premise +A1 ∨ . . . + Am ∨ C contains no selected literal at all.

Again assume a given stable quasi-ordering % whose restriction
to ground atoms is an ordering, and assume additionally that �
is also stable: A � B implies Aσ � Bσ for every atoms A, B,
and substitution σ. In case all these conditions are satisfied, we say
that % is strongly stable. E.g., any reflexive closure � of a strict
stable ordering �—the traditional setting for ordered resolution—is
a strongly stable quasi-ordering.

The rule of ordered resolution with selection is
1≤i≤`

︷ ︸︸ ︷

Ci ∨ +Ai1 ∨ . . . ∨ +Aini
C ′ ∨ −A′

1 ∨ . . . ∨ −A′
`

C1σ ∨ . . . ∨ C`σ ∨ C ′σ

with the following side-conditions:

(i) ni ≥ 1 for every i, 1 ≤ i ≤ `;
(ii) σ = mgu{Aij = A′

i|1 ≤ i ≤ `, 1 ≤ j ≤ ni};
(iii) sel(Ci ∨ +Ai1 ∨ . . . ∨ +Aini

) = ∅ and Ai1σ 6- B for every atom
B in Ciσ, for every i, 1 ≤ i ≤ `;
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(iv) sel(C ′ ∨ −A′
1 ∨ . . . ∨ −A′

`) = {−A′
1, . . . ,−A′

`} and ` ≥ 1, or no
literal is selected, ` = 1 and −A′

1σ 6≺ B for every atom B in C ′σ.

Note that sel is arbitrary . In particular, imagine that we select
{−p(X)} in +q(X) ∨ −p(X) ∨ −r(X). While it would be natural
to also select {−p(a)} in its instance +q(a) ∨ −p(a) ∨ −r(a), selec-
tion functions are not required in any way to do so, and we may
perfectly well choose to select {−r(a)}, or {−p(a),−r(a)}, or noth-
ing instead. This fact alone ruins any hope of proving completeness
by lifting a completeness argument from the propositional to the
first-order case.

Note also that, while we still require positive factoring (in general
ni 6= 1) in the side clauses Ci ∨+Ai1 ∨ . . .∨+Aini

, we dispense with
negative factoring in the main clause C ′ ∨ −A′

1 ∨ . . . ∨ −A′
`.

Theorem 1. Ordered resolution with selection is complete: for any
strongly stable quasi-ordering %, for any selection function sel, for
any set of clauses S, S is unsatisfiable if and only if we can derive
2 from S by ordered resolution with selection.

Proof. We spend the rest of this section proving this. We shall do
this in detail here, and go faster in similar proofs in later sections.

The “if” direction is obvious. Conversely, fix a finite enumeration
A0

1, . . . , A
0
n of all ground atoms in the finite unsatisfiable set of ground

instances of clauses in S secured by the compactness theorem. Sort
them so that A0

i � A0
j implies i > j. A closed tree TS is adequate if

and only if its vertices are of the form ±1A
0
1, . . . ,±A0

k with k ≤ n.
By construction, there is an adequate closed tree TS. Also, for each
failure node I of TS, there is a clause CI in S and a substitution θI

such that CIθI is ground and false at I.
Given any set S ′ of clauses, call a decorated tree any tuple (T, C•, θ•),

where T is an adequate closed tree, C• maps each leaf I of T to a
clause CI of S ′, and θ• maps each leaf I to a substitution θI such
that CIθI is ground and false at I. The discussion above shows that
S has a decorated tree.

Given a decorated tree (T, C•, θ•) for S ′, either the root ε is a leaf,
then Cε is necessarily the empty clause 2, and we are done. Or we
find a path through T as follows. Define the ground atom HI and
the sign ±I , for each leaf I, so that ±IHI is the literal ±A0

i in CIθI

with the highest index i; i.e., the lowest (largest) literal on the path
leading to I.
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Definition 1 (Generative). Let us say that CI, and by extension
CIθI , is generative if and only if ±I is the + sign, and no literal is
selected: sel (CI) = ∅.

This is our version of Bachmair and Ganzinger’s notion of productive
clauses. Any clause CI can be written uniquely as ±IHI∨+PI∨−NI ,
where PI is the set of atoms occurring under the + sign in CI (except
HI), and NI is the set of atoms occurring under the − sign in CI .
(We write +P for the disjunction of all +B, B ∈ P, and −N for the
disjunction of all −B, B ∈ N .) Generative clauses are those where
±I is the + sign, and no literal is selected in −NI .

Now build a specific interpretation by Bachmair-Ganzinger forc-
ing. Intuitively, each productive clause can be written as a Horn-like
clause HI ⇐ −PI∧+NI, stating that HI should be set to true when-
ever all atoms in PI are false and all atoms in NI are true. We say
that −PI ∧ +NI is true, and that HI is forced whenever this hap-
pens; otherwise, HI will be set to the default value “false”. We shall
do so while traveling downwards inside T . E.g., look at Figure 1.
The clause +p is necessarily generative. The clause +q ∨−p cannot
be generative, because the only positive atom is not maximal, and
similarly for +r ∨ −q. Then, starting from vertex 1, we let r be set
to the default value false—no generative clause forces it to true. So
we must go down left, and arrive at vertex 2. Then we let q be false,
go to 4, and finally force p to true, arriving at 9. Formally:

Definition 2. Let (T, C•, θ•) be a decorated tree. Define a failure
node I in T as follows. Let I0 = ε be the root node of T . Then define
Ik, k ≥ 1, by induction on k as follows. Let Ik be given. If Ik is
a failure node, then stop, and let I = Ik. Otherwise, if there is a
generative clause CI′ = +HI′ ∨ +PI′ ∨ −NI′ such that −PI′θI′ ∧
+NI′θI′ is true in Ik and HI′θI′ = A0

k+1, then force A0
k+1 to true:

define Ik+1 as Ik, +A0
k+1. Otherwise, let Ik+1 be Ik.

Clearly,

Lemma 1. The partial interpretation I of Definition 2 satisfies the
following two properties:

(I.1) For every generative clause CI′ such that −PI′θI′ ∧+NI′θI′ is
true in I, HI′θI′ is true in I.

(I.2) If H is a true atom in I, then there is a generative clause CI′

such that HI′θI′ = H. Moreover, −PI′θI′ ∧+NI′θI′ is true in I.

10



These properties crucially depend on the fact that once an atom
has been forced to true, resp. false, in Ik, it will remain so in all
subsequent Ik′, k′ ≥ k. (Whence the name of forcing.)

The failure node I will be the place where resolution takes place,
much as inference nodes were the places where resolution took place
in Section 2.1. Let us see how I provides us with the main clause
C ′ ∨ −A′

1 ∨ . . . ∨ −A′
`, so that condition (iv) is satisfied:

Lemma 2. If there is at least one selected literal in CI , CI can be
written as C ′∨−A′

1∨ . . .∨−A′
`, where −A′

1, . . . ,−A′
` are exactly the

selected literals of CI , and ` ≥ 1. Otherwise, let σ be any substitution
that is more general than θI . Then, CI is necessarily of the form
C ′ ∨ −A′

1, where −A′
1σ is maximal in CIσ, i.e., where −A′

1σ 6≺ B

for every atom B in C ′σ.

Proof. If sel(CI) is non-empty, this is clear. So assume sel(CI) = ∅.
Consider ±IHI . If ±I were +, CI would be generative. But since
CIθI is false at I, −PIθI ∧ +NIθI is true in I. By (I.1) HIθI would
be true in I, too. This would make CIθI true at I, contradiction. So
±I is −. Let −A′

1 be HI . Clearly, A′
1θI is below or equal to AθI for

any A in C ′. So A′
1σ 6≺ Aσ, since � is stable and σ v θI . ut

We now show that the other conditions (i), (ii), (iii) on the rule
of ordered resolution with selection also apply:

Lemma 3. Let A′
1, . . . , A′

` be defined as in Lemma 2. For each i,
1 ≤ i ≤ `, there is a generative clause CI′

i
such that HI′

i
θI′

i
= A′

iθI .
Write CI′

i
as Ci∨+Ai1∨ . . .∨+Aini

, where +Ai1, . . . , +Aini
, are

all the literals L in CI′
i
such that LθI′

i
= +A′

iθI . Then:

(i) ni ≥ 1;
(ii) the mgu σ = mgu{Aij = A′

i|1 ≤ i ≤ `, 1 ≤ j ≤ ni} exists, and
σ v θ, where θ = θI ∪ θI′

1
∪ θI′

2
∪ . . . ∪ θI′

`
;

(iii) sel(Ci ∨+Ai1 ∨ . . . ∨+Aini
) = ∅ and Ai1σ 6- B for every atom

B in Ciσ, for every i, 1 ≤ i ≤ `;

Proof. Since CIθI is false at I, all the atoms A′
iθI are true in I. By

(I.2), first part, there is a generative clause CI′
i

such that HI′
i
θI′

i
=

A′
iθI . Necessarily, CI′

i
θI′

i
contains the literal +A′

iθI .
Let therefore +Ai1, . . . , +Aini

, ni ≥ 1, all the literals L in CI′
i
such

that LθI′
i

= +A′
iθI , and let Ci be the disjunction of the remaining

literals of CI′
i
. (Note that there may be several such literals L, whence
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ni may be different from 1, requiring positive factoring.) We have just
found the side premise CI′

i
= Ci ∨ +Ai1 ∨ . . . ∨ +Aini

. Since ni ≥ 1,
(i) obtains.

Then, AijθI′
i

= A′
iθI . Since without loss of generality, Aij and

Ai′j′ have no free variable in common whenever i 6= i′, and since
Aij and A′

i′ have no free variable in common (for every i, i′, j), the
substitution θI ∪ θI′

1
∪ θI′

2
∪ . . .∪ θI′

`
makes sense, and unifies all Aijs

and A′
is: (ii) follows.

Since CI′
i

is generative, no literal is selected in it. Assume that
Aijσ - Bσ for some B ∈ Ci; by stability, using σ v θI′

i
, AijθI′

i
-

BθI′
i
, that is, HI′

i
θI′

i
- BθI′

i
. This is impossible, since HI′

i
θI′

i
is the

largest literal in CI′
i
θI′

i
, since by construction BθI′

i
6= HI′

i
θI′

i
, and since

% restricts to an ordering on ground atoms. So (iii) obtains. ut

Therefore C1σ ∨ . . . ∨ C`σ ∨ C ′σ is indeed inferrable by the rule
of ordered resolution with selection.

We now turn to termination. Let (T ′, C ′
•, θ

′
•) be the new decorated

tree obtained from (T, C•, θ•) as follows. Let S ′ be the set of clauses
of which (T, C•, θ•) is a decorated tree, and let S ′′ be S ′ union the
resolvent C1σ ∨ . . . ∨ C`σ ∨ C ′σ. We must show that (T ′, C ′

•, θ
′
•) is

less than (T, C•, θ•) in some well-founded ordering.
This ordering must be more sophisticated than the natural order-

ing on sizes |T | of trees T that we used in Section 2.1: if we were to
use this ordering, we should show that the resolvent is false at some
vertex strictly above I. This won’t be the case here, mainly because
we do not implement negative factoring. However, at least the resol-
vent (C1σ ∨ . . .∨ C`σ ∨ C ′σ)θ = C1θI′

1
∨ . . .∨ C`θI′

`
∨C ′θI is false at

I (if not higher in the tree). Indeed, C ′θI is false at I, since C ′θI is
a sub-clause of CIθI , which is false at I. And each CiθI′

i
, 1 ≤ i ≤ `,

is false at I, by the following argument. The generative clause CI′
i

equals +HI′
i
∨ +PI′

i
∨ −NI′

i
. By construction of CI′

i
and by (I.2),

second part, −PI′
i
θI′

i
∧ +NI′

i
θI′

i
is true at I. By construction, CiθI′

i

is exactly the sub-clause +PI′
i
θI′

i
∨ −NI′

i
θI′

i
, which is false at I. So

(C1σ ∨ . . . ∨ C`σ ∨ C ′σ)θ is indeed false at I. Since it only contains
atoms not lower than the atoms in the premises, it is false at I.

It is therefore meaningful to consider:

Definition 3. Let I ′ be the highest vertex in T , above I, where the
resolvent (C1σ ∨ . . .∨C`σ ∨C ′σ)θ is false. Define the new decorated
tree (T ′, C ′

•, θ
′
•) as follows:
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(a) If I ′ is strictly higher than I in T , then let T ′ be the closed tree
whose leaves are I ′ plus all the leaves of T that are not below I ′.
(“Chop at I ′.”) Let C ′

I′ be the resolvent C1σ ∨ . . . ∨ C`σ ∨ C ′σ,
and θ′I′ be θ. Let C ′

I′′ be CI′′ and θ′I′′ be θI′′ for every I ′′ 6= I ′.
(b) If I ′ = I, let T ′ be just T , C ′

I be the resolvent C1σ∨. . .∨C`σ∨C ′σ

(which thereforce replaces CI = C ′ ∨ −A′
1 ∨ . . . ∨ −A′

` at the leaf
I), θ′I be θ; let C ′

I′′ be CI′′ and θ′I′′ be θI′′ for every I ′′ 6= I.

The latter case can only happen when the lowest atom of (C1σ∨. . .∨
C`σ∨C ′σ)θ is the same as that of CIθI , i.e., HIθI . Consider the other
literals of (C1σ ∨ . . .∨C`σ ∨C ′σ)θ = C1θI′

1
∨ . . .∨C`θI′

`
∨C ′θI . The

literals in CiθI′
i
, 1 ≤ i ≤ `, are, by definition of Ci, strictly higher

than HI′
i
θI′

i
= A′

iθI , which is an atom of CIθI , and is therefore higher
than or equal to HI . The literals of CiθI′

i
are then always strictly

higher than HI . The only reason why HI can occur in (C1σ ∨ . . . ∨
C`σ ∨C ′σ)θ = C1θI′

1
∨ . . .∨C`θI′

`
∨C ′θI is therefore that it occurs in

C ′θI . What matters here is that by replacing CIθI by C1θI′
1
∨ . . . ∨

C`θI′
`
∨ C ′θI as the clause at leaf I, we have replaced large literals

HIθI by clauses CiθI′
i

which contain an arbitrary number of strictly
smaller literals.

This suggests defining a measure based on multiset extensions.
Formally:

Definition 4. For every failure node I ′ in a decorated tree (T, C•, θ•),
let µ1(CI′ , θI′) be the multiset of all AθI′ , where ±A ranges over the
literals of CI′. This is ordered by the multiset extension �mul of �.

In case (b), where I ′ = I, we therefore obtain µ1(CI , θI) �mul µ1(C
′
I ,

θ′I).

Definition 5. Define µ−(T, C•, θ•) as the multiset of all measures
µ1(CI′, θI′), when I ′ ranges over the failure nodes of T .

In case (b), µ1(CI′, θI′) decreases strictly, while µ1(CI′′, θI′′) remains
unchanged for the other leaves I ′′. So µ−(T, C•, θ•) (�mul)mul µ−(T ′,

C ′
•, θ

′
•) in case (b). Let |T | denote the size of T , and note that

|T | = |T ′| in this case. In case (a), clearly |T | > |T ′|, so in any
case µ(T, C•, θ•) (>, (�mul)mul)lex µ(T ′, C ′

•, θ
′
•), where:

Definition 6. The measure µ(T, C•, θ•) is defined as the pair (|T |,
µ−(T, C•, θ•)).

Since > is well-founded, and since �, which is an ordering on a finite
set of atoms A0

1, . . . , A
0
n, is also well-founded, we conclude:

13



Lemma 4. The reduction relation that replaces (T, C•, θ•) by (T ′, C ′
•, θ

′
•),

as defined in Definition 3, terminates.

We now terminate the proof of Theorem 1. Assume S unsatisfiable.
Starting from a decorated tree for S, we build a derivation by ordered
resolution with selection of S = S0, S1, . . . , Sk, . . . , each mapped to
a decorated tree (T0, C0•, θ0•), (T1, C1•, θ1•), . . . , (Tk, Ck•, θk•), . . . .,
where each decorated tree is obtained from the previous one by the
reduction defined in Definition 3. By Lemma 4, this terminates, say
at step k. Then the root of Tk must be a failure node, so Sk contains
the empty clause 2. ut

This proof clearly takes its roots in both the semantic tree tech-
nique and Bachmair and Ganzinger forcing. Note that we only re-
quire % to be strongly stable. We don’t need it to be a reduction
ordering, or to be total on ground atoms, or even to be well-founded.

2.3 Redundancy Elimination and Games

An important component of every automated deduction system is
a set of redundancy elimination rules. Classic redundant clauses in-
clude tautologies and subsumed clauses [BG01a]. Other useful redun-
dancy elimination rules include simplification rules. A crucial import
of Bachmair and Ganzinger’s approach to resolution was to define
standard redundancy criteria, a unified approach justifying which
redundant clauses can be eliminated, and which simplification rules
can be applied while preserving completeness.

We may see the subtle interaction between resolution and redun-
dancy rules as a two-player game [dN95] between a player P and
an opponent O. At each turn, either the empty clause 2 has been
derived, and P wins, or P chooses a resolvent to produce, then O

applies any finite number of redundancy rules. Completeness is then
equivalent to the existence of a winning strategy for P, starting from
any unsatisfiable set S of clauses.

For simplicity, and without loss of generality, we shall assume that
O can only add clauses, or remove clauses. Replacing and simplifying
clauses will be implemented by adding the replacement clauses and
removing the replaced clauses.

The proof of Theorem 1 shows what resolvent P should play at
each turn; this resolvent is the one we constructed, which makes

14



µ(T, C•, θ•) decrease strictly. Completeness in the presence of re-
dundancy elimination rules obtains as soon as, whatever O does, it
can only make the chosen measure µ(T, C•, θ•) decrease or stay the
same. This is obvious when O adds a clause: (T, C•, θ•) stays the
same. This is trickier when O removes a clause. We need to make
sure that: (†) whatever clause C is removed by O from the current
clause set S ′, for any leaf I ′ of T such that C = CI′ (note that there
might be 0, 1, or several such leaves), there is another clause C ′

I′ in
S such that some ground instance C ′

I′θ
′
I′ of C ′

I′ is false at I ′, and
µ1(CI′, θI′) �mul µ1(C

′
I′, θ

′
I′), where �mul is the reflexive closure of

�mul. If so, we shall change (T, C•, θ•) into (T ′, C ′
•, θ

′
•), where T ′ = T ,

C ′
I′ and θ′I′ are as given above for all leaves I ′ such that C = CI′

(note that C ′
I′θ

′
I′ cannot be false strictly above I ′, since I ′ is a fail-

ure node, whence T ′ = T ), and C ′
I′ = CI′, θ′I′ = θI′ for all other

leaves I ′. It is clear that µ(T, C•, θ•) will be larger than µ(T ′, C ′
•, θ

′
I′)

in the reflexive closure of (>, (�mul)mul)lex, whence completeness is
preserved.

Let us find a more readable criterion than condition (†) above.
Recall that C1, . . . , Ck |= C if and only if every Herbrand interpreta-
tion that makes all ground instances of C1, . . . , Ck true also makes
every ground instance of C true. Equivalently, every Herbrand in-
terpretation that makes some ground instance of C false must make
some ground instance of some Ci, 1 ≤ i ≤ k, false. By analogy, let us
say that C1 . . . , Ck |=∗ C if and only if every partial interpretation
that makes some ground instance of C false must make some ground
instance of some Ci false, too, 1 ≤ i ≤ k.

Imitating Bachmair and Ganzinger’s standard redundancy cri-
terion, we may enforce the above condition (†) by requiring the
stronger property that C1, . . . , Ck |=∗ C, for some clauses C1, . . . , Ck

in the current clause set S such that C �mul C1, . . . , C �mul Ck. Here
�mul makes sense provided we see clauses as multisets of literals, ig-
noring signs. (The standard redundancy criterion uses |= instead
of |=∗, and the ordering used is slightly different in Bachmair and
Ganzinger’s work. The latter is inconsequential.) Let us show that
indeed (†) must hold. For each leaf I ′ where C = CI′, since C1, . . . ,

Ck |=∗ C, there is a clause Ci, 1 ≤ i ≤ k, having a ground instance
that is false at I ′. Let C ′

I′ be Ci, and C ′
I′θ

′
I′ be the corresponding

ground instance. We must show that µ1(CI′, θI′) �mul µ1(C
′
I′, θ

′
I′).

Since CI′ = C �mul Ci = C ′
I′, we may obtain C ′

I′ from CI′ by repet-
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itively replacing atoms by finitely many smaller ones in the � strict
ordering. Since � is stable, we may reproduce this at the ground
level, and obtain C ′

I′θ
′
I′ from CI′θI′ by repetitively replacing ground

atoms by smaller ones in the � strict ordering. So µ1(CI′, θI′) �mul

µ1(C
′
I′, θ

′
I′), and (†) obtains.

In case C is a tautology C0 ∨ +A ∨ −A, k is zero, and the crite-
rion is vacuously satisfied: we can always eliminate tautologies with-
out breaking completeness in ordered resolution with selection. In
case C = CI′ is subsumed by some clause C1 = C ′

I′′ (k = 1), it is
not necessarily the case that C �mul C1, or even µ1(CI′, θI′) �mul

µ1(C
′
I′′, θ

′
I′′). E.g., take C = +P (x), C1 = +P (x) ∨ +P (y), which

subsume each other, while C 6�mul C1. This suggests that elimi-
nating subsumed clauses is fraught with danger. And indeed, it is
well-known that eliminating backward-subsumed clauses may break
completeness. We shall let the reader check that we indeed obtain
µ1(CI′, θI′) �mul µ1(C

′
I′′, θ

′
I′′) as soon as C ′

I′′ subsumes C linearly ,
i.e., C is of the form C ′

I′′σ ∨ C ′′, where σ does not unify any dis-
tinct literals in C ′

I′′ (i.e., C ′
I′′σ is not a factor of C ′

I′′). This justifies
that eliminating linearly subsumed clauses (whether backward or for-
ward) does not break completeness. Eliminating linearly subsumed
clauses is implemented in SPASS [WBH+02].

Our argument shows that completeness is in fact preserved if we
remove C = C ′

I′′σ ∨ C ′′, when both C and C ′
I′′ are in S, whatever σ

is (i.e., even when C is subsumed non-linearly by C ′
I′′), provided C ′′

contains an atom A such that A � B for every B in C ′
I′′σ: indeed in

this case C can only be false at a vertex strictly below I ′′, hence C

cannot be of the form CI′ for any failure node I ′.

Many other redundancy elimination rules are listed in [BG01a],
on which the arguments above apply. We would like to end this
section by examining the subtle case of the splitting-with-naming
rule of [RV01a] (which was called splittingless splitting in [GLRV04],
by analogy with inductionless induction). This will in particular show
where using |=∗ instead of |= matters. Assume we are given an initial
set of clauses on a set P of predicates. Call these P-clauses. For each
equivalence class of P-clauses C modulo renaming, let pCq be a
fresh nullary predicate symbol not in P. Call these fresh symbols
the splitting symbols. The splittingless splitting rule allows one to
replace a clause of the form C ∨ C ′, where C and C ′ are non-empty
clauses that have no variable in common, where C ′ is a P-clause,
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and where C contains at least one atom P (t1, . . . , tn) with P ∈ P,
by the two clauses C ∨ −q and +q ∨ C ′, where q = pC ′q. This
rule is not only effective in practice [RV01a], it is also an important
tool in proving certain subclasses of first-order logic decidable, and
to obtain optimal complexity bounds (see e.g., [GL05]). Take � so
that P (t1, . . . , tn) � q for every P ∈ P and for any splitting symbol
q. Then it is easy to see that the standard redundancy criterion is
satisfied, and we can indeed replace C ∨ C ′ by the smaller clauses
C ∨ −q and +q ∨ C ′. So completeness is preserved, as shown by
Bachmair and Ganzinger, as soon as � is a well-founded reduction
ordering that is total on ground terms.

Our approach, as it is, does not apply here. We are paying the
dues for all the benefits that our use of compactness brought us.
Indeed, remember our proof started by taking a finite subset of
ground atoms A0

1, . . . , A0
n that are required for finding a contradic-

tion. While P is only required to play clauses with ground instances
among the latter, O is not limited in any such way. Here, O may
indeed produce C ∨−q and +q ∨ C ′, where q is not among A0

1, . . . ,
A0

n. Then we cannot remove C ∨ C ′. Assume that C ∨ C ′ is CI′
i
,

for some leaves I ′
i, 1 ≤ i ≤ k. There is no reason why C ∨ −q

or +q ∨ C ′ should be false at any I ′
i: indeed q is undecided. In

other words, while (C ∨ −q), (+q ∨ C ′) |= C ∨ C ′, we do not get
(C ∨−q), (+q ∨C ′) |=∗ C ∨C ′. Bachmair and Ganzinger’s standard
redundancy criterion applies, but our variant does not.

This can be repaired easily if O can only generate finitely many
splitting symbols. In this case, just assume they are all among A0

1,
. . . , A0

n, and completeness again obtains. E.g., in [GL05], the only
splitting symbols we ever need are of the form pB(X)q, where B(X)
is any disjunction of literals −P (X), where P is taken from a finite
set. So there are finitely many splitting symbols, and we can without
loss of generality assume they are all among A0

1, . . . , A0
n.

Despite these difficulties, completeness still holds in the general
case. However, this is more complex: first, we need to assume a form
of our old condition (∗), namely that the ordering � on splitting
symbols can be extended to a total ordering on the splitting sym-
bols q1, q2, . . . , qi, . . . (a similar condition is used in [SV05, Theo-
rem 4]); second, we need to consider transfinite semantic trees [HR91]
based on the transfinite (indexed by the ordinal ω +n) enumeration
q1, q2, . . . , qi, . . . , A

0
1, . . . , A

0
n, where A0

1, . . . , A0
n are the ground atoms
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P (t1, . . . , tn), P ∈ P, given by the compactness theorem. . . but this
is Bachmair and Ganzinger’s usual forcing argument in disguise.

2.4 Where Trees Matter: Completeness of Linear Resolution

Until now, we have only used semantic trees as a convenient way
of organizing paths, i.e., Herbrand interpretations. Similarly, Bach-
mair and Ganzinger’s forcing argument builds an interpretation. One
might therefore ask whether the use of trees brings any additional
benefit than just reasoning on paths.

We claim that linear resolution can be shown complete using a
semantic tree technique. This appears to be new by itself: the stan-
dard proof of completeness of linear resolution is by Anderson and
Bledsoe’s excess literal argument, applied to so-called minimally un-
satisfiable sets of clauses. Furthermore, our semantic tree technique
will really use trees, not just the paths inside the trees.

We won’t make the full proof of completeness explicit. In partic-
ular, we will do as though all clauses were propositional. This is in
the name of clarifying the argument. Also, this will let the readers
enjoy filling in all details by themselves.

The rule of linear resolution can be explained as follows. Start
from a clause set S0, and pick a clause C0 in S0, non-deterministically.
Find a resolvent of C0 (the center clause) with some clause in S0

(the side clause). Name this resolvent C1; this is the top clause. The
current clause set is now S1 = S0 ∪ {C1}. Then find a resolvent of
the top clause C1 (now the new center clause) with some side clause
in S1, call it C2 (the new top clause). Proceed, getting a sequence of
successive resolvents Ci, i ≥ 0, until (hopefully) the empty clause 2

is obtained. Observe that this is a non-deterministic procedure. The
point in linear resolution is that the only allowed center clause at
the next step is the previous top clause.

That linear resolution is complete means that, if S0 is unsatis-
fiable, then there is a sequence of choices, first of C0, then of each
side clause, so that the empty clause 2 eventually occurs as the top
clause. Our technique will establish a more general result: linear or-
dered resolution, where each resolvent is constrained to be ordered
(see Section 2.1), is complete again. This holds even if we only allow
factoring in center clauses but disallow it in side clauses.
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This refinement of linear resolution can be formalized as follows.
The only deduction rule is:

∓A′

1 ∨ C′ ± A1 ∨ . . . ± Am ∨ C

Cσ ∨ C′σ

m ≥ 1,

σ = mgu(A1 = A2 = . . . = Am = A′

1),
Aiσ 6- B, A′

1σ 6- B ∀B ∈ Cσ ∨ C′σ,

1 ≤ i ≤ m

where ± is the same sign throughout, and ∓ is its opposite. The
left premise is meant to be the side clause, and the right premise is
the center clause.

The process of linear resolution is then defined through a tran-
sition relation. A state of the linear resolution procedure is a pair
(S, C), where C is a clause in S. The transition relation of linear
resolution) is given by

(S, C) ; (S ∪ {C ′}, C ′)

where
C′′ C

C′

by the ordered linear resolution rule above, for some C ′′ ∈ S. Re-
member that C is the center clause, C ′′ is the side clause, and C ′ is
the top clause.

Completeness means that, if S is unsatisfiable, then (S, C) ;
∗

(S ′, 2) for some C ∈ S and some clause set S ′.

We prove this by modifying the notion of semantic tree slightly.
E.g., consider the example of Figure 1, this time with the ordering
q ≺ r ≺ p, see Figure 2.

Now look at vertex 2. The choice on r here is irrelevant: there
is no clause labeling any failure node below 2 that depends on the
truth value of r. It is therefore tempting to reduce the semantic tree
to the one shown in Figure 3, where vertex 2 has been replaced by
the subtree rooted at vertex 5. This reduction process is similar to
that used in BDDs [Ake78].

Consider again a finite enumeration A0
1, . . . , A

0
n of all ground atoms

in the finite unsatisfiable set of ground instances of S. We now al-
low paths in semantic trees to skip over some atoms, as in Figure 3,
where r is skipped in the paths on the left: r is a don’t care. But
atoms will still be enumerated in the same ordering on each path,
i.e., we disallow flipping q and r on some paths but not all.

19



u uA
A

A
A�

�
�

� u uA
A

A
A�

�
�

�

u u�
�

�
�@

@
@

@ u u�
�

�
�@

@
@

@

u uA
A

A
A�

�
�

�

+p
+q ∨ −p

+p
+q ∨ −p

u uA
A

A
A�

�
�

�

false true

12 13

u u

u u

u

�������HHHHHHH

false true

false true false true

false false falsetrue true true

q :

r :

p :

1

2 3

4 5 6 7

8 9 10 14 15

−p ∨ −q ∨ −r

+p

11

+r ∨ −q
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Formally, define a reduction rule as
follows. A redex in a decorated tree T

for S is any subtree of T of the form
shown on the right, where there is no
ground clause C ′ ∨ −A labeling any
failure node in Tright (or, symmetri-
cally, where no ground clause C ∨+A

labels any failure node in Tleft). Tleft Tright

A

(1)

Given such a redex, the ground clauses that label the failure nodes
in Tright do not contain −A by assumption, and cannot contain +A,
because they have to fail when A is taken to be true. It follows that
replacing the whole subtree by Tright in T yields a decorated tree
for S again. (The symmetric case where there is no ground clause
C∨+A labeling any failure node in Tleft leads to replacing the whole
subtree by Tleft instead.)

It is easy to see that reducing bottommost redexes first termi-
nates. Moreover, the number of distinct clauses labeling failure nodes
in the normal form is at most the same number in the input tree.

A reduced semantic tree is one that contains no redex. Any path in
a reduced semantic tree is a partial Herbrand interpretation ±1A

0
i1
,

±2A
0
i2
, . . . ,±kA

0
ik

, 1 ≤ i1 < i2 < . . . < ik ≤ n.

Now take a reduced semantic tree T for the unsatisfiable set S not
containing 2. The set of clauses ST decorating the failure nodes of T

will play the role of the minimally unsatisfiable sets in the standard
completeness argument. (Technically, ST is minimally unsatisfiable
among those subsets of S consisting only of atoms among A0

1, . . . , A
0
n,

but need not be minimally unsatisfiable in the absolute sense.)

For every clause C in ST , there
is a failure node I in T such
that C = CI. Look at the tree
Tright that is the brother of I in
T . (Symmetrically, I may be on
the right). We have named A the
lowest (largest) atom in CI . Tright

false trueA

I (2)

In particular, CI is of the form C1∨+A. Since T is reduced, there is
a failure node I ′ inside Tright such that CI′ is of the form C2 ∨ −A.

Now resolve CI = C1 ∨ +A with CI′ = C2 ∨ −A, getting the
resolvent C ′ = C1 ∨C2. C ′ must be false at I ′, because C1 is already
false at the vertex right above I, and C2 is false at I ′, which is below
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that same vertex. Note that I ′ may lie inside Tright, or above the top
vertex of the subtree shown in Figure 2.

Look at the vertex I ′′ where C ′ fails, i.e., the highest vertex above
I ′ where C ′ is false. Cut the tree T at I ′′, making I ′′ a new failure
node, and decorate I ′′ with C ′ in the new semantic tree T ′.

It may be the case that T ′ is not reduced, so reduce it. Let T ′′ be
some normal form of T ′ for the notion of reduction defined above.
(Beware that reduction need not be confluent.)

The important observation is that C ′—our top clause—will still
decorate some failure node in T ′′, provided we reduce T ′ to T ′′ in the
right way. This can be observed by looking more finely at the shape
of the subtrees involved.

Before we resolve, our re-
duced tree T looks as
shown on the right. We
have assumed in this illus-
tration that the branches
leading to I and I ′ were
leftmost, which would im-
ply that C1 and C2 con-
tain only positive atoms.
The general situation re-
duces to this one by appro-
priate sign changes, i.e.,

C1v+A
is false here

C2v−A
is false here

I’

A

A

A

AA=

A

A

I

T1

0
i1

0
i2

0
ij−1

0
ij

0
ij+1

0
ik

Tj−1

Tj+1

Tk

by consistently exchanging +A0
i with −A0

i in all clauses and in the
tree whenever needed.

Note that the subtrees T1,
. . . , Tj−1, Tj+1, . . . , Tk are
reduced.
After resolution, the tree T ′

will be as shown on the
right, or with C1 ∨ C2 la-
beling some node higher in
the tree.
Since A does not occur any
longer in C1 ∨C2, this may
create redexes. But we may
easily reduce T ′ as follows.

A

A

A

AA=

A

A

C1v

C1vC2

I
+A

is false here

I’

is false here

T1

0
i1

0
i2

0
ij−1

0
ij

0
ij+1

0
ik

Tj−1

Tj+1

Tk
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Pick the subsequence of the sequence of atoms A0
i1
, . . . , A0

ik
that

actually occur in C1 ∨ C2, say A0
i3
, A0

i4
, A0

i7
, build the branch going

from the root to the leaf decorated with C1 ∨C2 and containing just
those atoms, and attach the corresponding side trees as follows:

This is our tree T ′′. It is
clearly reduced, and the
top clause C1 ∨ C2 clearly
labels one of its failure
nodes. We can therefore
reuse it as the center clause
in the next resolution step.

A

A

A

C1vC2
is false here

T3

0
i3

T4

0
i4

T7

0
i7

It only remains to show that this process (mixing going from T to
T ′ by one resolution step, then reducing T ′ to T ′′ in the appropriate
way) terminates: the measure µ of Definition 6 is still defined on
our new notion of semantic trees, and decreases not only when going
from T to T ′, but also during reduction.

As we said earlier, we leave the formal proof to the reader. Since
we use the same measure µ as in Section 2.2, we can dispense with
factoring in the side clause, as announced. Indeed, going from T to T ′

amounts to replacing the side clause by a resolvent where the literal
resolved upon is replaced by finitely many strictly smaller literals,
coming from the center clause, as in Lemma 4.

A nice consequence of this new completeness proof is, as for any
other proof obtained by semantic trees, that completeness is eas-
ily seen to be retained in the presence of redundancy elimination
techniques.

E.g., we can remove tautologies, because tautologies cannot dec-
orate any failure node. But this should be understood in a slightly
different manner as for ordinary resolution, because linear resolution
is a non-deterministic process. The completeness argument above
shows that there is a way of doing linear resolution that leads to the
empty clause without deriving any tautology as top clause. So, when-
ever we use linear resolution and derive a tautology as top clause,
we can immediately stop deriving new clauses and backtrack.

Similarly, we can eliminate linearly subsumed clauses. Backward
subsumption is not an issue here. Forward subsumption is as subtle
as tautology elimination: if the top clause is subsumed, then we can
stop and backtrack. Alternately, the completeness argument shows
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that we can replace C ′ by C ′
1, and continue with C ′

1 as the new top
clause, thus restarting a proof.

We would like to stress that the tree structure is important here:
the above proof crucially rests on reduction, which cannot be defined
by just considering the paths of the tree T : brother subtrees have to
be examined to recognize redexes.

3 Ordered Resolution, Paramodulation and Factoring

We now move to clauses involving the equality predicate.

3.1 Inference rules

Inference rules. First, we give inference rules applying to clauses
defined as multisets of atoms: the same atom may appear several
times in a clause. A ground instance of a clause is a true instance,
there is no need to apply contractions. We use also an ordering on
atoms extending an ordering � on terms that will be defined later.

Resolution

+A ∨ C − A′ ∨ D

Cσ ∨ Dσ
σ = mgu(A = A′), Aσ 6≺ B ∀B ∈ Cσ ∨ Dσ

Monotonic Paramodulation

C ∨ l = r D ∨ ±A[u]

Cσ ∨ Dσ ∨ ±Aσ[rσ]



σ = mgu(l = u), lσ = rσ 6≺ B ∀B ∈ Cσ

rσ 6≺ lσ, Aσ 6≺ B ∀B ∈ Dσ

Factoring

+A ∨ +A′ ∨ C

+Aσ ∨ Cσ
σ = mgu(A = A′), Aσ 6≺ B ∀B ∈ Cσ

Reflexivity
−u = v ∨ C

Cσ
σ = mg(u = v), uσ = vσ 6≺ B ∀B ∈ Cσ

Fig. 4. ORMP : Ordered versions of Resolution, Monotonic Paramodulation, Factor-
ing and Reflexivity

Reflexivity is also called equality resolution in the literature, be-
cause it appears to be a resolution between the clause −u = v ∨ C

and the reflexivity axiom x = x.
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This inference system is known to be complete when the ordering
is a stable ordering, which is monotonic, total and well-founded on
ground terms, in which case it must have the subterm property as
well. Relaxing any one of these properties raises the question of what
the new inference rule should be. Some authors [BG01b,BGNR99]
keep the same inference rule for paramodulation, but we prefer an-
other formulation which pinpoints the needed properties of the or-
dering in use. This is why we have renamed the paramodulation in-
ference rule as monotonic paramodulation. We introduce now our ver-
sion of paramodulation, ordered paramodulation and compare both
rules by means of a few examples.

Ordered Paramodulation

C ∨ l = r D ∨ ±A[u]

Cσ ∨ Dσ ∨ ±Aσ[rσ]



σ = mgu(l = u), lσ = rσ 6≺ B ∀B ∈ Cσ

Aσ 6≺ Aσ[rσ], Aσ 6≺ B ∀B ∈ Dσ

Fig. 5. Ordered Paramodulation Revisited

In ordered paramodulation, checking the rule instance has been
replaced by checking the whole rewritten atom: ordered paramodu-
lation coincides with monotonic paramodulation when the ordering
is monotonic, total and well-founded. We call ORP the set of in-
ference rules made of ordered resolution, ordered paramodulation,
(ordered) factoring and (ordered) reflexivity.

Violating monotonicity. ORP is incomplete when the ordering on
terms does not satisfy monotonicity. Consider the following unsatis-
fiable set of ground clauses

{gb = b, fg2b 6= fb} with fg3b � fgb � fb � fg2b � gb � b

Assuming that the ordering on terms is extended to atoms consid-
ered as multisets by taking its multiset extension, this set of ground
unit clauses is closed under the inference rules in ORP . Note that
the ordering can be easily completed so as to satisfy the subterm
property on the whole set of ground terms.

Using monotonic ordered paramodulation instead of ordered para-
modulation yields the following set of clauses:

{gb = b, fg2b 6= fb , fgb 6= fb, fb 6= fb, 2}
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and ORMP is indeed again complete [BG01b]. Note however that
monotonic ordered paramodulation can be interpreted as ordered
paramodulation with an ordering which is the monotonic extension
of the ordering on ground instances of equality atoms. This ordering
is therefore essentially monotonic.

Violating subterm. ORP turns out to be again incomplete when the
ordering on terms does not satisfy the subterm property. Consider
the following unsatisfiable set of ground clauses

{a 6= fa, fb 6= fa, b = fb, a = fb}, with a � b � fa � fb

This set is closed under ordered paramodulation, resolution, factor-
ing and reflexivity, assuming that the ordering on terms is extended
to atoms considered as multisets by taking its multiset extension.

In [BGNR99], the authors show completeness ofORMP for Horn
clauses when using a well-founded ordering which does not have the
subterm property (with a proof which is quite intricate). To compute
the set of clauses generated, we first need to extend the ordering into
a well-founded ordering of the whole set of atoms:

fna � fnb � . . . � f 2a � f 2b � a � b � fa � fb

ORMP then yields the following infinite set of clauses:

{a 6= fa, fb 6= fa, a = fb}∪
{fnb = fmb, a 6= fmb, fn+1b 6= fm+1b | n ≥ 0, m > 0}∪

{2}

Indeed, any extension of the ordering would yield the same result,
because the lefthand and righthand sides of equations are compared
instead of the atoms themselves. Therefore, the equations a = fb

and b = fb suffice for generating the whole set.

Subterm monotonicity does not suffice. We thought for a while that
monotonicity could be restricted to the subterm relationship. Here
is an example showing that this restriction of monotonicity does not
ensure completeness:

{fa 6= b, a = b, gb = b, fga = b}
with

f 2b � f 2a � fgb � fga � ga � gb � fb � fa � a � b
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Indeed, we need to paramodulate fga = b by a = b as if fga were
bigger than fgb. In other words, the ordering � must be monotonic
on the rewrite relation induced by the equalitiy atoms s = t gener-
ated from the clauses s = t ∨ C in which s = t is maximal.

3.2 Ordering terms, atoms and clauses.

From now on, we assume that � is a stable, partial quasi-ordering
on terms which restricts to a total strict ordering on ground terms
which is monotonic and satisfies the subterm property. As a conse-
quence, it is a simplification ordering, and is therefore well-founded
on any set of terms which is generated from a finite signature. As
another straightforward conseuqnece, ordered paramodulation and
monotonic ordered paramodulation coincide.

We assume further that � is extended to atoms so as to satisfy
the following two properties:

(monotonicity) s � t implies A[s] � A[t] for any atom A[s];
(*) s � t implies A[s] � s = t if A is not an equality atom.
Note that monotonicity extends monotonicity from terms to atoms.

It also implies that u[s] = u[t] � s = t if u[] 6= [] by the subterm
property of � applied twice and transitivity.

An example of ordering satisfying these properties can be ob-
tained by extending the ordering � from terms to atoms by letting

P (u) � Q(u) iff (max(t), P, u)(�mul, >P ,�stat(P ))lex(max(v), Q, v)

where the precedence >P is a well-founded ordering on the set of
predicate symbols in which the equality predicate is minimal and
stat is a function from P to {lex, mul} such that stat(P ) = mul iff
P is the equality predicate.

3.3 Herbrand equality interpretations

Our goal is now to construct all Herbrand equality interpretations
over a finite set A of ground atoms, which we suppose without loss
of generality to be closed under reflexivity, that is, to contain all
atoms s = s such that s = t ∈ A for some t. The total well-founded
ordering � allows us to order the finite set of atoms, hence A =
{Aj}j<n such that Ai � Aj if and only if i > j (remember that
we do not distinguish s = t from t = s). The enumeration of the
set of atoms based on the ordering � provides us with a convenient
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characterization of Herbrand equality interpretations which are then
organized as a finitely branching tree whose all nodes at a given
depth assign a truth value to the same atom. Interpretations are in
one-to-one corespondance with the branches of the tree.

Unlike the previous usual formulation of Herbrand interpreta-
tions, we assume here for convenience a set of three truth values
{U, T, F} where U stands for the undefined truth value and is used
to consider partial interpretations as total functions over {U, T, F}.

Definition 7. A (partial) Herbrand interpretation I of a finite set
A = {Ai}i<n of atoms is a mapping [ ]I from A to the set of truth
values {U, T, F}. I is said to be total whenever its target is the subset
{T, F}.

Note that Herbrand interpretations are defined with respect to a
given finite vocabulary of atoms closed under reflexivity. As usual, a
partial interpretation I of an initial segment {Ai}i<j≤n of A satisfies
[Ak]I = U for all j ≤ k < n. This is used in particular to represent all
total interpretations assigning the same truth value among {T, F}
to the atoms in the initial segment, in the sense that if a formula φ

takes value x ∈ {T, F} in I, it takes the same value x in all total
extensions of I. Here, undefined values may occur anywhere.

The logical connectives are classically extended to the third truth
value by setting T ∨ U = T, F ∨ U = U, T ∧ U = U, F ∧ U = F

and ¬U = U . Interpretations are then extended to proposition-
nal formulae over A by taking their homomorphic extension. Let
U < T, U < F be the usual order on truth values, and < be its nat-
ural pointwise extension to partial Herbrand interpretations. The
intuition is that a partial Herbrand interpretation I of A stands for
all total Herbrand interpretations H bigger than I in the order on
interpretations.

We now turn our attention to Herbrand equality interpretations.
Let EI be the subset of equalities in A interpreted by T in some
Herbrand interpretation I. Our goal is to define partial Herbrand
equality interpretations in a way that specializes to the total case.

Definition 8. A Herbrand equality interpretation is a Herbrand in-
terpetation I that is compatible with the axioms of equality, that is:

(i) for any term s, [s = s]I = T ;
(ii) for any two atoms A, B such that A←→∗

EI
B, then [A]I =

[B]I ;
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(iii) for any two terms s, t such that s←→∗
EI

t and any term u

such that u[s] = u[t] ∈ A, then [u[s] = u[t]]I = T .

Note that the proof from A to B may involve atoms not in A. A
similar phenomenon may occur with the proof from s to t. Indeed,
the first two conditions suffice to characterize Herbrand equality in-
terpretations under our assumptions on � and A:

Lemma 5. A Herbrand interpretation I of A is a Herbrand equality
interpretation of A iff

(i) for any atom s = s ∈ A, [s = s]I = T ,
(ii) for any two different atoms A, B ∈ A such that B � A,

[A]I , [B]I ∈ {T, F} and A←→∗
EI

B, then [B]I = [A]I .

Note that no constraint at all is imposed on A, B when [A]I = U

or [B]I = U . In case of a total interpretation, we obtain the usual
characterization.

Proof. Clearly, if I is a partial Herbrand equality interpretation, (i)
and (ii) must be satisfied. We need to show the converse.

Assume that s←→∗
EI

t and u[s] = u[t] ∈ A for some u[]. If s

and t are identical, then [u[s] = u[s]]I = T by (i). Otherwise, let
s � t. Then, u[s] = u[t]←→∗

EI
u[t] = u[t] which belongs to A by

closure assumption and is smaller than u[s] = u[t] by property of
the ordering. By (ii) and (i), [u[s] = u[t]]I = [u[t] = u[t]]I = T . 2

We now verify our intuition that partial Herbrand equality inter-
pretations represent total ones:

Lemma 6. Let φ be an arbitrary propositionnal formula over the
vocabulary A, I be a partial Herbrand equality interpretation, and
H > I a total Herbrand equality interpretation. Then [φ]H = [φ]I iff
[φ]I 6= U .

We finally capture the idea that there are enough Herbrand equal-
ity interpretations on the one hand, and that a set of ground atoms
becomes unsatisfiable in presence of the axioms of equality:

Definition 9. A set S of Herbrand equality interpretations is com-
plete if every Herbrand equality interpretation in {T, F}A is smaller
than some interpretation in S in the order of interpretations.

Definition 10. A set C of clauses is said to be E-unsatisfiable if C
augmented with the axioms of equality is unsatisfiable.
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The following property of complete sets of Herbrand equality in-
terpretations is the basis of our completeness proof:

Lemma 7. A set G of ground clauses built from a set A of ground
atoms closed under reflexivity is E-unsatisfiable iff G refutes a com-
plete set of Herbrand equality interpretations over A.

Proof. Because the axioms of equality cannot refute Herbrand equal-
ity interpretations on the one hand, and a ground clause C refuting
a partial interpretation I refutes all total interpretations bigger than
I by Lemma 6 on the other hand. 2

We now consider the problem of extending a complete set S of
partial Herbrand equality interpretations over a finite set A of atoms
into a complete set S ′ of partial Herbrand equality interpretations
over A ∪ {B}. The new set of atom should of course contain the
atoms s = s and t = t whenever B is the equality atom s = t. We
will of course assume that s = s and t = t are added one by one
before s = t. The flexibility of partial interpretetations allows us to
extend each interpretation in S by exactly one interpretation in S ′:

Definition 11. Given a partial Herbrand equality interpretation I

over A, we define its extension I ′ to A ∪ {B} as follows:

1. If B ∈ A, I ′ = I. Otherwise,
2. If B is an atom s = s, then [B]I′ = T .
3. If B =EI

Ai ∈ A with [Ai]I ∈ {T, F}, then [B]I′ = [Ai]I .
4. If B is an atom s = t such that there exists Ai 6= Aj with [Ai]I =

T, [Aj]I = F and Ai =EI∪{s=t} Aj, then [s = t]I′ = F .
5. Otherwise, [B]I′ = U .

Note that Case 4 does not apply when B is strictly bigger than
any atom in A since � contains subterm.

Lemma 8. Assume S is a complete set of partial Herbrand equality
interpretations with respect to A. Then the set S ′ obtained from S

by replacing each partial Herbrand equality interpretation I by its
extension I ′ to A∪{B} is a complete set of partial Herbrand equality
interpretations with respect to A ∪ {B}.

Assume moreover that some interpretation I ∈ S is refuted by a
ground clause C. Then, its extensions I ′ in S ′ is refuted by the same
clause C.
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Proof. For the first statement, we need to show that every total
Herbrand equality interpretation extending I extends I ′. This follows
from Definition 8 and Lemma 5. The second statement follows from
Lemma 6. 2

Example 1. Let A be the set {A(a), a = c, A(b), a = b, A(c)} in in-
creasing order, A being a predicate and a, b, c constants. We give
from left to right: the 12 total Herbrand equality interpretations
over the subset {A(a), a = c, A(b), A(c)} of A; a complete set of 4
partial Herbrand equality interpretations; its extension to A.

A(a) a=c A(b) A(c)

T T T T
T T F T
T F T T
T F T F
T F F T
T F F F
F T T F
F T F F
F F T T
F F T F
F F F T
F F F F

A(a) a=c A(b) A(c)

T U U U
F T U F
F F T U
U F F U

A complete set
of four partial

Herbrand equality
interpretations.

A(a) a=c A(b) a=b A(c)

T U U U U
F T U U F
F F T F U
U F F U U

Its extension
with the

atom
a = b.

As usual, it is convenient to view a given set of Herbrand equality
interpretations as a tree.

Definition 12. Given a set S of partial Herbrand equality interpeta-
tions over the set of atoms A = {Ai}i<n ordered by �, we construct
the tree of Herbrand equality interpretations TS by induction on �.
Each node I in the tree defines a partial Herbrand equality interpre-
tation I of an initial segment {Ai}i<j<n of atoms enumerated so far
and a set EI of equalities interpreted by true in I. The node I has

1. a single successor J such that [Aj]J = x in case all interpretations
in S whose restriction coincide on {Ai}i<j assign the same value
x to Aj;

2. two or three successors otherwise, depending on the different val-
ues assigned to Ai by the interpretations in S whose restriction
coincide on {Ai}i<j<n.
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Case 1 applies in particular when Ai is an atom of the form s = s

for some term s, in which case [Ai]J = T , or when Aj =EI
Ak for

some k < j, in which case [Aj]J = [Ak]I .
It is clear that the set of branches of TS is in one-to-one corre-

spondance with the set S. This property will be exploited without
saying in the rest of the paper.

Definition 13. The tree TS of Herbrand equality interpretations over
A is narrow if every internal node I has either one successor assign-
ing a truth value among {U, T, F} to the atom A|I|+1, or else two
assigning the truth values among T and F respectively to the atom
A|I|+1. The set S of interpretations will be called narrow as well.

Lemma 9. Every complete set S of Herbrand equality interpreta-
tions over A contains a narrow complete set S ′.

Proof. Let I a interal node of TS with a son J such that [A|I|+1]J = U .
Then, all other sons of I if any may be deleted without compromising
completeness. 2

Using narrow sets of interpretations makes the undefined truth
value useless: if I has J for single successor assigning the truth value
U to the atom A|I|+1, then we can collapse the nodes I and J and
omit this atom. We prefer however to keep undefined values because
they allow us having a given atom interpreted at a given depth in
the tree of Herbrand equality interpretations, all branches having
therefore the same length. In other words, all branches of the tree
give a truth value in {U, T, F} to all atoms in A, rather than a
truth value in {T, F} to a subset of atoms in A as it is the case in
Section 2.4.

3.4 Semantic trees and generating interpretations

In this section, we assume given

– a finite set of atoms A = {AI}i<n closed under reflexivity such
that Ai � Aj iff i > j;

– an E-unsatisfiable set G of ground clauses built from the atoms
in A which is closed under positive factoring;

– a complete narrow set S of partial Herbrand equality interpreta-
tions over A, or equivalently, its associated narrow tree TS.
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We will say that the triple (A,G, S) (or equivalently (A,G, TS) or
even (A,G, TG) satisfies assumption (*). Note that both assumed
closure properties do not need extending the set of terms, as would
closure of G under ordered paramodulation.

Definition 14. Given (A,G, TS) satisfying (*), we call failure node
any node J of TS for which there exists C ∈ G such that [C]J = F and
[C]I = U for any ancestor I of J . We call semantic tree associated
with (A,G, TS) the tree obtained from TS by replacing a failure node
J on each branch of the tree by a leaf labelled with the associated
clause C. We denote it by TG.

Note that TG is not defined uniquely. This is on purpose, since
it will be convenient to consider non-minimal semantic trees in our
completeness proof. However, our definition forces the atom enumer-
ated at a failure node to be either T or F .

Since C is a ground clause, [C]J is defined iff all its atoms are
assigned a truth value in {T, F} by J . Hence, the failure node cannot
assign the undefined truth value to the last atom enumerated at a
failure node. Another consequence, since G is E-unsatisfiable, is that
the semantic tree is closed, that is, all its branches end up in a failure
node. As usual, the only clause refuting the root of the tree is the
empty clause.

We now define a specific interpretation G (actually, a class of
interpretations) ending up in a failure node at which an ordered
resolution or paramodulation will always be possible. The idea is that
an equality atom l = r should belong to EG, that is, be interpreted
in T by G, iff it corresponds to a clause l = r ∨ C which can be
used to perform a ground ordered paramodulation. The generating
interpretation is of course directly related to the notion of generated
equality of Bachmair and Ganzinger. It pops up very naturally in
the context of semantic trees.

Definition 15. The set of generating interpretation G of a narrow
closed semantic tree associated with the triple (A,G, TS) satisfying
(*) is defined inductively as follows. Assume some node I in the
semantic tree is the generating interpretation constructed so far. If
I is a leaf, we are done. Otherwise, let A be A|I|+1.

1. If I has a unique successor I ′ in the semantic tree, we choose I ′.
2. If I has a successor L which is not a failure node and A is an

equality atom such that [A]L = F , we choose L.
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3. If I has two successors K and L such that [A]L = F and L is a
failure node, we choose K. If A is the equality atom s = t, the
clause s = t ∨ D labelling L is called a generating clause and
s = t is a generated equation.

4. Otherwise we choose any successor of I.

We denote by GenG the set of generating clauses and by G an arbi-
trary generating interpretation.

Notice that we need not make any particular choice when the
enumerated atom is not an equality atom and the right son is not a
failure node, therefore leaving room for improvement. For example,
we could superimpose a selection function as in Section 2. Note also
that we could define generating interpretations for non-narrow trees.
The above definition then shows that we would always need taking
the successor J such that [A]J = U whenever there is such one.

In Bachmair and Ganzinger’s work, the generating interpretation
is unique, as well as the set of generating clauses. This is so because
they encode predicates as Boolean functions. Here, the generating
interpretation is not unique, but the set of generating clauses does
not depend upon the choice of a particular generating interpretation:
it is easy to see that a clause s = t∨C generates the equation s = t

with s � t if s = t is maximal in the clause and is irreducible
by the previously generated equations. The definition by Bachmair
and Ganzinger is slightly different, since they allow the right hand
side t of the equation s = t to be reducible. We could do that as
well, since this becomes important for showing completeness of the
superposition paramodulation strategy. This does not need changing
the definition of generating interpretations, it suffices to collect more
equations along them.

Lemma 10. Assume that G is a generating interpretation of a nar-
row closed semantic tree. Then EG is a canonical set of rewrite rules.

Proof. Assume an equation s = t is generated at the son L of some
node I. By definition, I must have at least two successors, hence the
newly atom s = t is irreducible with respect to EI .

Let now u = v ∈ EG \ (EI ∪ {s = t} and assume without loss of
generality that u � v. By definition of the tree of Herbrand equality
interpretations, u = v � s = t. By properties of �, u � s and u � t,
hence u is not a subterm of s or of t. It follows that s = t cannot be
reduced by u→ v.
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Therefore, s = t is irreducible with respect to EG \ {s = t}. Since
EG is clearly terminating, the result follows. 2

Lemma 11. Assume that G is a generating interpretation of a nar-
row closed semantic tree associated with the triple (A,G, TS) satis-
fying (*). Assume further that Ai←→

∗
EG

Aj for some j < i. Then,
there exists a generating clause s = t ∨ C in G such that:

(i) Ai−→s=t∈EG
B, with s � t and Ai � B,

(ii) s = t � A for every atom A of C,
(iii) [C]G = F .

In case the ordering � is not monotonic, the lemma does not hold
anymore, and reducible atoms may not be reducible by (irreducible)
generated equations. Our example violating subterm monotonicity
shows this behaviour for the atom fga = b which is reducible by
ga = a and ga = b, but not by a = b although a = b reduces ga. It is
easy to see that monotonicity is only needed for equations reducing
other equations, that is, for the equations in E .

Proof. (i) follows from Lemma 10 and the assumption Ai � Aj. Note
that B may not belong to A. We are left with (ii) and (iii). Let I be
the node of which G is a son.

Since s = t is the last atom enumerated by G, it is maximal in
the clause. Since G is closed under positive factoring, we can assume
without loss of generality that s = t 6∈ C, hence [C]G = [C]I = F

and s = t is strictly bigger than any atom in C. 2

3.5 Refutational completeness of ORP.

Let C be a set of clauses which is E-unsatisfiable. Our purpose is
to show that ORP is refutationnaly complete, that is, the empty
clause is generated in finite time from C. To do this, we will as usual
reason at the ground level, and use a lifting argument to relate both
the ground and non-ground levels. Our lifting argument is indeed
made simple because a ground instance Cγ of a clause is a multiset
of ground atoms, therefore eliminating any need for contraction.

Theorem 2. A set of clauses C is E-unsatisfiable iff the empty clause
belongs to the closure of G under ORP .

Proof. By compactness and Lemma 7, we chose first a finite E-
unsatisfiable set of ground instances of C. Let A be the set of ground
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atoms occuring in G. We add to A all atoms of the form s = s

whenever s = t ∈ A, and close G under positive factoring. We then
compute the set S of Herbrand equality interpretations over A and
organize it as a narrow tree TS. Therefore, the triple (A,G, TS) sat-
isfies (*). We finally compute the narrow closed semantic tree TG.
This ends up the initialization phase.

We define the complexity of a semantic tree TG to be the multiset
of clauses ∈ TG refuting its leaves. Complexities are compared in the
multiset extension of �. Since the last atom enumerated at a failure
node cannot be undefined, the smallest semantic tree in this order
is therefore the empty tree refuted by the empty clause.

During the course of the proof, we will perform an operation on
the current triple (A,G, TS) called extension, each time a new clause
is added to G, let us call G ′ the new set. First, we recompute the
set of atoms, let us call it A′, and complete it as before with the
necessary atoms s = s. As before, we also close G under positive
factoring. We then extend the complete set of interpretations S over
A into a new complete S ′′ by adding the atoms in A′ \A one by one,
in increasing order, thanks to definition 11. By Lemma 8, S ′′ is com-
plete. By Lemma 9, we now compute S ′ ⊆ S ′′ such that S ′ is narrow.
Therefore, the new triple (A′,G ′, TS′) satisfies (*). By Lemma 8, the
interpretations in S ′ are refuted by a subset of the clauses in G ⊆ G ′

that refute the interpretations in S. It follows that extensions do not
increase the complexity of the semantic tree.

We now reason by induction on the semantic tree TG. If TG is
empty, we are done. Otherwise, we choose an arbitrary generating
interpretation ending up in a leaf J of TG. By non-emptyness as-
sumption, J has a father node I. By definition of the semantic tree,
J is refuted by a clause in G of the form ±P (uγ) ∨ Cγ, in which
A = P (uγ) is the last atom enumerated by J , hence is bigger than
or equal to any atom in C, and A is assigned either the value T or
the value F in J . Let us assume that there exists some clause in
ORP(G) that refutes some extension J ′ of J to be defined next, and
is strictly smaller than ±P (uγ) ∨ Cγ. This clause may involve new
atoms (because of paramodulation inferences). We therefore apply
finitely many completion steps resulting in a set of clauses G ′ con-
taining G and the new clause and a semantic tree TG′ . By our as-
sumption, we can replace the clause ±P (uγ)∨Cγ refuting the node
J ′ extending J by the infered clause which is strictly smaller, there-
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fore decreasing the complexity of the semantic tree. We conclude by
induction hypothesis.

We are left showing that our assumption can be fullfilled. By
definition of the generated interpretation, there are four cases:

1. P (uγ) is of the form s = s, in which case I has J as single
successor labelled by ¬s = s ∨ Cγ � Cγ. By reflexivity, Cγ

belongs to ORP(G) and refutes the interpretation J .
2. P (uγ) is irreducible by a rule in EI . Then, I has two successors,

J and K which are both failure nodes by definition of G, labelled
by clauses in both of which the atom P (uγ) is maximal. Let these
clauses be +P (uγ) ∨ Cγ and −P (uγ) ∨ Dγ, in which P (uγ) is
strictly bigger than any atom occuring in Cγ. Therefore, Cγ∨Dγ

refutes the interpretation J .
3. A = P (uγ) is reducible by EI at a non-variable position p of

P (u) by an equation s = t ∈ EI such that s � t, yielding the
atom B[t]p. By Lemma 11, s = t is generated by a clause s =
t ∨ Dγ such that s = t is strictly bigger than any atom in Dγ.
Therefore, there is an ordered paramodulation between s = t∨Dγ

and the clause ±A ∨ Cγ, yielding B ∨ Cγ ∨Dγ, which therefore
belongs to ORP(G). Consider now the tree of Herbrand equality
interpretations extended from the previous one to the set of atoms
A ∪ {B[t]p. Let I ′, J ′ be the respective extensions of I, J . Since
[s = t]J = T , then [B[t]p]J ′ = [B[s]p]J ′ = F , and since B[s]p �
B[t]p, then [B[t]p]I′ = F . By Lemma 8, [Cγ]J ′ = [Dγ]J ′ = F ,
hence [Cγ ∨ Dγ]J ′ = F , and by the same token as previously
[Cγ ∨Dγ]J = F , Therefore [B[t]p ∨ Cγ ∨Dγ]I′ = F .

4. P (uγ) is reducible by EI at a position in γ, hence γ−→EI
γ′.

We now consider the clause instance +P (uγ ′) ∨ Cγ′, which is
strictly smaller than the previous one. This case is similar to the
previous one, except that there may be several new atoms in
+P (uγ′) ∨ Cγ′. 2

4 Conclusion

Recasting Ganzinger’s work into the framework of finite semantic
trees was an enriching experience which we plan to continue. Our
next step will be to consider basic ordered resolution and paramod-
ulation together with selection strategies via term selection as done
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in [BGLS92], as well as redundancy criteria. Then, we plan to blend
various strategies, in particular, linear and ordering restrictions.

To conclude, we need comparing the model generation method
with semantic trees. The implicit answer given here to that natural
question is that there is no significant difference between both. The
former does not construct all interpretations, but only a relevant
one, while the latter describes the relevant one as a maximal branch
in the tree of all interpretations. One main difference is the use of the
compactness argument to make the semantic tree finite. The same
could probably be done with model generation. A second diference
is that semantic trees fit better with our own intuition.

Acknowledgments: The authors thank for their remarks Sergiu
Bursuc and Yevgeny Kazarov from MPI, as well as Michaël Lien-
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