Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, **Jade Nardi**

Institut de recherche mathématique de Rennes
INRIA Saclay

17/10/2019

Partially funded by ANR *Manta*
Weighted Projective Reed-Muller codes and η-lines

Fix $\eta \in \mathbb{N}^*$. Consider the plane weighted Reed-Muller code of weight $(1, \eta)$:

$$\text{WRM}_q^\eta(d) := \langle \text{ev}_{A(F_q)}(x^i y^j), (i, j) \in \mathbb{N}^2 | i + \eta j \leq d \rangle \subset \mathbb{F}_q^2$$

Rk: $\text{WRM}_q^\eta(d) = \text{RM}_q(2, d)$.

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$:

$$\text{WRM}_q^\eta(d) = \langle \text{ev}(X_0^{d-i-\eta j} X_1^i X_2^j), (i, j) \in \mathbb{N}^2 | i + \eta j \leq d \rangle$$
Fix $\eta \in \mathbb{N}^*$. Consider the plane weighted Reed-Muller code of weight $(1, \eta)$:

$$\text{WRM}_q^n(d) := \langle \text{ev}_{A(F_q)}(x^i y^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle \subset F_q^2$$

Rk: $\text{WRM}_q^n(d) = \text{RM}_q(2, d)$.

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$:

$$\text{WRM}_q^n(d) = \langle \text{ev}(X_0^{d-i-\eta j} X_1^i X_2^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle$$

Aim: Highlight some local decoding properties

Definition (η-line)

(Non-vertical) η-line:

- on $\mathbb{P}^{(1,1,\eta)}$: Set of zeroes of $P(X_0, X_1, X_2) = X_2 - \Phi(X_0, X_1)$, where $\phi \in F_q[X_0, X_1]_h \text{ and } \deg \phi = \eta$.

- on \mathbb{A}^2: Set of zeroes of $P(x, y) = y - \phi(x)$, where $\phi \in F_q[X] \text{ and } \deg \phi \leq \eta$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Recalls:

- \(\text{WRM}_q^\eta(d) := \langle \text{ev}(x^i y^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle\)
- \(\eta\)-line: \(y = \phi(x)\) with \(\phi \in \mathbb{F}_q[X]\) and \(\deg \phi \leq \eta\).

Parametrization of an \(\eta\)-line: \(t \mapsto (t, \phi(t))\)

Set of embeddings of \(\eta\)-lines into the affine plane \(\mathbb{A}^2\):

\[
\Phi_\eta = \{ L_\phi : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_q[T] \text{ and } \deg \phi \leq \eta \},
\]
Recalls:

- \(\text{WRM}_q^\eta(d) := \langle \text{ev}(x^i y^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle \)
- \(\eta \)-line: \(y = \phi(x) \) with \(\phi \in \mathbb{F}_q[X] \) and \(\deg \phi \leq \eta \).

Parametrization of an \(\eta \)-line: \(t \mapsto (t, \phi(t)) \)

Set of embeddings of \(\eta \)-lines into the affine plane \(\mathbb{A}^2 \):

\[
\Phi_\eta = \{ L_\phi : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_q[T] \text{ and } \deg \phi \leq \eta \},
\]

Lemma

Any polynomial \(f \in \mathbb{F}_q[X, Y] \) with \(\deg_{(1, \eta)} \leq d \) satisfies \(\text{ev}(f \circ L) \in \text{RS}_q(d) \) for any \(L \in \Phi_\eta \).

Check on monomials: set \(f = X^i Y^j \) with \(i + \eta j \leq d \).
\(\forall \phi \in \Phi_\eta, (f \circ L_\phi)(T) = T^i \phi(T)^j \) has degree less than \(d \).
PIR protocol

Lifting process

Asymtotically good families of codes

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?

Aim of Private Information Retrieval protocols [Augot, Levy-dit-Vehel, Shikfa (2014)] Share the database on several servers.

\[\mathbb{F}_q[i \rightarrow \mathbb{F}_q(i)] = \]

Database: Codewords of Weighted Reed-Muller codes \(\eta_q(d) \) shared by \(q \) servers.

\(q \) points \(\downarrow \) coordinates per word known by each server

\(q \) lines \((x-a=0) \leftrightarrow \) servers

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
How to retrieve a datum stored on servers without giving any information about it?

\[\sim \text{Aim of Private Information Retrieval protocols} \]
How to retrieve a datum stored on servers without giving any information about it?

→ Aim of Private Information Retrieval protocols

[Augot, Levy-dit-Vehel, Shikfa (2014)] Share the database on several servers.
How to retrieve a datum stored on servers without giving any information about it?

Aim of Private Information Retrieval protocols

[Augot, Levy-dit-Vehel, Shikfa (2014)] Share the database on several servers.

\[\mathbb{A}^2(\mathbb{F}_q) = \bigcup_{i=1}^{q} L_i(\mathbb{F}_q) \]

Database: Codewords of WRM\(^n_q\)(d) shared by q servers.

q lines \((x - a = 0) \leftrightarrow\) servers

q points
coordinates per word known by each server
1. Word of $\text{WRM}_q^n(d)$ restricted along an η-line = codeword of $\text{RS}_q(d)$
2. An η-line meets each line $x = a$ at a unique point.
1. Word of $\text{WRM}_q^n(d)$ restricted along an η-line = codeword of $\text{RS}_q(d)$

2. An η-line meets each line $x = a$ at a unique point.

Wanted datum: c_{P_0} with $c \in \text{WRM}_q^n(d)$ and $d < q - 2$.
1. Word of $\text{WRM}_q^n(d)$ restricted along an η-line = codeword of $\text{RS}_q(d)$
2. An η-line meets each line $x = a$ at a unique point.

Randomly pick an η-line L containing P_0.

Wanted datum: c_{P_0} with $c \in \text{WRM}_q^n(d)$ and $d < q - 2$.

q lines \leftrightarrow servers

q points
coordinates per word
known by each server

P_0 requested by the user
① Word of $\text{WRM}_q^n(d)$ restricted along an η-line = codeword of $\text{RS}_q(d)$
② An η-line meets each line $x = \alpha$ at a unique point.

Randomly pick an η-line L containing P_0.
Server \leftrightarrow line not containing P_0: ask for $c_{L \cap L}$

Wanted datum: c_{P_0}
with $c \in \text{WRM}_q^n(d)$
and $d < q - 2$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift
Julien Lavauzelle, Jade Nardi
PIR Protocol linked to $\text{WRM}_q^n(d)$

1. Word of $\text{WRM}_q^n(d)$ restricted along an η-line = codeword of $\text{RS}_q(d)$
2. An η-line meets each line $x = a$ at a unique point.

Wanted datum: c_{P_0} with $c \in \text{WRM}_q^n(d)$ and $d < q - 2$.

Randomly pick an η-line L containing P_0.
Server \leftrightarrow line not containing P_0: ask for $c_{L \cap L}$
Server \leftrightarrow line containing P_0: ask for c_{P_1} for P_1 random on this line
PIR Protocol linked to \(\text{WRM}_q^n(d) \)

1. Word of \(\text{WRM}_q^n(d) \) restricted along an \(\eta \)-line = codeword of \(\text{RS}_q(d) \)
2. An \(\eta \)-line meets each line \(x = a \) at a unique point.

Randomly pick an \(\eta \)-line \(L \) containing \(P_0 \).
Server \(\leftrightarrow \) line not containing \(P_0 \): ask for \(c_{L_i \cap L} \)
Server \(\leftrightarrow \) line containing \(P_0 \): ask for \(c_{P_1} \) for \(P_1 \) random on this line
\[\Rightarrow \text{Word of RS}(d) \text{ with } 1 \text{ error} = \text{easily correctable!} \]
Case $\eta = 1$ already known (PIR protocol from locally decodable codes)
Because restricting a word of $RM_q(2, d)$ along a line gives a word of $RS_q(d)$.

Why take $\eta > 1$?
Case $\eta = 1$ already known (PIR protocol from locally decodable codes)
Because restricting a word of $RM_q(2, d)$ along a line gives a word of $RS_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.
Case $\eta = 1$ already known (PIR protocol from locally decodable codes)
Because restricting a word of $\text{RM}_q(2, d)$ along a line gives a word of $\text{RS}_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!
Case $\eta = 1$ already known (PIR protocol from locally decodable codes)
Because restricting a word of $RM_q(2, d)$ along a line gives a word of $RS_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart...
Case $\eta = 1$ already known (PIR protocol from locally decodable codes)
Because restricting a word of $\text{RM}_q(2, d)$ along a line gives a word of $\text{RS}_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart... For $d < q - 1$,

$$\dim \text{WRM}_q^\eta(d) \approx \frac{d^2}{2\eta}$$

decreases as η grows \Rightarrow Loss of storage when η grows.
Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol:
Restricting words along η-lines gives RS(d) codewords.
Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol:
Restricting words along η-lines gives RS(d) codewords.

\sim Lifting process introduced by Guo, Kopparty, Sudan (2013)

Definition (η-lifting of a Reed-Solomon code)

Let q be a prime power. The η-lifting of the Reed-Solomon code $RS_q(d)$ is the code of length $n = q^2$ defined as follows:

$$\text{Lift}^\eta(RS_q(d)) = \{ \text{ev}_{\mathbb{F}_q^2}(f) \mid f \in \mathbb{F}_q[X,Y], \forall L \in \Phi_\eta, \text{ev}_{\mathbb{F}_q}(f \circ L) \in RS_q(d) \}.$$

Recall: $\Phi_\eta = \{ L_\phi : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_q[T] \text{ and } \deg \phi \leq \eta \}.$

Of course, $\text{WRM}^\eta_q(d) \subset \text{Lift}^\eta RS_q(d)$.

Question: $\text{WRM}^\eta_q(d) \nsubset \text{Lift}^\eta RS_q(d)$?
Example of $\text{WRM}_q^n(d) \nless \text{Lift}_q^n(\text{RS}_q(d))$

Let $q = 4$, $\eta = 2$ and $d = 2$. $\text{WRM}_q^n(d, (1) = \langle \text{ev}(X^iY^j) \rangle$ with $(i, j) \in \{(0, 0), (0, 1), (1, 0), (2, 0)\}$.

Take $f(X, Y) = Y^2 \in \mathbb{F}_4[X, Y] \setminus \text{WRM}_4^2(2)$.

η-line: $L(T) = (T, aT^2 + bT + c) \in \Phi_2$, with $a, b, c \in \mathbb{F}_4$.

For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^2 + bt + c)^2 = a^2t^4 + b^2t^2 + c^2 = b^2t^2 + a^2t + c.$$

$\Rightarrow \text{ev}_{\mathbb{F}_4}(f \circ L) \in \text{RS}_4(2)$ for every $L \in \Phi_2$.
Example of $\text{WRM}_q^n(d) \not\subset \text{Lift}^n(\text{RS}_q(d))$

Let $q = 4$, $\eta = 2$ and $d = 2$. $\text{WRM}_q^n(d, (1) = \langle \text{ev}(X^i Y^j) \rangle$ with

$$(i, j) \in \{(0, 0), (0, 1), (1, 0), (2, 0)\}.$$

Take $f(X, Y) = Y^2 \in \mathbb{F}_4[X, Y] \setminus \text{WRM}_4^2(2)$.

η-line: $L(T) = (T, aT^2 + bT + c) \in \Phi_2$, with $a, b, c \in \mathbb{F}_4$.

For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^2 + bt + c)^2 \overset{1}{=} a^2 t^4 + b^2 t^2 + c^2 \overset{2}{=} b^2 t^2 + a^2 t + c.$$

$\Rightarrow \text{ev}_{\mathbb{F}_4}(f \circ L) \in \text{RS}_4(2)$ for every $L \in \Phi_2$.

$$\text{WRM}_4^2(2) \not\subset \text{Lift}^2(\text{RS}_4(2)).$$

Two phenomena:

1. Vanishing coefficients in characteristic p,
2. $t^q = t$ for $t \in \mathbb{F}_q$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Strategy to handle $\text{Lift}^\eta(RS_q(d))$

 In the previous example, on \mathbb{F}_4,

 \[(aT^2 + bT + c)^2 = a^2T^4 + b^2T^2 + c^2\]

 \Rightarrow No monomials of odd power.
Strategy to handle $\text{Lift}^\eta(\text{RS}_q(d))$

 In the previous example, on \mathbb{F}_4,
 \[(aT^2 + bT + c)^2 = a^2T^4 + b^2T^2 + c^2\]
 \Rightarrow No monomials of odd power.

Strategy:
Determining the monomials X^iY^j s.t. $\text{ev}(T^i\phi(T)^j) \in \text{RS}_q(d)$.

1st step:
Which monomials appear in $\phi(T)^j$ when $\deg(\phi) \leq \eta$ for a fixed j?
Fix $\phi(T) = \sum_{m=0}^{\eta} a_m T^m \in \mathbb{F}_q[T]$. The multinomial theorem gives

$$\phi(T)^j = \sum_{k_1 + \cdots + k_\eta \leq j} \binom{j}{k} \lambda_k T^{k_1 + 2k_2 + \cdots + \eta k_\eta},$$

where λ_k only depends on a_0, \ldots, a_η and k.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Fix $\phi(T) = \sum_{m=0}^{\eta} a_m T^m \in \mathbb{F}_q[T]$. The multinomial theorem gives

$$
\phi(T)^j = \sum_{k_1+\ldots+k_\eta \leq j} \binom{j}{k} \lambda_k T^{k_1+2k_2+\ldots+\eta k_\eta},
$$

where λ_k only depends on a_0, \ldots, a_η and k.

$$
\phi(T)^j = \sum_{\alpha \in \mathbb{N}} c_\alpha T^\alpha, \text{ with } c_\alpha = \sum_{k \in K_\alpha} \binom{j}{k} \lambda_k
$$

where

$$
K_\alpha = \{ k \in \mathbb{N}^\eta \mid \sum_{\ell=1}^{\eta} k_\ell \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_\ell = \alpha \}.
$$

Claim: $c_\alpha = 0$ for every $\phi \in \Phi_\eta$ **iff** $\binom{j}{k} = 0$ for every $k \in K_\alpha$.

The monomial T^α **appears** as a term of $\phi(T)^j$ **iff** there exists $k \in K_\alpha$ s.t. $\binom{j}{k} \neq 0$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Recall: The monomial T^α appears in some $\phi(T)^j$ if

$$\exists \, k \in \mathbb{N}^\eta \text{ s.t. } \left| k \right| \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_\ell = \alpha, \left(\begin{array}{c} j \\ k \end{array} \right) \neq 0,$$

where

$$\left(\begin{array}{c} j \\ k \end{array} \right) = \left(\begin{array}{c} j \\ k_1 \end{array} \right) \left(\begin{array}{c} j - k_1 \\ k_2 \end{array} \right) \left(\begin{array}{c} j - k_1 - k_2 \\ k_3 \end{array} \right) \cdots \left(\begin{array}{c} j - k_1 - k_2 - \cdots - k_{\eta-1} \\ k_\eta \end{array} \right).$$
Recall: The monomial T^α appears in some $\phi(T)^j$ iif

$$\exists \mathbf{k} \in \mathbb{N}^\eta \text{ s.t. } |\mathbf{k}| \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_\ell = \alpha, \binom{j}{\mathbf{k}} \neq 0,$$

where $\binom{j}{\mathbf{k}} = \binom{j}{k_1} \binom{j-k_1}{k_2} \binom{j-k_1-k_2}{k_3} \cdots \binom{j-k_1-k_2-\cdots-k_{\eta-1}}{k_\eta}$.

Theorem (Lucas theorem - 1978)

Let $a, b \in \mathbb{N}$ and p be a prime number. Write $a = \sum_{i \geq 0} a^{(i)} p^i$, the representation of a in base p. Then $\binom{a}{b} = \prod_{i \geq 0} \binom{a^{(i)}}{b^{(i)}} \mod p$.

Order relation: $x \leq_p y \iff \forall i \in \mathbb{N}, x^{(i)} \leq y^{(i)}$. LT: $\binom{a}{b} \neq 0 \iff b \leq_p a$.

The monomial T^α appears as a term of a $\phi(T)^j$ iif there exists $\mathbf{k} \in \mathbb{N}^\eta$ such that $\alpha = \sum_{\ell=1}^{\eta} \ell k_\ell$ and

$$\forall m \in [1, \eta], k_m \leq_p j - \sum_{\ell=1}^{m-1} k_\ell.$$
Recall: $a^{(r)}$ is the r^{th} digit of the representation of a in base p.

Lemma

Fix $j \in \mathbb{N}$. For any $k \in \mathbb{N}^\eta$ such that $\sum_{\ell=1}^\eta k_\ell \leq j$, the following assertions are equivalent.

- $\forall m \in [1, \eta], k_m \leq_p j - \sum_{\ell=1}^{m-1} k_\ell$,

- $\forall m \in [1, \eta], \forall r \in \mathbb{N}, \sum_{\ell=1}^m k_\ell^{(r)} \leq j^{(r)}$,

- $\forall r \in \mathbb{N}, \sum_{\ell=1}^\eta k_\ell^{(r)} \leq j^{(r)}$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Two phenomena:

1. Vanishing coefficients in characteristic p
Two phenomena:

1. Vanishing coefficients in characteristic \(p \)

 The monomials appearing in some \(\phi(T)^j \) are those of the form \(T^{\sum_{\ell=1}^n \ell k_\ell} \) for \(k \in \mathbb{N}^n \) such that

 \[
 \forall r \in \mathbb{N}, \sum_{\ell=1}^n k_\ell^{(r)} \leq j^{(r)}.
 \]

2. \(t^q = t \) for \(t \in \mathbb{F}_q \)
Two phenomena:

1. Vanishing coefficients in characteristic p

 The monomials appearing in some $\phi(T)^j$ are those of the form $T^{\sum_{\ell=1}^{n} \ell k_\ell}$ for $k \in \mathbb{N}^n$ such that

 $$\forall r \in \mathbb{N}, \sum_{\ell=1}^{n} k_\ell^{(r)} \leq j^{(r)}.$$

2. $t^q = t$ for $t \in \mathbb{F}_q$ \Rightarrow Considering polynomials modulo $T^q - T$

 For $a \in \mathbb{N}$, there exists a unique $r \in \{0, \ldots, q-1\}$ s.t. $t^a = t^r$ for every $t \in \mathbb{F}_q$, denoted by $\text{Red}_q^*(a)$.

 $$(q-1 \mid \text{Red}_q^*(a) - a) \text{ and } (\text{Red}_q^*(a) = 0 \iff a = 0)$$

 In other words, $\text{Red}_q^*(a)$ is the remainder of a modulo $q-1$ unless a is a non-zero multiple of $q-1$. In this case, $\text{Red}_q^*(a) = q-1$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift Julien Lavauzelle, Jade Nardi
Two phenomena:

1. **Vanishing coefficients in characteristic** p

 The monomials appearing in some $\phi(T)^j$ are those of the form $T^{\sum_{\ell=1}^{n} \ell k_\ell}$ for $k \in \mathbb{N}^n$ such that

 $$\forall r \in \mathbb{N}, \sum_{\ell=1}^{n} k_\ell^{(r)} \leq j^{(r)}.$$

2. **$t^q = t$ for $t \in \mathbb{F}_q \Rightarrow$ Considering polynomials modulo $T^q - T$**

 For $a \in \mathbb{N}$, there exists a unique $r \in \{0, \ldots, q - 1\}$ s.t. $t^a = t^r$ for every $t \in \mathbb{F}_q$, denoted by $\text{Red}^*_q(a)$.

 $$(q - 1 \mid \text{Red}^*_q(a) - a) \text{ and } (\text{Red}^*_q(a) = 0 \iff a = 0)$$

In other words, $\text{Red}^*_q(a)$ is the remainder of a modulo $q - 1$ unless a is a non-zero multiple of $q - 1$. In this case, $\text{Red}^*_q(a) = q - 1$.

Fix $P(T) = \sum c_m T^m$.

$\text{ev}_{\mathbb{F}_q}(P(T)) \in \text{RS}_q(d)$ **iff** $\text{Red}_q^*(m) \leq d$ for every m s.t. $c_m \neq 0$.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Theorem [Lavauzelle, N - 2019]

1. The linear code \(\text{Lift}^\eta(\text{RS}_q(d)) \) is spanned by monomials.
2. A monomial \(X^i Y^j \) belongs to \(\text{Lift}^\eta(\text{RS}_q(d)) \) if and only if for every \(k \in \mathbb{N}^\eta \) such that for all \(r \geq 0, \sum_{l=1}^{\eta} k_l^{(r)} \leq j^{(r)} \), we have

\[
\text{Red}_q^* \left(i + \sum_{l=1}^{\eta} l k_l \right) \leq d.
\]

Only interesting when \(d < q - 1 \) since \(\text{RS}_q(q - 1) \) is trivial.
Theorem [Lavauzelle, N - 2019]

1. The linear code \(\text{Lift}^\eta(\text{RS}_q(d)) \) is spanned by monomials.
2. A monomial \(X^i Y^j \) belongs to \(\text{Lift}^\eta(\text{RS}_q(d)) \) if and only if for every \(k \in \mathbb{N}^\eta \) such that for all \(r \geq 0, \sum_{l=1}^{\eta} k_l(r) \leq j(r) \), we have

\[
\text{Red}_q^* \left(i + \sum_{l=1}^{\eta} lk_l \right) \leq d.
\]

Only interesting when \(d < q - 1 \) since \(\text{RS}_q(q - 1) \) is trivial.

Question: Is \(\text{Lift}^\eta(\text{RS}_q(d)) \) really bigger than \(\text{WRM}_q^\eta(d) \)?
Representatoin of the monomials $x^i y^j$ whose evaluation belongs to $\text{Lift}^\eta(\text{RS}_q(d))$

Remark: i and j can be assumed $\leq q - 1$.

Represent couples (i, j) in the square $\{0, \ldots, q - 1\}^2 \rightarrow \text{Degree set}$

\[
\text{WRM}_2^{16}(13)
\]

Total square area = length / Black area = dimension
Remark: i and j can be assumed $\leq q - 1$.

Represent couples (i, j) in the square $\{0, \ldots, q - 1\}^2 \rightarrow \text{Degree set}$

$\text{WRM}_{16}^2(13)$

$\text{Lift}^2(\text{RS}_{16}(13))$

Total square area = length / Black area = dimension

How big can be our η-lifted codes?
For a fixed $\alpha \geq 2$, the degree set of $\text{Lift}^\eta \text{RS}_q(q - \alpha)$ contains many copies of the degree set of $\text{WRM}^\eta_{p^\varepsilon} (p^\varepsilon - \alpha - \eta)$, for $\varepsilon \leq e$.

$Lift^2(\text{RS}_{3^4}(3^4 - 3))$
Theorem [L,N - 2019]

Let $\alpha \geq 2$, $\eta \geq 1$ and p be a prime number. For each $e \in \mathbb{N}$, set $C_e = \text{Lift}^\eta \text{RS}_p(e)(p^e - \alpha)$. Then, the information rate R_e of C_e approaches 1 when $e \to \infty$.
Information rate of $\text{Lift}^\eta \text{RS}_q(q - \alpha)$ when $q \to \infty$ and α is fixed

Let $\alpha \geq 2$, $\eta \geq 1$ and p be a prime number. For each $e \in \mathbb{N}$, set $C_e = \text{Lift}^\eta \text{RS}_{p^e}(p^e - \alpha)$. Then, the information rate R_e of C_e approaches 1 when $e \to \infty$.

Theorem [L,N - 2019]
Information rate of \(\text{Lift}^\eta \text{RS}_q(\lceil \gamma q \rceil) \) when \(q \to \infty \) and \(\gamma \) is fixed

Theorem [L,N - 2019]

Let \(c \geq 1, \eta \geq 1 \) and \(p \) be a prime number. Fix \(\gamma = 1 - p^{-c} \). For \(e \geq c + 1 \), set \(C_e = \text{Lift}^\eta \text{RS}_{pe}(\gamma p^e) \). Then, the information rate \(R_e \) of \(C_e \) satisfies:

\[
\lim_{e \to \infty} R_e \geq \frac{1}{2\eta} \sum_{\varepsilon=0}^{c-1} (p^{-\varepsilon} - p^{-c})^2 N_\varepsilon.
\]

Degree set of \(\text{Lift}^2 \text{RS}_{2e}(2^e - 2^{e-c}) \) for \(c = 4 \).

Number of different shades of grey = \(c \).

\[e = 5\] \[e = 6\] \[e = 7\] \[e = 8\]
Thank you for your attention!