Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi

Institute of Mathematics of Toulouse

SIAM Conference on Applied Algebraic Geometry - 12/07/2019

MS185: Algebraic Geometry Codes
Definition

Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_η:

- **Toric point of view** - Toric variety associated to the fan

\[
\begin{align*}
(0,1) \\
\\
(-1,0) & \rightarrow u_1 \\
\downarrow v_1 & \quad u_2 \\
(1,0) & \rightarrow v_2 \\
(-\eta,-1) & \leftarrow u_1
\end{align*}
\]
Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_η:

- **Toric point of view** - Toric variety associated to the fan

\[
\begin{align*}
(0,1) \\
(1,0) \\
(-1,0) \\
(-\eta,-1)
\end{align*}
\]

- **Quotient point of view**

$\mathbb{G}_m \times \mathbb{G}_m$ acts on $\left(\mathbb{A}^2 \setminus \{(0,0)\} \right) \times \left(\mathbb{A}^2 \setminus \{(0,0)\} \right)$ as follows.

\[
(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2).
\]

$\mathcal{H}_\eta := \left(\mathbb{A}^2 \setminus \{(0,0)\} \right) \times \left(\mathbb{A}^2 \setminus \{(0,0)\} \right) / \mathbb{G}_m^2$.

Example: $\mathcal{H}_0 = \mathbb{P}^1 \times \mathbb{P}^1$.

Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi
Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: \[
\begin{align*}
\mathbb{P}^1 & \quad \rightarrow \quad \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\
[u, v] & \quad \mapsto \quad [u^i v^{\eta+1-i}]_{i \in \{0, \ldots, \eta+1\}}
\end{align*}
\]

$\#\mathcal{H}_\eta(\mathbb{F}_q) = (q + 1)^2$
Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: \[
\begin{align*}
\mathbb{P}^1 \
\begin{bmatrix} u, v \end{bmatrix} & \mapsto \begin{bmatrix} u^i v^{\eta+1-i} \end{bmatrix}
\end{align*}
i \in \{0, \ldots, \eta+1\}
\]

Take an isomorphism $\phi : \mathbb{P}^1 \to C_{\eta+1}$.

\[
\# \mathcal{H}_\eta(\mathbb{F}_q) = (q + 1)^2
\]
Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve:
\[
\begin{cases}
\mathbb{P}^1 & \rightarrow & C_{\eta+1} \subset \mathbb{P}^{\eta+1} \\
[u, v] & \mapsto & [u^i v^{\eta+1-i}]_{i \in \{0, \ldots, \eta+1\}}
\end{cases}
\]

Take an isomorphism $\phi : \mathbb{P}^1 \rightarrow C_{\eta+1}$.

\[
\# \mathcal{H}_\eta(\mathbb{F}_q) = (q + 1)^2
\]
Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: \[
\begin{align*}
\begin{array}{c}
\mathbb{P}^1 \\
[u, v]
\end{array}
\end{align*}
\rightarrow
\begin{align*}
\begin{array}{c}
\mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\
[u^i v^{\eta+1-i}]_{i \in \{0, \ldots, \eta+1\}}
\end{array}
\end{align*}
\]

Take an isomorphism $\phi : \mathbb{P}^1 \rightarrow \mathcal{C}_{\eta+1}$.

$\# \mathcal{H}_\eta(\mathbb{F}_q) = (q + 1)^2$
Coordinate ring of \mathcal{H}_η: Cox Ring

Polynomial coordinate ring of \mathcal{H}_η over \mathbb{F}_q: $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure \sim "degree" of a polynomial
Coordinate ring of \mathcal{H}_η: Cox Ring

Polynomial coordinate ring of \mathcal{H}_η over \mathbb{F}_q: $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure \sim "degree" of a polynomial

A monomial $M = T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2}$ has **bidegree** (δ_T, δ_X) if

$$\begin{cases}
\delta_T &= c_1 + c_2 - \eta d_1, \\
\delta_X &= d_1 + d_2.
\end{cases} \quad (1)$$
Coordinate ring of \mathcal{H}_η: Cox Ring

Polynomial coordinate ring of \mathcal{H}_η over \mathbb{F}_q: $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure $\sim \ "degree" \ of \ a \ polynomial$

A monomial $M = T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2}$ has **bidegree** (δ_T, δ_X) if

$$
\begin{align*}
\delta_T &= c_1 + c_2 - \eta d_1, \\
\delta_X &= d_1 + d_2.
\end{align*}
$$

Set $R(\delta_T, \delta_X)$ the \mathbb{F}_q-v.s. spanned by monomials of bidegree (δ_T, δ_X).

$$R = \bigoplus_{(\delta_T, \delta_X) \in \mathbb{Z}^2} R(\delta_T, \delta_X)$$
Definition of an evaluation map on \mathcal{H}_η

Similarly to projective Reed-Muller codes, evaluating polynomials

\leadsto Meaning à la Lachaud

Points on $\mathcal{H}_\eta \leftrightarrow$ Orbits under

$$(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2).$$

\mathbb{F}_q-rational points \leftrightarrow Orbits with a \mathbb{F}_q-rational representative.
Similarly to *projective Reed-Muller codes*, evaluating polynomials

\[(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2). \]

\mathbb{F}_q-rational points \leftrightarrow Orbits with a \mathbb{F}_q-rational representative.

Evaluate a polynomial at the unique representative of the following forms:

\[(1, a, 1, b) \quad (0, 1, 1, b) \quad (1, a, 0, 1) \quad (0, 1, 0, 1) \]

with $a, b \in \mathbb{F}_q$.
Evaluation code on \mathcal{H}_η

Evaluation code $C_\eta(\delta_T, \delta_X)$ defined as the image of

$$\text{ev}(\delta_T, \delta_X) : \left\{ \begin{array}{l}
R(\delta_T, \delta_X) \\
F \end{array} \right\} \rightarrow \mathbb{F}_q^{(q+1)^2}$$

$$F \mapsto (F(P))_{P \in \mathcal{H}_\eta(\mathbb{F}_q)}. \quad (2)$$
Evaluation code on \mathcal{H}_η

Evaluation code $C_\eta(\delta_T, \delta_X)$ defined as the image of

$$\text{ev}(\delta_T, \delta_X) : \begin{cases} \quad R(\delta_T, \delta_X) \rightarrow \mathbb{F}_q^{(q+1)^2} \\ \quad F \mapsto (F(P))_{P \in \mathcal{H}_\eta(\mathbb{F}_q)}. \end{cases}$$

(2)

Implementation: No knowledge about a Hirzebruch surface needed. Enough to build the set of polynomials and evaluate them at the $(q+1)^2$ points $(1, a, 1, b)$, $(0, 1, 1, b)$, $(1, a, 0, 1)$ and $(0, 1, 0, 1)$.
Motivation

• Leaving the case $\text{rk Pic } S = 1^1$ (easy case to compute the minimum distance)

• Codes on Hirzebruch surfaces: already studied by *toric codes*\(^2\)
 Toric codes on evaluate at points on the torus (without zero coordinate)
 \sim Affine \rightarrow Projective case: increase the parameters

• Starting point: Codes on rational surface scrolls\(^3\)

\(^1\) Zarzar (2007), Little, Sheck (2018)

\(^2\) Hansen (2002), Joyner (2004), Little, Sheck (2016)...

\(^3\) Carvalho, Neumann (2016)
Motivation

• Leaving the case $\text{rk} \, \text{Pic } S = 1$ (easy case to compute the minimum distance)

• Codes on Hirzebruch surfaces: already studied by toric codes2
Toric codes on evaluate at points on the torus (without zero coordinate)
\sim Affine \rightarrow Projective case: increase the parameters

• Starting point: Codes on rational surface scrolls3

Aim: Study the codes $C_\eta(\delta_T, \delta_X)$ for any $(\delta_T, \delta_X) \in \mathbb{Z}^2$ on \mathbb{F}_q for any size of q, taking advantage of the toric structure.

1 Zarzar (2007), Little, Sheck (2018)
3 Carvalho, Neumann (2016)
Dimension of the code

\[C_\eta(\delta_T, \delta_X) \]
\[\ni \]
\[R(\delta_T, \delta_X) \]
\[\ker \text{ev}(\delta_T, \delta_X) \]
Dimension of the code

\[C_\eta(\delta_T, \delta_X) \cong R(\delta_T, \delta_X) / \ker ev(\delta_T, \delta_X) \]

Restrict the relation on monomials
\[M \equiv M' \iff M' - M \in \ker ev(\delta_T, \delta_X) \]

Monomials of \(R(\delta_T, \delta_X) \)
Dimension of the code

\[C_\eta(\delta_T, \delta_X) \]

\[\cong \]

\[R(\delta_T, \delta_X) / \ker \text{ev}(\delta_T, \delta_X) \]

Restrict the relation on **monomials**

\[M \equiv M' \iff M' - M \in \ker \text{ev}(\delta_T, \delta_X) \]

\[M(\delta_T, \delta_X) \equiv \]

Monomials of \(R(\delta_T, \delta_X) \)

Lattice points of a polygon

Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi
Hirzebruch surfaces

Error-correcting codes on Hirzebruch surfaces

PIR protocol

The end

Dimension of the code

\[C_\eta(\delta_T, \delta_X) \equiv \begin{array}{c} \downarrow \\ R(\delta_T, \delta_X) \end{array} \ker ev(\delta_T, \delta_X) \]

Restrict the relation on **monomials**

\[M \equiv M' \iff M' - M \in \ker ev(\delta_T, \delta_X) \]

\[M(\delta_T, \delta_X) \equiv \begin{array}{c} \downarrow \\ \text{Equivalence classes of points} \\ \uparrow \\ \text{Monomials of } R(\delta_T, \delta_X) \end{array} \]

\[\equiv \begin{array}{c} \downarrow \\ \text{Lattice points of a polygon} \end{array} \]

Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi
Representation of $R(\delta_T, \delta_X)$ as a polygon

$T_1^{c_1}T_2^{c_2}X_1^{d_1}X_2^{d_2} \in R(\delta_T, \delta_X)$ iff $d_1 + d_2 = \delta_X$ and $c_1 + c_2 - \eta d_1 = \delta_T$.

Fix (δ_T, δ_X). A monomial is uniquely determined by the couple (d_2, c_2) in

$$P(\delta_T, \delta_X) = \{ (d_2, c_2) \in \mathbb{N}^2 \mid 0 \leq d_2 \leq \delta_X \text{ and } 0 \leq c_2 \leq \delta - \eta d_2 \}.$$
Representation of $R(\delta_T, \delta_X)$ as a polygon

\[T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2} \in R(\delta_T, \delta_X) \text{ iff } d_1 + d_2 = \delta_X \text{ and } c_1 + c_2 - \eta d_1 = \delta_T. \]

Fix (δ_T, δ_X). A monomial is *uniquely determined* by the couple (d_2, c_2) in

\[P(\delta_T, \delta_X) = \{(d_2, c_2) \in \mathbb{N}^2 \mid 0 \leq d_2 \leq \delta_X \text{ and } 0 \leq c_2 \leq \delta - \eta d_2\}. \]

\[\eta = 0 \]
E.g. $P(7,4)$ \[\eta > 0, \delta_T > 0 \]
E.g. $P(2,3)$ in \mathcal{H}_2 \[\eta > 0, \delta_T \leq 0 \]
E.g. $P(-2,5)$ in \mathcal{H}_2

Monomials of $R(\delta_T, \delta_X) \leftrightarrow$ Lattice points of $P(\delta_T, \delta_X)$
Characterization for equivalent monomials/lattice points

Proposition

\[T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2} \equiv T_1^{c_1'} T_2^{c_2'} X_1^{d_1'} X_2^{d_2'} \]

\[\iff \]

\[\begin{align*}
q - 1 & \mid d_i - d'_i, \\
q - 1 & \mid c_j - c'_j, \\
d_i = 0 & \iff d'_i = 0, \\
c_j = 0 & \iff c'_j = 0.
\end{align*} \]
Characterization for equivalent monomials/lattice points

Proposition

\[T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2} \equiv T_1^{c_1'} T_2^{c_2'} X_1^{d_1'} X_2^{d_2'} \]

\[\begin{align*}
q - 1 & \mid d_i - d_i', \\
q - 1 & \mid c_j - c_j', \\
\delta_i = 0 & \iff d_i' = 0, \\
\delta_j = 0 & \iff c_j' = 0.
\end{align*} \]
Characterization for equivalent monomials/lattice points

Proposition

\[
T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2} \equiv T_1^{c_1'} T_2^{c_2'} X_1^{d_1'} X_2^{d_2'}
\]

\[
\begin{cases}
q - 1 & | d_i - d_i', \\
q - 1 & | c_j - c_j', \\
d_i = 0 & \iff d_i' = 0, \\
c_j = 0 & \iff c_j' = 0.
\end{cases}
\]
Characterization for equivalent monomials/lattice points

Proposition

\[T_1^{c_1} T_2^{c_2} X_1^{d_1} X_2^{d_2} \equiv T_1^{c'_1} T_2^{c'_2} X_1^{d'_1} X_2^{d'_2} \]

\[\begin{align*}
q - 1 & \mid d_i - d'_i, \\
q - 1 & \mid c_j - c'_j, \\
d_i = 0 & \iff d'_i = 0, \\
c_j = 0 & \iff c'_j = 0.
\end{align*} \]
Choice of representatives among lattice points

\[d_2 \text{ as small as possible then } c_2 \text{ as small as possible} \]

\[\sim \text{ Remainder modulo } q - 1 \text{ unless } 0 \text{ or maximum} \]
Choice of representatives among lattice points

\[d_2 \text{ as small as possible then } c_2 \text{ as small as possible} \]

\[\sim \text{ Remainder modulo } q - 1 \text{ unless 0 or maximum} \]
Choice of representatives among lattice points

\[d_2 \] as small as possible then \(c_2 \) as small as possible

\[\sim \] Remainder modulo \(q - 1 \) unless 0 or maximum
Choice of representatives among lattice points

\[d_2 \text{ as small as possible then } c_2 \text{ as small as possible} \]

\sim \text{ Remainder modulo } q - 1 \text{ unless } 0 \text{ or maximum}
Choice of representatives among lattice points

\[d_2 \text{ as small as possible then } c_2 \text{ as small as possible} \]

~ Remainder modulo \(q - 1 \) unless 0 or maximum

\[q < \delta X, \ delta \]

\[\delta X < q < \delta \]

\[\delta < q \]
Choice of representatives among lattice points

\[d_2 \text{ as small as possible then } c_2 \text{ as small as possible} \]
\[\sim \text{ Remainder modulo } q - 1 \text{ unless 0 or maximum} \]
Choice of representatives among lattice points

d_2 as small as possible then c_2 as small as possible

~ Remainder modulo $q - 1$ unless 0 or maximum
Choice of representatives among lattice points

\(d_2\) as small as possible then \(c_2\) as small as possible

\(~\) Remainder modulo \(q - 1\) unless 0 or maximum
d_2 as small as possible then c_2 as small as possible
~ Remainder modulo $q - 1$ unless 0 or maximum
Explicit formula for the dimension of $C_{\eta}(\delta_T, \delta_X)$
Explicit formula for the dimension of $C_\eta(\delta_T, \delta_X)$

Theorem [N. - 2018]

\[
\dim C_0(\delta_T, \delta_X) = (\min(\delta_T, q) + 1) (\min(\delta_X, q) + 1).
\]

If $\eta \geq 2$, set $A = \min\left(\frac{\delta}{\eta}, \delta_X\right)$, $m = \min(\lfloor A \rfloor, q - 1)$,

\[
h = \begin{cases}
\min(\delta_T, q) + 1 & \text{if } \delta_T \geq 0 \text{ and } q \leq \delta_X, \\
-1 & \text{if } \delta_T \leq 0, \ q \leq A \text{ and } \eta \mid \delta_T, \\
0 & \text{otherwise},
\end{cases}
\]

\[
s = \frac{\delta - q}{\eta} \quad \text{and} \quad \tilde{s} = \begin{cases}
\lfloor s \rfloor & \text{if } s \in [0, m], \\
-1 & \text{if } s < 0, \\
m & \text{if } s > m.
\end{cases}
\]

Then

\[
\dim C_\eta(\delta_T, \delta_X) = (q + 1)(\tilde{s} + 1) + (m - \tilde{s}) \left(\delta + 1 - \eta\left(\frac{m+\tilde{s}+1}{2}\right)\right) + h.
\]
Explicit formula for the minimum distance of $C_\eta(\delta_T, \delta_X)$

Theorem [N. - 2018]

- For $\eta = 0$, $d_0(\delta_T, \delta_X) = \max(q - \delta_X + 1, 1) \max(q - \delta_T + 1, 1)$.
- For $\eta \geq 2$,
 - If $q > \delta$, then
 \[d_\eta(\delta_T, \delta_X) = (q + 1_{\delta_X=0})(q - \delta + 1), \]
 - If $\max\left(\frac{\delta}{\eta+1}, \delta_T\right) < q \leq \delta$, then
 \[d_\eta(\delta_T, \delta_X) = q - \left\lfloor \frac{\delta - q}{\eta} \right\rfloor, \]
 - If $q \leq \max\left(\frac{\delta}{\eta+1}, \delta_T\right)$,
 \[d_\eta(\delta_T, \delta_X) = \begin{cases}
 \max(q - \delta_X + 1, 1) & \text{if } \delta_T \geq 0, \\
 1 & \text{if } \delta_T < 0,
 \end{cases} \]
PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?

Aim of PIR protocols

Share the database on several servers.

Hη(Fq)(xi = 0)

Database: Codewords of Cη(δT,δX)punctured at the points lying on X1 = 0 shared by q + 1 servers.

q points ⇕ coordinates per word known by each server

q + 1 lines ↔ servers
PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?

\[\sim \text{Aim of Private Information Retrieval protocols} \]
PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?

〜 Aim of Private Information Retrieval protocols

[Augot, Levy-dit-Vehel, Shikfa-14] Share the database on several servers.
How to retrieve a datum stored on servers without giving any information about it?

Aim of Private Information Retrieval protocols

Share the database on several servers.

\[\mathcal{H}_\eta(\mathbb{F}_q) = \bigcup_{i=0}^{q} L_i(\mathbb{F}_q) \]

(lines of the ruling)

Database: Codewords of \(C_\eta(\delta_T, \delta_X) \) punctured at the points lying on \(X_1 = 0 \) shared by \(q+1 \) servers.

\(q \) points coordinates per word known by each server

\(q+1 \) lines ↔ servers
Local property of $C_\eta(\delta_T, \delta_X)$ and PIR Protocol on \mathcal{H}_η

\[\eta\text{-line}: = X_2 = X_1 F(T_1, T_2) \text{ with } F \text{ homogeneous of degree } \eta \]

Restricting a word of $C_\eta(\delta_T, \delta_X)$ along an η-line gives a word of a PRS(δ).
Local property of $C_\eta(\delta_T, \delta_X)$ and PIR Protocol on \mathcal{H}_η

\[\eta\text{-line:} \quad X_2 = X_1 F(T_1, T_2) \text{ with } F \text{ homogeneous of degree } \eta \]

Restricting a word of $C_\eta(\delta_T, \delta_X)$ along an η-line gives a word of a PRS(δ).

Wanted datum: $c P_0$ with $c \in C_\eta(\delta_T, \delta_X)$ and $\delta < q - 2$.
Local property of $C_\eta(\delta_T, \delta_X)$ and PIR Protocol on \mathcal{H}_η

η-line: $X_2 = X_1 F(T_1, T_2)$ with F homogeneous of degree η

η-line gives a word of a PRS(δ).

Wanted datum: cP_0 with $c \in C_\eta(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η-line L containing P_0.
Local property of $C_\eta(\delta_T, \delta_X)$ and PIR Protocol on \mathcal{H}_η

η-line:= $X_2 = X_1 F(T_1, T_2)$ with F homogeneous of degree η

Restricting a word of $C_\eta(\delta_T, \delta_X)$ along an η-line gives a word of a PRS(δ).

Wanted datum: c_{P_0} with $c \in C_\eta(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η-line L containing P_0.
Server \leftrightarrow line not containing P_0: ask for $c_{L_i \cap L}$
Local property of $C_\eta(\delta_T, \delta_X)$ and PIR Protocol on \mathcal{H}_η

η-line: $X_2 = X_1 F(T_1, T_2)$ with F homogeneous of degree η

Restricting a word of $C_\eta(\delta_T, \delta_X)$ along an η-line gives a word of a PRS(δ).

Wanted datum: cP_0 with $c \in C_\eta(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η-line L containing P_0.
Server \leftrightarrow line not containing P_0: ask for $c_{L_i \cap L}$
Server \leftrightarrow line containing P_0: ask for cP_1 for P_1 random on this line
Local property of \(C_\eta(\delta_T, \delta_X) \) and PIR Protocol on \(\mathcal{H}_\eta \)

\(\eta \)-line: \(X_2 = X_1 F(T_1, T_2) \) with \(F \) homogeneous of degree \(\eta \)

Restricting a word of \(C_\eta(\delta_T, \delta_X) \) along an \(\eta \)-line gives a word of a PRS(\(\delta \)).

Wanted datum: \(cP_0 \) with \(c \in C_\eta(\delta_T, \delta_X) \) and \(\delta < q - 2 \).

Randomly pick an \(\eta \)-line \(L \) containing \(P_0 \).
Server \(\leftrightarrow \) line not containing \(P_0 \): ask for \(c_{L_i \cap L} \)
Server \(\leftrightarrow \) line containing \(P_0 \): ask for \(c_{P_1} \) for \(P_1 \) random on this line
\(\Rightarrow \) Word of PRS(\(\delta \)) with 1 error = easily correctable!
What’s new?

Case $\eta = 1$ already known (PIR protocol from LDC)

Why take $\eta > 1$?
What’s new?

Case $\eta = 1$ already known (PIR protocol from LDC)

Why take $\eta > 1$? What if servers communicate...?
What’s new?

Case $\eta = 1$ already known (PIR protocol from LDC)

Why take $\eta > 1$? What if servers communicate...?

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!

$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!
What’s new?

Case $\eta = 1$ already known (PIR protocol from LDC)

Why take $\eta > 1$? What if servers communicate...?

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart...
What’s new?

Case $\eta = 1$ already known (PIR protocol from LDC)

Why take $\eta > 1$? What if servers communicate...?

$\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers!

$\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... **Counterpart**... We want δ as near to q as possible and

$$\dim C_\eta(\delta_T, \delta_X) = (\delta_X + 1) \left(\frac{\delta}{\eta} - \eta \frac{\delta_X}{2} + 1\right)$$

decreases as η grows \Rightarrow **Loss of storage when η grows.**

Can be fixed by lifting process (introduced by Guo, Kopparty, Sudan in 2013)...
More on ArXiv:

- About these codes: https://arxiv.org/abs/1801.08407
- About lift: https://arxiv.org/abs/1904.08696 (joint work with Julien Lavauzelle)

Thank you for your attention!

Questions?