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Abstract. Inaseminal paper from 1935, Ersiand Szekeres showed that for eadhere
exists a least valug(n) such that any subset gfn) points in the plane in general position
must always contain the vertices of a conwegon. In particular, they obtained the bounds

2n—4
241 1

which have stood unchanged since then. In this paper we remowelttim the upper
bound forn > 4.

In 1935, Paul Erd§ and George Szekeres published a short paper “A combinatorial
problem in geometry” [1] which was destined to have a profound influence on the
development of combinatorics (and especially Ramsey theory) during the next 60 years
(see[3]). In particular, in this paper, Ersland Szekeres rediscovered Ramsey’s theorem,
which had only just appeared (unknown to them) five years earlier. Their investigations
arose from a geometrical question of the talented young mathematician Esther Klein
(soon to become Mrs. Szekeres). She asked, “Is it true that for ayéngre is a least
valueg(n) such that any seX of g(n) points in the plane in general position always
contains the vertices of a convaxgon?”

* The research of the first author was supported in part by NSF Grant No. DMS 95-04834.
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Fig. 1. Caps and cups.

Erdds and Szekeres gave several proofs of the existergi@pin [1] and established
the following bounds:

224+ 1<gn) < (2” B 4) +1 @
n—2
They also conjectured that the lower bound in (1) in fact always holds with equality.
This is known [2] to be the case far< 5. Despite repeated attempts over the years, no
general improvement on (1) has been found.
In this note, we make a very small improvement on the upper bound of (1). Namely,

we show
- 2n—4
gn) < < 2) )

forn > 4.

While this is admittedly rather modest, we hépleat it might suggest methods which
could give rise to more substantial reductions in the upper bound.

By anm-capwe mean a sequence f pointsxs, Xy, .. ., Xy such that the polygo-
nal path connecting them is concave, i.e., xth@ave increasing-coordinates and the
path fromx; to X, turns clockwise at each intermediate vertex. Similarly,racup
is a set of pointsyy, ya, ..., ¥m With increasingx-coordinates such that the polygo-
nal path joining them is convex, i.e., the path frgmto y, always turns counter-
clockwise.

The following result from [1] follows easily by induction:

Lemmal. If X c E?isingeneral position angX| > (a;rfg“), then X contains either
an a-cap or a b-cup

In fact, as shown in [1], this bound is sharp.

Theorem 1. If X c E2? is in general position andX| > (Zn“_*z“) for n > 4, then X
contains the vertices of a convex n-gon

Proof. Suppose the contrary. Rota¥ if necessary so that no line determined by
two points of X is either horizontal or vertical. We can further assume without loss
of generality that all lines determined by two pointsXfhave slopes less than 0.1 in
absolute value (by uniformly compressiXgin the y-direction, if necessary).

Define A := {x € X : x is the left-hand endpoint of sonia — 1)-cap inX}.

L n fact, this is exactly what happened! Séete added in proof
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Fig. 2. A cup joining a cap.

Casel: |A| > (22).

n-3
Then by Lemma 1A contains an(n — 1)-cup, sayyi, Y2, - - ., Yn—1. Sincey,_1 € A,
there exists afin — 1)-capyn_1 = 71, 22, ..., Zn—1 in X. However, this is impossible
since eitheryy, yo, ... Yn_1, Z2 iS @ann-cup, Oryn_», 21, 2, ..., Z,_1 IS ann-cap (see
Fig. 2).
Case2: |Al < (3.
ThenB := X\Asatisfies Bl > () — (') = (?2). Again, by Lemma 1B must

contain an(n — 1)-cup. However, this is impossible by the definitionAaf
This leaves as the only possibility:

Case3: |Al = Bl = (') = (2.

For anyb € B, consider the sef U {b}. Since this set has size greater tmaﬁf) then
by Lemma 1, it contains afn — 1)-cup, say with right-hand endpoigit Now, if y € A,
then as in Case 1, we reach a contradiction. Hence we musiyhave

Thus, eaclb € B is the right-hand endpoint of an — 1)-cup with left-hand endpoint
in A. It follows in a similar way that each € A s the left endpoint of atin — 1)-cap
with right-hand endpoint irB.

We now form a directed bipartite graghwith vertex setsA and B, and edge sdE
consisting of all pairgu, v), where eitheu € Ais the left-hand endpoint ande B is
the right-hand endpoint of som@ — 1)-cap inX, orv € Alis the left-hand endpoint
andu e B is the right-hand endpoint of songe — 1)-cup in X.

By the preceding remarks, it follows that all vertices®have outdegree at least 1.
This impliesG has some (directed) cycte = &, b;, - - - &, b, .

Now consider an edg@, b) € E. Let L*(a) denote the half-line starting atand
going down with slope 0.1, and I&~ (b) denote the half-line starting &tand going

L*(a) Y(a,b)

Fig. 3
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Y(b,a)

S(a,b)

(n —1)-cup

Fig. 4

down with slope-0.1. Also, letS(a, b) denote the line segment joinimgandb. Finally,
let Y (a, b) denote the region dk? (strictly) below the path.*(a)S(a, b)R~(b) (see
Fig. 3). O

Claim 1. X has no pointin Ya, b).

Otherwise, ifx € X N Y (a, b), then the(n — 1)-cap spanned bga, b) together with
x forms a convex-gon in X, which is a contradiction.

By an analogous argument fgb, a) € E, with L=(a), R"(b), Y(b, a) defined
accordingly (see Fig. 4), we also see ti@b, a) can contain no point oX.

Next, consider two connected edgesb) and(b, &) in E. We cannot hava = &/,
since if we did, therX would contain a conveg@n — 4)-gon(formed by then — 1)-cap
and(n — 1)-cup spanned bg andb), which is impossible.

Claim 2. & must lieabovethe line through a and b

Proof. Suppose not. Then from the geometry of the situation (see Fig. 5), aitleer
Y(a,b) ora € Y(b, @), a contradiction. A similar argument showg(lif, a) € E and
(a, b') € E thenb’ must lie below the line through anda. O

Finally, consider the cycl€ = g,b;, --- &, b, occurring inG. If r = 1, then we
find a convex(2n — 4)-gon, which is impossible. So, we may assume> 2. By

Y(b,d")

Y (a,b)

Fig. 5
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Claim 2, each of the angles between adjacent eadgés,, by, a,, a;,bi, - - - a by, , by, &,

must turn in a counterclockwise direction. Hence, the lines through the consecutive edges
a,bi , bi,a,, a,bi, - - -, have decreasing slopes. However, si@ce a cycle, we reach a
contradiction. O
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Note added in proof We were pleased to learn that D. Kleitman and L. Pachter, by
cleverly analyzing the preceding situation more carefully, have managed to lower the
upper bound omy(n) to (*")) + 7 — 2n. We also wish to thank them for pointing out
a simplification of our earlier argument. Very shortly after this improvement,d@h T~
and P. Valtr further reduced the upper bouncygn) to (zn”:;) + 2, which is the current
record.

We are inclined to believe (as did Ersland Szekeres) that the lower boufid?2+ 1
is the true value ofy(n). However, we admit that there is little real evidence yet for this
belief. A first step would be to show thgtn) = O((4 — ¢)") for somec > 0, a result
for which the authors gladly offer $100 for the first proof.



