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Abstract. In a seminal paper from 1935, Erd˝os and Szekeres showed that for eachn there
exists a least valueg(n) such that any subset ofg(n) points in the plane in general position
must always contain the vertices of a convexn-gon. In particular, they obtained the bounds

2n−2 + 1≤ g(n) ≤
(

2n− 4

n− 2

)
+ 1,

which have stood unchanged since then. In this paper we remove the+1 from the upper
bound forn ≥ 4.

In 1935, Paul Erd˝os and George Szekeres published a short paper “A combinatorial
problem in geometry” [1] which was destined to have a profound influence on the
development of combinatorics (and especially Ramsey theory) during the next 60 years
(see [3]). In particular, in this paper, Erd˝os and Szekeres rediscovered Ramsey’s theorem,
which had only just appeared (unknown to them) five years earlier. Their investigations
arose from a geometrical question of the talented young mathematician Esther Klein
(soon to become Mrs. Szekeres). She asked, “Is it true that for everyn, there is a least
valueg(n) such that any setX of g(n) points in the plane in general position always
contains the vertices of a convexn-gon?”
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Fig. 1. Caps and cups.

Erdős and Szekeres gave several proofs of the existence ofg(n) in [1] and established
the following bounds:

2n−2+ 1≤ g(n) ≤
(

2n− 4

n− 2

)
+ 1. (1)

They also conjectured that the lower bound in (1) in fact always holds with equality.
This is known [2] to be the case forn ≤ 5. Despite repeated attempts over the years, no
general improvement on (1) has been found.

In this note, we make a very small improvement on the upper bound of (1). Namely,
we show

g(n) ≤
(

2n− 4

n− 2

)
(2)

for n ≥ 4.
While this is admittedly rather modest, we hope1 that it might suggest methods which

could give rise to more substantial reductions in the upper bound.
By anm-capwe mean a sequence ofm pointsx1, x2, . . . , xm such that the polygo-

nal path connecting them is concave, i.e., thexi have increasingx-coordinates and the
path fromx1 to xm turns clockwise at each intermediate vertex. Similarly, anm-cup
is a set of pointsy1, y2, . . . , ym with increasingx-coordinates such that the polygo-
nal path joining them is convex, i.e., the path fromy1 to ym always turns counter-
clockwise.

The following result from [1] follows easily by induction:

Lemma 1. If X ⊂ E2 is in general position and|X| > (a+b−4
a−2

)
, then X contains either

an a-cap or a b-cup.

In fact, as shown in [1], this bound is sharp.

Theorem 1. If X ⊂ E2 is in general position and|X| ≥ (2n−4
n−2

)
for n ≥ 4, then X

contains the vertices of a convex n-gon.

Proof. Suppose the contrary. RotateX if necessary so that no line determined by
two points of X is either horizontal or vertical. We can further assume without loss
of generality that all lines determined by two points ofX have slopes less than 0.1 in
absolute value (by uniformly compressingX in the y-direction, if necessary).

DefineA := {x ∈ X : x is the left-hand endpoint of some(n− 1)-cap inX}.

1 In fact, this is exactly what happened! SeeNote added in proof.
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Fig. 2. A cup joining a cap.

Case1: |A| > (2n−5
n−3

)
.

Then by Lemma 1,A contains an(n − 1)-cup, say,y1, y2, . . . , yn−1. Sinceyn−1 ∈ A,
there exists an(n − 1)-cap yn−1 = z1, z2, . . . , zn−1 in X. However, this is impossible
since eithery1, y2, . . . yn−1, z2 is ann-cup, or yn−2, z1, z2, . . . , zn−1 is ann-cap (see
Fig. 2).

Case2: |A| < (2n−5
n−3

)
.

ThenB := X\A satisfies|B| > (2n−4
n−2

)− (2n−5
n−3

) = (2n−5
n−3

)
. Again, by Lemma 1,B must

contain an(n− 1)-cup. However, this is impossible by the definition ofA.
This leaves as the only possibility:

Case3: |A| = |B| = (2n−5
n−3

) = 1
2

(2n−4
n−2

)
.

For anyb ∈ B, consider the setA∪ {b}. Since this set has size greater than
(2n−5

n−3

)
then

by Lemma 1, it contains an(n− 1)-cup, say with right-hand endpointy. Now, if y ∈ A,
then as in Case 1, we reach a contradiction. Hence we must havey = b.

Thus, eachb ∈ B is the right-hand endpoint of an(n−1)-cup with left-hand endpoint
in A. It follows in a similar way that eacha ∈ A is the left endpoint of an(n− 1)-cap
with right-hand endpoint inB.

We now form a directed bipartite graphG with vertex setsA andB, and edge setE
consisting of all pairs(u, v), where eitheru ∈ A is the left-hand endpoint andv ∈ B is
the right-hand endpoint of some(n − 1)-cap in X, or v ∈ A is the left-hand endpoint
andu ∈ B is the right-hand endpoint of some(n− 1)-cup in X.

By the preceding remarks, it follows that all vertices ofG have outdegree at least 1.
This impliesG has some (directed) cycleC = ai1bi1 · · ·air bir .

Now consider an edge(a, b) ∈ E. Let L+(a) denote the half-line starting ata and
going down with slope 0.1, and letR−(b) denote the half-line starting atb and going

Fig. 3
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Fig. 4

down with slope−0.1. Also, letS(a, b) denote the line segment joininga andb. Finally,
let Y(a, b) denote the region ofE2 (strictly) below the pathL+(a)S(a, b)R−(b) (see
Fig. 3).

Claim 1. X has no point in Y(a, b).

Otherwise, ifx ∈ X ∩ Y(a, b), then the(n− 1)-cap spanned by(a, b) together with
x forms a convexn-gon in X, which is a contradiction.

By an analogous argument for(b,a) ∈ E, with L−(a), R+(b), Y(b,a) defined
accordingly (see Fig. 4), we also see thatY(b,a) can contain no point ofX.

Next, consider two connected edges(a, b) and(b,a′) in E. We cannot havea = a′,
since if we did, thenX would contain a convex(2n−4)-gon(formed by the(n−1)-cap
and(n− 1)-cup spanned bya andb), which is impossible.

Claim 2. a′ must lieabovethe line through a and b.

Proof. Suppose not. Then from the geometry of the situation (see Fig. 5), eithera′ ∈
Y(a, b) or a ∈ Y(b,a′), a contradiction. A similar argument shows if(b,a) ∈ E and
(a, b′) ∈ E thenb′ must lie below the line throughb anda.

Finally, consider the cycleC = ai1bi1 · · ·air bir occurring inG. If r = 1, then we
find a convex(2n − 4)-gon, which is impossible. So, we may assumer ≥ 2. By

Fig. 5
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Claim 2, each of the angles between adjacent edges,ai1bi1, bi1ai2,ai2bi2 · · ·air bir , bir ai1
must turn in a counterclockwise direction. Hence, the lines through the consecutive edges
ai1bi1, bi1ai2,ai2bi2 · · ·, have decreasing slopes. However, sinceC is a cycle, we reach a
contradiction.
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Eötvös Sect. Math., 3–4(1961), 53–62.
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Note added in proof. We were pleased to learn that D. Kleitman and L. Pachter, by
cleverly analyzing the preceding situation more carefully, have managed to lower the
upper bound ong(n) to

(2n−4
n−2

) + 7− 2n. We also wish to thank them for pointing out
a simplification of our earlier argument. Very shortly after this improvement, G. T´oth
and P. Valtr further reduced the upper bound ong(n) to

(2n−5
n−2

)+ 2, which is the current
record.

We are inclined to believe (as did Erd˝os and Szekeres) that the lower bound 2n−2+ 1
is the true value ofg(n). However, we admit that there is little real evidence yet for this
belief. A first step would be to show thatg(n) = O((4− c)n) for somec > 0, a result
for which the authors gladly offer $100 for the first proof.


