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About

There are following special types of exercises:

• marked with ∗: is challenging but Gleb thinks he knows a solution;

• marked with ∗∗: Gleb does not know a solution;

• marked with §: an open-ended or even philosophical question.

All typos, errors, and comments to be sent to gleb.pogudin@polytechnique.edu

Notations and conventions

Unless stated otherwise, all the fields are assumed to be of characteristic zero. The ideal generated
by elements f1, . . . , f` of a commutative ring R will be denoted 〈f1, . . . , f`〉.
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0 Before we start: arithmetic of differential polynomials

0.1 Differential rings, field, polynomials
Definition 0.1 (Some general definitions).

• Let R be a commutative ring. An additive map δ : R→ R is called a derivation if it satisfies
the Leibniz rule:

δ(ab) = δ(a)b+ aδ(b) for every a, b ∈ R.

We will typically denote δ(a) by a′ and, for n > 0, δn(a) by a(n).

• A commutative ring equipped with a derivation is called a differential ring. If the ring is a
field, it is called a differential field.

• For a differential ring, a subring closed under the derivation is called a differential subring.
The same for subfields.

• A differential ring which is an algebra over its differential subfield, is called a differential
algebra.

Example 0.2.

• Any ring can be considered as a differential ring with respect to the zero derivation.

• Consider the ring C[x] and the field C(x). They are a differential ring and a differential field
with respect to d

dx , respectively. Moreover, they are differential algebras over the constant
field C.

• Let D ⊂ C be a domain in the complex plane. By Hol(D) and Mer(D) we denote the set of
all holomorphic and meromorphic functions in D, respectively. They are a differential ring
and a differential field with respect to d

dz , respectively.

Remark on PDEs 0.3. The above definitions can be generalized to the PDE case by considering
rings (fields, algebras) with respect to several commuting derivations yielding to the notion of
partial differential ring (or ∆-ring if ∆ is a fixed set of symbols for derivations).

For example, if ∆ = {δ1, δ2}, then C[x, y] can be equipped with the structure of ∆-ring by
defining the actions of δ1 and δ2 to be ∂

∂x and ∂
∂y , respectively.

Notation 0.4. Let x be an element of a differential ring and h be a nonnegative integer. Then
we introduce

x(<h) := (x, x′, . . . , x(h−1)),

x(∞) := (x, x′, x′′, . . .).

x(6h) is defined analogously. If x = (x1, . . . , xn) is a tuple of elements of a differential ring and
h = (h1, . . . , hn) ∈ (Z>0 ∪ {∞})n, then

x(<h) := (x
(<h)
1 , . . . , x(<h)

n ),

x(<h) := (x
(<h1)
1 , . . . , x(<hn)

n ),

x(∞) := (x
(∞)
1 , . . . , x∞n ).

Definition 0.5 (Differential polynomials). Let R be a differential ring. Consider a ring of poly-
nomials in infinitely many variables

R[x(∞)] := R[x, x′, x′′, x(3), . . .]

and extend the derivation from R to this ring by (x(j))′ := x(j+1). The resulting differential ring
is called the ring of differential polynomials in x over R.

The ring of differential polynomials in several variables is defined by iterating this construction.

Example 0.6. Weierstrass’s elliptic function ℘(z) satisfies the following differential equations:
(℘′(z))2 = 4℘(z)3− g2℘(z)− g3. This equation can be written as the following differential polyno-
mial over a constant field Q(g2, g3):

(x′)2 − 4x3 − g2x− g3.
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Example 0.7. The Wronskian of differential variables x = (x1, x2, . . . , xn)

Wronsk(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
x1 x2 . . . xn
x′1 x′2 . . . x′n
...

...
. . .

...
x

(n−1)
1 x

(n−1)
2 . . . x

(n−1)
n

∣∣∣∣∣∣∣∣∣ (1)

is a differential polynomial from Q[x(∞)].

Remark on PDEs 0.8. For a fixed set ∆ = {δ1, . . . , δm} of symbols for derivations, one can define
∆-polynomials over a ∆-ring R in the same way by adding an infinite set of variables indexed by
Zm>0 so that δi acts by incrementing the i-th coordinate. The ring will be denoted by R[x(∞)]∆.

For example, for ∆ = {δ1, δ2}, the Jacobian J =

∣∣∣∣δ1x δ2x
δ1y δ2y

∣∣∣∣ belongs to Q[x(∞), y(∞)]∆.

Definition 0.9. Every differential polynomial P ∈ k[x
(∞)
1 , . . . , x

(∞)
n ] has the following properties:

• For every 1 6 i 6 n, we will call the largest j such that x(j)
i appears in P the order of P with

respect to xi and denote it by ordxi
P ; if P does not involve xi, we set ordxi

P := −1.

• The order of P is ordP := max
16i6n

ordxi P .

• For every 1 6 i 6 n such that xi appears in P , the initial of P with respect to xi is the
leading coefficient of P considered as a univariate polynomial in x(ordxi

P )

i . We denote it by
initxi P .

• For every 1 6 i 6 n such that xi appears in P , the separant of P with respect to xi is

sepxi
P :=

∂P

∂x
(ordxi

P )

i

.

• A differential polynomial is called isobaric if the sum of orders of derivatives in each monomial
is the same. The isobaricity is equivalent to homogeneity with respect to the grading induced
by the weight function ω defined by ω(x

(j)
i ) = j for every 1 6 i 6 n, j > 0.

Example 0.10. Consider the differential polynomial P = (x′)2− 4x3− g2x− g3 ∈ Q(g2, g3)[x(∞)]
from Example 0.6. Then

ordx P = 1, initx P = 1, sepx P = 2x′.

Example 0.11. One can see that (see Example 0.7 for notation):

sepxi
Wronsk(x1, . . . , xn) = initxi

Wronsk(x1, . . . , xn) = (−1)i+1 Wronsk(x1, . . . , xi−1, xi+1, . . . , xn).

The importance of the notion of the separant is based on the following crucial observation.

Very important observation. Let P ∈ k[x(∞)] with x = (x1, . . . , xn), and consider 1 6 i 6 n
such that h := ordxi

P > 0. Then, for every j > 0, there exists Q ∈ k[x(∞)] with ordxi
< h + j

such that
P (j) = (sepxi

P )x
(h+j)
i +Q.

Remark on PDEs 0.12. The notions of initial and separant (from Definition 0.9) can be gen-
eralized to the PDE case. Since, for several derivatives, there is no canonical way to choose “the
highest of the derivatves of x appearing in the polynomial”, one should fix a monomial ordering on
the derivatives of a single variable (considered as monomials in the elements of ∆).

0.2 Differential reduction
The differential reduction algorithm may be viewed as a generalization of the division with remain-
der for univariate polynomials.
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Algorithm 1 Differential reduction

Input differential polynomials f, g ∈ k[x(∞)] such that f 6∈ k;
Output a differential polynomial g̃ ∈ k[x(∞)] such that

• ordx g̃ < ordx f or ordx g̃ = ordx f = h and degx(h) g̃ < degx(h) f ;

• there exist a, b ∈ Z>0 such that

(sepx f)a(initx f)bg − g̃ ∈ 〈f, f ′, f ′′, . . .〉.

(Step 1) Set h := ordx f and d := degx(h) f ;

(Step 2)While ordx g > h do

(a) Set H := ordx g, D := degx(H) g;

(b) g := (sepx f)g − (initx g)(x(H))D−1f (H−h);

(Step 3)While degx(h) g > d do

(a) Set D := degx(h) g;

(b) g := (initx f)g − (initx g)(x(h))D−df ;

(Step 4)Return g.

Lemma 0.13. Algorithm 1 always terminates and returns a correct result.

Proof. Left as an exercise.

Example 0.14. We will show that the result of the reduction of g = x′′ − 1/2 with respect to
f = (x′)2 − x is zero. Since ordx g > ordx f , we compute:

(sepx f)g − (initx g)f ′ = (2x′)(x′′ − 1/2)− 1 · (2x′x′′ − x′) = 0.

One can interpret this as follows. The solutions of f = 0 are x = (0.5t + c)2 (c — arbitrary
constant) and x = 0, and the former is also a solution of g = 0 while the latter is a solution of
sepx f = 0. Therefore, g is reducible to zero because it vanished at all “nonspecial” solutions of f .

0.3 Exercises
Exercise 0.1. Consider the polynomial P from Example 0.6 with g2 = 0, g3 = 1, that is, P =
(x′)2 − 4x3 − 1. Show that x′′ − 6x2 reduces to zero with respect to P .

Exercise 0.2. Verify that the following differential polynomials are reduced to zero with respect
to (x′)2 − x2

1. x′′ − x;

2. Wronsk(x, x′).

Try to explain why.

Exercise 0.3. Could it happen that a derivative of an irreducible nonconstant differential poly-
nomial is

1. reducible?

2. non-squarefree?

Exercise 0.4. 1. Show that there is no q ∈ C[x(∞)] such that q′ = Wronsk(x, x′) =

∣∣∣∣x x′

x′ x′′

∣∣∣∣
(see (1)).

2. Propose an algorithm that takes p ∈ C[x(∞)] as input and determines whether it has an
integral (that is, there exists q ∈ C[x(∞)] such that q′ = p).
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Exercise∗∗ 0.5. Note that, although Wronsk(x, x′) ∈ Q[x(∞)] does not have an integral, the
differential rational function Wronsk(x,x′)

(x′)2 does. Propose an algorithm that takes p ∈ C[x(∞)] and
checks whether there exists a differential rational function r of lower order such that pr has an
integral.

Exercise§ 0.6. Would it be possible to reformulate the algorithm from Exercise 0.4 in the language
of homology, that is to define a “natural” map from C[x(∞)] so that its kernel is exactly the set of
all the derivatives?

Exercise 0.7. Prove that the following identity holds in Q[x
(∞)
1 , . . . , x

(∞)
n , y(∞)]:

Wronsk(x1y, x2y, . . . , xny) = yn Wronsk(x1, . . . , xn).

Exercise 0.8. Let f(z) be a meromorphic function such that P (f(z)) = 0 for some P (x) ∈ C[x(∞)].
Show that 1

f(z) also satisfies a polynomial differential equation of order at most ordx P . What can
be said about the degree of this equation (in terms of P )?

1 Differential ideals

We will use the following fact from commutative algebra of polynomial rings in infinitely many
variables.

Theorem 1.1 (Follows from the main theorem of [6]). Let Λ be a countable set, F be a field, E
be an algebraically closed field of uncountable transcendence degree over F , and I be an ideal in
F [xλ | λ ∈ Λ]. Then, for every f ∈ F [xλ | λ ∈ Λ], the following are equivalent:

• there exists N such that fN ∈ I;

• for every homomorphism φ : F [xλ | λ ∈ Λ]→ E such that I ⊂ kerφ, φ(f) = 0.

1.1 Differential ideals, their radicals and prime components
Definition 1.2 (Differential ideal). Let S := R{x1, . . . , xn} be a ring of differential polynomials
over a differential ring R. An ideal I ⊂ S is called a differential ideal if a′ ∈ I for every a ∈ I.

One can verify that, for every f1, . . . , fs ∈ S, the ideal

〈f (∞)
1 , . . . , f (∞)

s 〉

is a differential ideal. Moreover, this is the minimal differential ideal containing f1, . . . , fs, and we
will denote it by 〈f1, . . . , fs〉(∞).

Example 1.3. Consider a constant fieldQ(ω), where ω is a transcendental constant. InQ(ω)[x(∞), y(∞)],
consider the ideal [x′ − ωy, y′ + ωx]. This ideal contains, for example, x′′ + ω2x, the harmonic
oscillator equation, becuase:

x′′ + ω2x = (x′ − ωy)′ + ω(y′ + ωx) ∈ 〈x′ − ωy, y′ + ωx〉(∞).

It turns out that two fundamental operations in commutative algebra, taking the radical of an
ideal and prime decomposition of a radical ideal, respect the differential structure.

Proposition 1.4 (Taking radical is differential-friendly). Let I ⊂ R be a differential ideal in a
differential ring R such that Q ⊂ R. Then the radical

√
I := {f ∈ R such that ∃N : fN ∈ I}

is also a differential ideal.

Proof. We will prove the proposition by first proving that,

for every m > 1: x′ ∈
√
〈xm〉(∞) ⊂ Q[x(∞)]. (2)

Proving (2) would imply, for every m > 0, that there exists M(m) such that (x′)M(m) can be
written as a Q[x(∞)]-linear combination of the derivatives of xm. Then, if a ∈

√
I with an ∈ I,

plugging x = a into such representation would yield that (a′)M(n) ∈ I.
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In order to prove (2), consider any homomorphism (not necessarily differential) φ : Q[x(∞)]→ C
such that 〈xm〉(∞) ⊂ kerφ. Then φ(x) = 0. Observe that, due to the pigeonhole principle, (xm)(m)

can be written as:
(xm)(m) = m!(x′)m + x ·Q,

for some Q ∈ Q[x(∞)]. Applying φ to the both sides and using 〈xm〉(∞) ⊂ kerφ, we obtain

0 = φ((xm)(m)) = m!φ((x′)m) + φ(x)φ(Q) = m!φ(x′)m.

Therefore, φ(x′) = 0, so x′ ∈
√
〈xn〉(∞) due to Theorem 1.1.

Remark 1.5. A refined version of this proof will be discussed in the next section (Lemma 2.5).
A more “syntactic” proof can be found in [5, Lemma 1.7] which yields that M(m) 6 2m in the
notation of the proof above. Sharp bounds these exponents were obtained in [9] (see also [1]). See
also Exercises 1.2 and 1.3.

Proposition 1.6 (Prime decompositions are differential-friendly). Let R ⊃ Q be a differential
ring. Then every radical differential ideal in R is an intersection of prime differential ideals.

The proof of the proposition will rely on the following “arithmetic” property of radical differ-
ential ideals.

Lemma 1.7. Let R ⊃ Q be a differential ring. Let A,B ⊂ R. Then√
〈A ·B〉(∞) =

√
〈A〉(∞) · 〈B〉(∞).

Proof. Since 〈A ·B〉(∞) ⊆ 〈A〉(∞) · 〈B〉(∞), we have
√
〈A ·B〉(∞) ⊆

√
〈A〉 · 〈B〉(∞).

In the other direction, observe that the differential ideal 〈A〉(∞) · 〈B〉(∞) is generated as an
ideal by the products of the form a(i)b(j), where a ∈ A, b ∈ B, i, j > 0. Exercise 1.7 implies that
a(i)b(j) ∈

√
〈ab〉(∞) ⊆

√
〈A ·B〉(∞).

Corollary 1.8. Let S be a multiplicatively closed subset of a differential ring R ⊃ Q such that
0 6∈ S. Consider a maximal differential ideal I not containing S. Then I is prime.

Proof. Assume that I is not prime, so there are a1, a2 ∈ R such that a1a2 ∈ I and a1, a2 6∈ I. The
maximality of I implies that there exist s1, s2 ∈ S such that si ∈

√
〈I, ai〉(∞) for i = 1, 2. Then

Lemma 1.7 implies that

s1s2 ∈
√
〈I, a1〉(∞)

√
〈I, a2〉(∞) ⊆

√
〈I, a1〉(∞) · 〈I, a2〉(∞) =

√
I,

so we have arrived at a contradiction.

Proof of Proposition 1.6. Let I ⊂ R be a radical differential ideal. Consider a 6∈ I. Then S :=
{ai | i > 1} is a multiplicatively closed set disjoint with I. Consider a maximal differential ideal
containing I and not intersecting S. Corollary 1.8 implies that this ideal is prime. Therefore, the
intersection of all prime differential ideals containing I does not contain a. Thus, this intersection
is equal to I.

Remark 1.9. We will show later (Corollary 1.18) that a radical ideal in k[x(∞)] (with x =
(x1, . . . , xn)) is an intersection of finitely many prime differential ideals yielding that the prime
components of a radical differential ideal are differential ideals.

Remark on PDEs 1.10. All the proofs in this subsection can be used verbatim for the case of
several commuting derivations.

Definition 1.11 (Differential spectrum). We will call the set of all prime differential ideals of a
differential ring R the differential spectrum of R and denote by diffspecR (we will introduce the
corresponding topology later). We will denote the set of all prime differential ideals in R containing
a set S by V(S) ⊂ diffspecR. Then Proposition 1.6 implies that, for radical ideals I, J ⊂ R, we
have I = J ⇐⇒ V(I) = V(J). Using the language of algebraic geometry, we will say that an
element f ∈ R vanishes at P ∈ diffspecR if f ∈ P .

Lemma 1.12. Let R be a differential ring. Prove that

1. for every subsets and S, T ⊂ R, V(S · T ) = V(S) ∪ V(T );

2. a radical ideal I ⊂ R is prime if and only if, for every subsets S, T ⊂ R, V(I) = V(S)∪V(T )
implies that V(I) = V(S) or V(I) = V(T ).

Proof. Left as Exercise 1.8

6



1.2 Bad news: no Noetherianity in general

Proposition 1.13. The following chain of ideals in Q[x(∞)] is an infinite strictly ascending chain:

〈x2〉(∞) ( 〈x2, (x′)2〉(∞) ( 〈x2, (x′)2, (x′′)2〉(∞) ( . . .

Proof. For i > 0, we denote Ii := 〈x2, (x′)2, . . . , (x(i))2〉(∞). We will show that p := (x(i+1))2 6∈ Ii.
Assume the contrary. Since Ii is generated by homogeneous polynomials of degree two, (x(i+1))2

must be a Q-linear combination of the derivatives of the generators. Moreover, since the generators
of Ii are also isobaric, (x(i+1))2 must be a Q-linear combination of

p0 := (x2)(2i+2), p1 := ((x′)2)(2i), . . . , pi := ((x(i))2)′′.

Since p0 involves xx(2i+2) which does not appear in either of p1, . . . , pi, p, p0 will not appear
in the linear combination. Analogously, p1 involves x′x(2i+1) which does not appear in either of
p2, . . . , pi, p, so p1 will not appear in the linear combination as well. Continuing in the same way, we
show that none of p0, . . . , pi will appear in the linear combination arriving at a contradiction.

1.3 Prime univariate ideals
In this section we will show that prime univariate ideals over differential rings admit a concise
representation. This fact is an important tool in differential algebra (with the role similar to the
fact that univariate polynomials over a field form a PID), and we will use it in the proof of the
Ritt-Raudenbush theorem.

Notation 1.14. Let I be an ideal in ring R, and a ∈ R. Then:

I : a∞ := {b ∈ R | ∃N : aNb ∈ I}.

Proposition 1.15 (Univariate prime ideals). Let R ⊃ Q be a differential ring, and P ⊂ R[x(∞)]

be a prime differential ideal such that P 6=
√
〈P ∩R〉(∞). Let f be an element of the lowest degree

among the elements of the lowest order in P \
√
〈P ∩R〉(∞). Then sepx(f) initx(f) 6∈ P and

P = 〈P ∩R, f〉(∞) : (sepx(f) initx(f))∞.

Proof. Let P0 :=
√
〈P ∩R〉(∞), s := sepx f , ` := initx f , h := ordx f , and d := degx(h) f . We will

show that s, ` 6∈ P .

• If ` ∈ P then, due to the minimality of f , we have ` ∈ P0. Then f − `(x(h))d ∈ P is of lower
degree than f , so it belongs to P0. Hence, f = (f − `(x(h))d) + `(x(h))d belongs to P0 as well.

• If s ∈ P then, due to the minimality of f , we have s ∈ P0. Then f − 1
dsx

(h) is of lower degree
than f , so it belongs to P0. Hence, f = (f − 1

dsx
(h)) + 1

dsx
(h) ∈ P0.

The primality of P implies that s` 6∈ P . Let P1 := 〈P0, f〉(∞) : (s`)∞.
First we show that P1 ⊆ P . Let g ∈ P1. Then there existsN such that sN`Ng ∈ 〈f, P0〉(∞) ⊂ P .

The primality of P implies that g ∈ P .
Now we show that P ⊆ P1. Let g ∈ P . We perform the differential reduction (Algorithm 1) of

g with respect to f . It will yield a, b ∈ Z>0 and g̃ such that

sa`bg − g̃ ∈ 〈f〉(∞).

Since g, f ∈ P , g̃ belongs to P . The minimality of f implies that g̃ ∈ P0. Therefore, g ∈ P1.

1.4 Good news: Noetherianity for radical differential ideals
(the Ritt-Raudenbush theorem and its corollaries)

Theorem 1.16 (Ritt-Raudenbush). Let k be a differential field, and let I ⊂ k[x(∞)], where x =
(x1, . . . , xn), be a radical differential ideal. Then there exist f1, . . . , fs ∈ k[x(∞)] such that

I =
√
〈f1, . . . , fs〉(∞).
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Corollary 1.17 (ACC for radical differential ideals). Let k be a differential field. Let

I0 ⊆ I1 ⊆ I2 ⊆ . . .

be an ascending chain of radical differential ideals in k[x(∞)]. Then there exists N such that
IN = IN+1 = IN+2 = . . ..

Proof of Corollary 1.17. Let I :=
∞⋃
i=0

Ii. Then I is a radical differential ideal. Theorem 1.16

provides us f1, . . . , fs such that I =
√
〈f1, . . . , fs〉(∞). Since f1, . . . , fs ∈ I, there exists N such

that f1, . . . , fs ∈ IN . Therefore, IN = IN+1 = . . . = I.

Corollary 1.18 (Finite primary decomposition). Let k be a differential field, and let I ⊂ k[x(∞)]
be a radical differential ideal. Then there exist prime differemtial ideals P1, . . . , Ps ⊂ k[x(∞)] such
that

I = P1 ∩ P2 ∩ . . . ∩ Ps.

Proof of Corollary 1.18. Proposition 1.6 implies that there exists a set {Pλ}λ∈Λ of prime differen-
tial ideals in k[x(∞)] such that I =

⋂
λ∈Λ

Pλ. By removing unnecessary Pλ’s, we will further assume

that this decomposition is irredundant. If Λ is infinite, then let {λ0, λ1, . . .} be a countable subset
of Λ. Then the irredundancy of the decomposition implies that

∞⋂
i=0

Pλi
(
∞⋂
i=1

Pλi
(
∞⋂
i=2

Pλi
( . . .

is an infinite strictly ascending chain of radical differential ideals. This contradicts Corollary 1.17.

1.5 Proof of the Ritt-Raudenbash theorem (Theorem 1.16)
The Ritt-Raudenbash theorem (Theorem 1.16) will follow by induction on the number of differential
variables from the Theorem 1.20 below.

Definition 1.19 (Basis property). Let I be a radical differential ideal in a differential ring R. A
set {fλ}λ∈Λ ⊂ R is called a basis of I if I =

√
〈fλ | λ ∈ Λ〉(∞). If |Λ| < ∞, we say that I has a

finite basis.
We will say that a differential ring R has the basis property if every radical differential ideal R

has a finite basis. In particular, Theorem 1.16 states that differential polynomial rings have the
basis property.

Theorem 1.20. Let R ⊃ Q be a differential domain ring with the basis property. Then R[x(∞)]
also has the basis property.

Lemma 1.21. If a radical ideal I of a differential ring R has a finite basis, then one can choose
a finite basis from any basis of I.

Proof. Let {g1, . . . , gs} and {fλ}λ∈Λ be two bases of I such that the former is finite. Since the
expression of a suitable power of each of gi’s in terms of fλ’s involves only finitely many terms, then
there exists a finite subset Ω ⊂ Λ such that gi ∈

√
〈fλ | λ ∈ Ω〉(∞) for every 1 6 i 6 s. Therefore,

{fλ}λ∈Ω is a finite subbasis.

Proof of Theorem 1.20. Assume the contrary. Consider the set of all radical differential ideals in
R[x(∞)] not having a finite basis. This set satisfies the conditions of the Zorn’s lemma. Let I be
any maximal element in this set.

First we will prove that I is prime. Assume the contrary. Lemma 1.12 implies that exist radical
ideals J1, J2 such that V(I) = V(J1)∪V(J2) and V(I) ( V(Ji) for i = 1, 2. Due to the maximality
of I, there exist B1, B2 ⊂ R such that Ji =

√
〈Bi〉(∞) for i = 1, 2. Then, using Lemma 1.12, we

have
V(I) = V(J1) ∪ V(J2) = V(B1) ∪ V(B2) = V(B1B2),

and this gives us a finite basis B1B2 for I.
Let I0 :=

√
〈I ∩R〉(∞). Due to Proposition 1.15 applied to I, there exists f ∈ I and g 6∈ I

such that I = 〈I0, f〉(∞) : g∞. The maximality of I implies that
√
〈I, g〉(∞) has a finite basis.
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Lemma 1.21 implies that there exist f1, . . . , fm ∈ I such that
√
〈I, g〉(∞) =

√
〈f1, . . . , fm, g〉(∞).

We claim that
I = I1 :=

√
〈I0, f, f1, . . . , fm〉(∞). (3)

Since I0 ⊆ I and f, f1, . . . , fm ∈ I, I1 ⊆ I. To prove the reverse inclusion, consider q ∈ I. Then
there exists N such that gNq ∈ 〈I0, f〉(∞). Consider P ∈ V(I1).

• If g(P ) 6= 0, then q must vanish at P .

• If g(P ) = 0, then P ∈ V(g, f1, . . . , fm) ⊂ V(I), so q vanishes at P .

Therefore, q ∈ I1. Thus (3) is proved. Since I0 ⊂ R, it has a finite basis, so (3) gives a finite basis
for I.

1.6 Caveat: finite basis 6= finitely generated
Although the Ritt-Raudenbash theorem shows that any radical differential ideal in a differential
polynomial ring can be defined (as a radical differential ideal) by finitely many differential polyno-
mials, it does not imply that any such ideal is finitely generated as a differential ideal.

Proposition 1.22. The radical differential ideal
√
〈xy〉(∞) ⊂ Q[x(∞), y(∞)] is not finitely gener-

ated as a differential ideal.

Proof. First we show that
√
〈xy〉(∞) is generated by S = {x(i)y(j) | i, j > 0} as an ideal. S ⊂√

〈xy〉(∞) by Exercise 1.7. Consider any element f ∈
√
〈xy〉(∞). Since any monomial containing

derivatives of both x and y is divisible by an element of S, modulo 〈S〉, f is equivalent to a
differential polynomial of the form f0 + f1 + c, where f0 ∈ Q[x(∞)] and f1 ∈ Q[y(∞)] have zero
constant term, and c ∈ Q. We will show that f0 + c = 0. Assume that f0 + c 6= 0. Consider a
homomorphism φ : Q[x(∞), y(∞)]→ Q such that

φ(y(i)) = 0 for every i > 0 and φ(f0 + c) 6= 0.

Then kerφ ⊃
√
〈xy〉(∞) and φ(f) 6= 0, so f 6∈

√
〈xy〉(∞). Similarly f1 + c = 0, so f0 = f1 = c = 0.

Therefore,
√
〈xy〉(∞) = 〈S〉.

Assume that
√
〈xy〉(∞) = 〈g1, . . . , g`〉(∞) for some g1, . . . , g` ∈ Q[x(∞), y(∞)]. Since all elements

in S are homogeneous and isobaric, then, for every f ∈
√
〈xy〉(∞), its homogeneous isobaric com-

ponents also belong to the ideal. Therefore, replacing g1, . . . , g` with their homogeneous isobaric
components if necessary, we will further assume that they are homogeneous and isobaric. More-
over, we will assume that deg g1 = . . . = deg gr = 2, and deg gi > 2 for i > r (r may be zero).
The homogeneity of the generators imply that each element of S must be a Q-linear combination
of the derivatives the g1, . . . , gr. For every 1 6 i 6 h, we will denote the sum of the orders of the
variables in any monomial of gi (which is the same for different monomials due to the isobaricity)
by hi. Then the isobaricity of the generators implies that each element of

xy(r), x′y(r−1), . . . , x(r)y

is a Q-linear combination of g(r−h1)
1 , . . . , g

(r−hr)
r . However, it is impossible to write r + 1 linearly

independent vector as a linear combinations of r vectors.

1.7 Special case: differential ideals of dynamical models
In this section, we consider a class of systems of differential equations ubiquitous in applications
(so-called state-space representation of a model), show that they have extremely nice algebraic
properties, and demonstrate an application of differential algebra to modeling (and to special
functions, see Example 1.29). More precisely, we will consider systems of the form{

x′ = f(p,x,u),

y = g(p,x,u),
(4)

where

• p = (p1, . . . , ps) are unknown scalar parameters;

• x = (x1, . . . , xn),y = (y1, . . . , ym), and u = (u1, . . . , u`) are function variables refereed to as
the state, output, and input variables, respectively;
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• f ,g are vectors of polynomials in C[p,x,u] of dimensions n and m, respectively.

System (4) can be interpreted as follows. The input variables u are the functions determined
by the experimenter/modeller (e.g., an external force or a drug injection). Together with the
parameter values and the initial conditions for the state variables x, they completely define the
dynamics of the x-variables. The output variables y are the quantities measured/observed in the
experiment. The typical questions asked about such systems include:

• is it possible to determine infer the values of the parameters (identifiability) or reconstruct
the values of the state variables (observability);

• is it always possible to achieve the desired behaviour of the system by chosing appropriate
input functions (controllability and control design);

• which functions in x and u remain constant along the trajectories (first integrals).

Example 1.23 (Predator-prey model). The following model describes the coexistence of two
species, prey (x1) and predators (x2), so that the population of prey can be observed and controlled:

x′1 = ax1 − bx1x2 + u,

x′2 = −cx2 + dx1x2,

y = x1.

(5)

To put (4) into the context of differential algebra, consider a constant differential field k = C(p)
to be a purely transcendental extension of C by the parameters. Then (4) can be recasted into the
following n+m differential polynomials:

x′ − f(x,u), y − g(x,u) ∈ k[x(∞),y(∞),u(∞)], (6)

where the dependence of f and g on p is made implicit as p belongs to the field of coefficients.

Proposition 1.24. In the notation above, consider differential ideal

I := 〈x′ − f(x,u), y − g(x,u)〉(∞) ⊂ k[x(∞),y(∞),u(∞)].

1. On the ring k[x(∞),y(∞),u(∞)] considered as a polynomial ring in infinitely many variables,
consider the lexicographic monomial ordering corresponding to any ordering on the variables
such that

(a) y(i2)
i1

> x
(i4)
i3

> u
(i6)
i5

for every i1, . . . , i6;

(b) i1 > i2 =⇒ a
(i1)
j1

> a
(i2)
j2

for every a ∈ {x, y, u} and j1, j2.

Then the set of all the derivatives of (6) forms a Gröbner basis of I with respect to this
ordering.

2. As a commutative algebra, k[x(∞),y(∞),u(∞)]/I is isomorphic to k[x,u(∞)]. In particular,
I is a prime differential ideal.

Proof.

1. Note that the leading terms of (x′i − fi(x,u))(j) and (yi − gi(x,u))(j) will be x(j+1)
i and

y
(j)
i , respectively. Therefore, the leading terms of all the derivatives of (6) will be distinct
variables. Therefore, this set is a Gröbner basis by the first Buchberger’s criterion.

2. The result of the reduction of any polynomial with respect to the Gröbner basis from the
previous part of the proposition belongs to k[x,u(∞)], and none of the elements of this
subring is reducible with respect to the basis. Therefore, the quotient with respect to I will
be isomorphic to k[x,u(∞)].

Now we will demonstrate how the structure of this ideal can be used in applications.

Definition 1.25 (Field of definition). Let J ⊂ K[x
(∞)
1 , . . . , x

(∞)
n ] be a differential ideal over a

differential field K. Then the smallest differential subfield L ⊂ K such that J is generated by
J ∩ L[x

(∞)
1 , . . . , x

(∞)
n ] is called the field of definition of J .
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Consider ideal I from Proposition 1.24. It has been shown in [8, Theorem 21] that the field of
definition of

I ∩ k[y(∞),u(∞)]

is exactly the field of multi-experiment identifiable functions, that is, the functions in the parameters
whose values can be determined from sufficiently many experiments with generic independent
inputs and initial conditions.

Example 1.26. Consider the following model:
x′1 = p1x2,

x′2 = p2x1,

y = x1.

In this case, I = 〈x′1−p1x2, x
′
2−p2x1, y−x1〉(∞). We can find at least one element I∩C(p1, p2)[y(∞)]

in by
y′′ = x′′1 = p1x

′
2 = p1p2x1 = p1p2y.

Moreover, one can show that I ∩C(p1, p2)[y(∞)] = 〈y′′− p1p2y〉(∞). Hence, its field of definition is
Q(p1p2), so the value p1p2 can be found experimentally while p1 and p2 cannot (look at the system
an convince yourself in this!).

Proposition 1.27. Assume that m = 1, that is, the system has only one output. Consider a
polynomial f in I ∩ k[y(∞),u(∞)] of the lowest possible degree among the polynomials of the lowest
possible order in y.

1. Normalize f so that at least one of the coefficients is 1. Then the remaining coefficients
generate the field of definition of I ∩ k[y(∞),u(∞)] and, consequently, the field of multi-
experiment identifiable functions.

2. We define

Ij := 〈(x′ − f(x,u))(<j), (y − g(x,u))(6j)〉 ⊂ k[x(6j), y(6j),u(6j)].

Then f ∈ In. In particular, f can be found using a Gröbner basis computation.

Proof.

1. Proposition 1.24 implies that I is prime, so J := I∩k[y(∞),u(∞)] is prime as well. Since none
of the derivatives of u appear as in the leading terms of the Gröbner basis of I described in
Proposition 1.24, I ∩ k[u(∞)] = {0}. Applying Proposition 1.15 to J viewed as a univariate
prime differential ideal over k[u(∞)], we deduce that

J = 〈f〉(∞) : g∞,

where g is the product of the initial and separant of f . Let F be the field generated by the
coefficients of f (after the normalization). Due to the minimality of f , any set of generators
of J must contain f , so F is contained in the field of definition of J . Now we will show that
J is generated by J ∩F [y(∞),u(∞)]. Consider any element p ∈ J . Then there exists N, r and
a0, . . . , ar ∈ k[y(∞),u(∞)] such that

gNp =

r∑
i=0

aif
(i). (7)

Let {eλ}λ∈Λ be a basis of k over F . We write p =
∑
λ∈Λ

pλeλ and ai =
∑
λ∈Λ

ai,λeλ so that pλ’s

and ai,λ’s have the coefficient in F . Then, equating the coefficients at each eλ in (7), we see
that pλ ∈ J for every λ ∈ Λ, so p belongs to the ideal generated by J ∩ F [y(∞),u(∞)].

2. Since, in the Gröbner basis described in Proposition 1.24, the leading term has the highest
order, reduction with respect to this basis does not increase the order. Therefore, we have,
for every j > 0,

I ∩ k[x(6j), y(6j),u(6j)] = Ij .

Since the polynomials in k[y(6n),u(6n)] not reducible with respect to the Gröbner basis are
exactly k[x,u(6n)], the transcendence degree of k[x(6n), y(6n),u(6n)]/In is equal to |x| +
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(n + 1)|u| = n + (n + 1)`. One the other hand, the transcendence degree of k[y(6n),u(6n)]
is equal to (1 + |u|)(n + 1) = (n + 1)(` + 1). Therefore, In ∩ k[y(∞),u(∞)] 6= {0}. Since
I ∩ k[u(∞)] = {0}, we have ordy f 6 n.

It remains to show that f ∈ k[y(6n),u(6n)]. Assume the contrary. Then f involves the
derivatives of u of order higher than n. Since the reduction with respect to the Gröbner
basis replaces y or x variables with a differential polynomial of the same or lower order, the
order in y and x of all the intermediate results in the reduction of f with respect to the
basis will not exceed n. Therefore, if we write f as a polynomial in u(n+1),u(n+2), . . . over
k[y(6n),u(6n)], then all the coefficients will also belong to I. If f 6∈ k[y(6n),u(6n)], then at
least one of them is of lower degree than f contradicting to the minimality of f .

Proposition 1.27 yields an algorithm for computing the functions identifiable from multiple
experiments.

Example 1.28 (Predator-prey, continued). Consider the predator-prey model (5) from Exam-
ple 1.23. Proposition 1.27 implies that the field of multi-experiment functions (which is equal
to the field of definition) is generated by the coefficients of the minimal polynomial for y over
C(a, b, c, d)[u(∞)]. We will compute this polynomial using the second part of Proposition 1.27. We
have n = 2, and the polynomial must belong to the ideal generated by

x′1 − ax1 + bx1x2 − u, x′2 + cx2 − dx1x2,

x′′1 − ax′1 + bx′1x2 + bx1x
′
2 − u′, x′′2 + cx′2 − dx′1x2 − dx1x

′
2,

y − x1 y′ − x′1, y′′ − x′′1 .

The last element in the Gröbner basis with respect to the lexicographic ordering with

x′′1 > x′′2 > x′1 > x′2 > x1 > x2 > y′′ > y′ > y > u′ > u

is exactly the element of lowest order in y over C(a, b, c, d)[u, u′]:

ady3 − dy2y′ − acy2 + cyy′ + yy′′ − (y′)2.

Then the field of definition (and the field of multi-experiment identifiable functions) is

C(ad, d, ac, c) = C(a, c, d)

meaning that the values of a, c, d can be inferred from a series of experiments while the value of b
cannot.

Example 1.29 (Differential-algebraic functions). In this exercise, we will demonstrate that equa-
tions of the form (4) appear not only in modelling. Paineleve transcendents are one of the funda-
mental special functions. Transcendent of type I is a solution of the following differential equation
over C(t) (considered as a differential field with respect to d

dt ):

y′′ = 6y2 + t.

Consider the problem of finding a differential equation for z = y2. This can be reduced to find a
consequence of 

t′ = 1,

y′1 = 6y2
2 + t,

y′2 = y1,

z = y2

(8)

involving only z and its derivatives. Here t, y1, y2 play the role of the state variables and z plays
the role of the output. We have n = 3, so the desired equation will belong to the ideal generated
by two more derivatives of (8). Computation similar to the one from the previous example shows
that

z5(z′)2+
1

3
z5z′+

1

36
z5− 1

144
z4(z′′′)2+

1

48
z3z′z′′z′′′− 1

96
z2(z′)3z′′′− 1

64
z2(z′)2(z′′)2+

1

64
z(z′)4z′′− 1

256
(z′)6 = 0.
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1.8 Exercises

Exercise 1.1. Consider I := 〈x′′+x, x2 +y2−1〉(∞) ⊂ Q[x(∞), y(∞)]. Find at least one differential
polynomial in I ∩Q[y(∞)]. Try to give its trigonometric interpretation.

Exercise 1.2. Use [4, Theorem 1.3] to derive a bound M(m) 6 m2 (in the notation of the proof
of Proposition 1.4) from the proof of Proposition 1.4.

Exercise∗ 1.3. Prove that, for every n > 1, there exists positive cn ∈ Qn such that

Wronsk(1, x, x2, . . . , xn) = cn(x′)
n(n+1)

2 . (9)

Use this to prove that (in the notation of the proof of Proposition 1.4) that M(m) 6 m(m+1)
2 .

Exercise§ 1.4. How could one generalize the identity (9) to get expressions with (x′′)N?

Exercise 1.5. Show that, for every n > 1,

x′ 6∈
√
〈xn, (xn)′, . . . , (xn)(n−1)〉.

(Hint: how would you formulate the negation of the Nullstellensatz?)

Exercise 1.6. Use any computer algebra system (or the course package https://github.com/
pogudingleb/DifferentialAlgebra) to find the smallest number N such that

(x′)N ∈ 〈xn, (xn)′, . . . , (xn)(n)〉

for n = 2, 3, 4, 5.

Exercise 1.7. Use the argument from the proof of Proposition 1.4 to show that if I is a radical
differential ideal in a differential ring R and ab ∈ I, then ab′ ∈ I.

Exercise 1.8. Prove Lemma 1.12.

Exercise 1.9. The following problem has been proposed at the 40th International Mathematical
Tournament of Towns1:

Rockefeller and Marx play the following game. There are n > 1 cities, each with the
same number of citizens. At the start of the game every citizen has exactly one coin (all
coins are identical). On his turn, Rockefeller chooses one citizen from every city, then
Marx redistributes their coins between them so that the new distribution is different
from one immediately before. Rockefeller wins if at some moment there will be at
least one citizen in every city with no coins. Prove that Rockefeller can always win, no
matter how Marx plays, if in every city there are 2n− 1 citizens.

Taking this statement for granted, show that, for every n > 1,

(x′1 · . . . · x′n)2n−1 ∈ 〈x1 · . . . · xn〉(∞) ⊂ Q[x
(∞)
1 , . . . , x(∞)

n ].

Exercise∗ 1.10. Give an example of a radical differential ideal I ⊂ Q[x(∞)] such that there is no
f ∈ Q[x(∞)] such that I =

√
〈f〉(∞). (Hint: look at the previous lecture)

Exercise∗ 1.11. Is the ideal 〈Wronsk(x, x′)〉(∞) radical? Prime?

Exercise∗∗ 1.12. Is it true that every prime differential ideal in Q[x(∞)] is finitely generated as a
differential ideal?

Exercise 1.13. Prove that, in Proposition 1.15, if R is a field, then the saturation with respect
to the initial is not necessary.

Exercise 1.14. Consider a differential ideal 〈y′, x′ − yx〉 ∈ Q[x(∞), y(∞)]. Show that it is prime
and find a representation for it as in Proposition 1.15.

Exercise 1.15. Let A be a differential algebra over k without zero divisors which is generated as
a differential algebra by a single element and is not isomorphic to k[x(∞)]. Prove that A can be
embedded into a differential algebra which is finitely generated as a commutative algebra.

(Hint: use Proposition 1.15 and localization)
1the full problem set is here https://www.turgor.ru/en/problems/40/fall-40-A-eng-auth.pdf. By the way,

the tournament of towns is one of the best high school olympiads in the world, see https://www.turgor.ru/en/
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Exercise 1.16. Using Example 1.29, find a differential equation satisfied by sin(sin t).

Exercise 1.17. Consider now the case when the right-hand sides of (4) are rational function.
Bringing to the common denominator, we will write fi = Fi

Q for 1 6 i 6 n and gj =
Gj

Q for
1 6 j 6 m, where Fi’s, Gj ’s and Q are polynomials. The corresponding differential ideal would be

I := 〈Qx′1 − F1, . . . , Qx
′
n − Fn, Qy′1 −G1, . . . , Qy

′
m −Gm〉(∞) : Q∞.

Prove the following analogues of the statements from Section 1.7.

1. Ideal I is a prime differential ideal.

2. The intersection of I with the subring generated by the derivatives of the orders at most j is
equal to

Ij := 〈(Qx− F(x,u))(<j), (Qy −G(x,u))(6j)〉 : Q∞.

3. It m = 1, then the ideal In contains the minimal differential equation for y.

Exercise 1.18. Use Exercise 1.17 to derive a second order differential equation for 1
sin t + 1

cos t .

Exercise∗∗ 1.19. Derive a first order differential equation for 1
sin t + 1

cos t .

2 Solutions: power series

In this section, we restrict our attention to differential equations with complex coefficients. In the
algebraic language, this means that we will consider differential algebras over C. The main goal of
the section is to consider formal power series solutions of such equations. Apart from high practical
relevance, power series solution turn out to be very natural from the algebraic standpoint: they
correspond to the set of complex point of the differential algebra considered as a commutative
algebra.

2.1 Taylor homomorphisms and Nullstellensatz for power series
Lemma 2.1 (Taylor homomorphism). Let A be a differential algebra over C, and let ϕ : A→ C be
a (not necessarily differential) homomorphism of C-algebras. Consider the Taylor homomorphism
T (ϕ) : A→ C[[t]] defined by

T (ϕ)(a) :=

∞∑
i=0

ϕ(a(i))
ti

i!
.

If we consider C[[t]] as a differential algebra with respect to d
dt , T (ϕ) is a homomorphism of differ-

ential algebras.

Proof. Verified by a direct computation.

Notation 2.2. We introduce the evaluation homomorphism e : C[[t]]→ C by e(f(t)) := f(0). Note
that this is a C-homomorphism.

Proposition 2.3. Let A be a differential algebra over C. Consider two sets:

specC(A) := {ϕ : A→ C | ϕ is a (not necessarily differential) homomorphism of C-algebras}
diffspecC[[t]]A := {Φ: A→ C[[t]] | Φ is a homomorphism of differential C-algebra}.

The following maps define a bijection between these sets

specCA ⇐⇒ diffspecC[[t]]A

ϕ −→ T (ϕ)

e ◦ Φ ←− Φ.

Proof. Verified by a direct computation.

Proposition 2.4 (Nullstellensatz for power series). Let f1, . . . , f`, g ∈ C[x
(∞)
1 , . . . , x

(∞)
n ]. Then

the following statements are equivalent:

1. g vanishes on every solution of f1 = . . . = f` = 0 in C[[t]];
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2. g ∈
√
〈f1, . . . , f`〉(∞).

Proof. If g ∈
√
〈f1, . . . , f`〉(∞), then there existM,N > 1 and ci,j ∈ k[x

(∞)
1 , . . . , x

(∞)
n ] for 1 6 i 6 `

and 0 6 j 6 N such that
gN =

∑
i,j

ci,j(fi)
(j).

Evaluating the above equality at any power series solution of f1 = . . . = f` = 0 will vanish the
right-hand side yielding that g = 0 on this solution.

Assume that g 6∈
√
〈f1, . . . , f`〉. Theorem 1.1 implies that there exists a homomorphism

ϕ : k[x
(∞)
1 , . . . , x

(∞)
n ] → C such that ϕ(g) 6= 0 and kerϕ ⊇

√
〈f1, . . . , f`〉. Then one can check

that
T (ϕ)(f1) = . . . = T (ϕ)(f`) = 0, and T (ϕ)(g) 6= 0.

Therefore, (T (ϕ)(x1), . . . , T (ϕ)(xn)) is a power series solution of f1 = . . . = f` = 0 which does not
vanish g.

We will demonstrate the power of this Nullstellensatz by giving much more natural proofs of
the ideal membership statements used in Proposition 1.4 and Lemma 1.7.

Lemma 2.5.

1. For every n > 1, x′ ∈
√
〈xn〉(∞) ⊂ Q[x(∞)].

2. xy′ ∈
√
〈xy〉(∞) ⊂ Q[x(∞), y(∞)].

Proof. To prove the first part, consider any power series solution x(t) ∈ C[[t]] of the equation
xn = 0. Clearly, x(t) = 0, so we have x′(t) = 0 as well, so x′ ∈

√
〈xn〉 by Proposition 2.4.

To prove the second part, consider x(t), y(t) ∈ Ct such that x(t)y(t) = 0. Then x(t) = 0 or
y(t) = 0. In both cases, we have x(t)y′(t) = 0.

2.2 Do these solutions converge?

Example 2.6 (Answer: no). Consider the ideal I = 〈x′ − 1, x2y′ + y − x〉(∞) ⊂ C[x(∞), y(∞)]
corresponding to the system {

x′ = 1,

x2y′ + y = x.

By direct computation, one can verify that the following is a power series solution of the system

x(t) = t, y(t) =

∞∑
i=0

(−1)ii!ti.

It turns out that one can find a function with this analytic expansion, and this will be so-called
Eular function, see [7, Example 2.2.4] for details.

However, the following theorem and the corollary imply that “many” of the formal power series
solutions have positive radius of convergence.

Notation 2.7. Let C{t} ⊂ C[[t]] be the set of all formal power series with a positive radius of
convergence. Note that C{t} is a differential subalgebra of C[[t]].

Theorem 2.8 (Ritt). Let A be a differential algebra over C finitely generated as a differential
algebra. Then there is a differential homomorphism A→ C{t}.

Corollary 2.9 (Analytic Nullstellensatz). Let f1, . . . , f`, g ∈ C[x
(∞)
1 , . . . , x

(∞)
n ]. Then the following

statements are equivalent:

1. g vanishes on every solution of f1 = . . . = f` = 0 in C{t};

2. g ∈
√
〈f1, . . . , f`〉(∞).
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Proof of Corollary 2.9. The fact that g ∈
√
〈f1, . . . , f`〉(∞) implies vanishing on every solution in

C{t} follows from Proposition 2.4.
Assume that g 6∈

√
〈f1, . . . , f`〉(∞). Let

A = k[x
(∞)
1 , . . . , x(∞)

n ]/
√
〈f1, . . . , f`〉(∞),

and denote the image of g in A by the same letter. Since g is not nilpotent in A, the localization
B := A[1/g] is a nonzero algebra. Moreover, the derivation can be extended uniquely from A
to B (check this!). B is generated by 1/g and the images of x1, . . . , xn, so Theorem 2.8 implies
that there exists a differential homomorphism B → C{t} and g is not mapped to zero because g
is invertible in B. Composing it with the canonical homomorphisms k[x

(∞)
1 , . . . , x

(∞)
n ] → A and

A → B, we obtain a differential homomorphism k[x
(∞)
1 , . . . , x

(∞)
n ] → C{t} sending f1, . . . , f` to

zero and g to a nonzero element of C{t}.

Our proof of Theorem 2.8 will be based on [3]. It will be based on three propositions below
which are of independent interest.

Proposition 2.10. Let A be a differential C-algebra finitely generated as a commutative algebra.
Then the image of any differential homomorphism A→ C[[t]] is contained in C{t}.

Proof. Let a1, . . . , an ∈ A be the elements generating A as a commutative C-algebra. Then there
exist p1, . . . , pn ∈ C[x1, . . . , xn] such that

a′1 = p1(a1, . . . , an), a′2 = p2(a1, . . . , an), . . . , a′n = pn(a1, . . . , an).

Therefore, the images f1, . . . , fn ∈ C[[t]] of any differential homomorphism A → C[[t]] satisfy the
following system of polynomial ODEs:

x′1 = p1(x1, . . . , xn),

x′2 = p2(x1, . . . , xn),

. . . ,

x′n = pn(x1, . . . , xn).

The existence and uniqueness theorem for differential equations implies that these power series are
convergent in some neighbourhood of t = 0.

Proposition 2.11. Let R be a differential ring without zero divisors. Let A be a differential R-
algebra without zero divisors finitely generated as a differential algebra and of finite transcendence
degree over R. Then there exists a ∈ A such that the localization A[1/a] is finitely generated as a
commutative R-algebra.

Proof. We will prove the proposition by induction by the number n of generators of A as a differ-
ential R-algebra. If n = 0, then A = R, so it is finitely generated already.

Assume that the proposition is proved for all R-algebras differentially generated by less than
n elements. Let A be differentially generated by a1, . . . , an. Applying the induction hypothesis
to A0 := R[a

(∞)
1 , . . . , a

(∞)
n−1] ⊆ A, we obtain b1 ∈ A0 such that A0[1/b1] is finitely generated as a

commutative algebra. Consider a surjective differential homomorphism A0[x(∞)] → A defined by
x 7→ an. Since a

(∞)
n must be algebraically dependent over R, the kernel of this homomorphism, is a

nontrivial prime ideal P ⊂ A0[x(∞)]. Moreover, since A0 maps to itself, P ∩A0 = {0}. Therefore,
Proposition 1.15 implies that

P = 〈f〉(∞)(sepx f initx f)∞

for some f ∈ A0[x(∞)] of order h. Let b2 := sepx(f)(an). The minimality of f implies that b2 6= 0.
We claim that

A[1/(b1b2)] = A0[1/b1][a(6h)
n , 1/b2]. (10)

Since A0[1/b1] is finitely generated as a commutative R-algebra, this would imply that A[1/(b1b2)]
is finitely generated as a commutative k-algebra as well.

In order to prove (10), it is sufficient to show that the derivatives of the generators a(6h)
n , 1/b2

belong to A0[1/b1][a
(6h)
n , 1/b2]. This is clear for a(<h)

n , so it remains to show that a(h+1) and (1/b2)′

belong to A0[1/b1][a
(6h)
n , 1/b2]. For a(h+1), we write f ′ = x(h+1) sepx f + g, here g ∈ A0[x(6h)].

Then
a(h+1) =

−g(a)

sepx(f)(a)
=
−g(a)

b2
∈ A0[a(6h)

n , 1/b2].
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For (1/b2)′, we observe that (
1

b2

)′
∈ 1

b22
A0[a(6h)] ⊂ A0[a(6h)

n , 1/b2].

Proposition 2.12. Let A be a simple differential C-algebra (that is, a differential C-algebra without
nontrivial differential ideals) finitely generated as a differential C-algebra. Then A does not contain
zero divisors and has finite transcendence degree over C.

Proof. We will first prove that A does not contain zero divisors. Consider the ideal
√
{0} ⊂ A.

This is the set of all nilpotent elements and it is a differential ideal by Proposition 1.4. Since the
ideal does not contain 1 and A is simple, it must be zero, so {0} is a radical ideal. If A contains
zero divisors, then {0} is not prime. By Proposition 1.6, it is an intersection of prime differential
ideal which is impossible since there are no nontrivial prime differential ideals in A.

Assume that A has infinite transcendence degree over C. We take any finite set of differential
generators of a1, . . . , an of A and arrange in such a way that there exists r 6 n such that a1, . . . , ar
do not satisfy any nontrivial differential equation over C and A is of finite transcendence degree
over R := C[a

(∞)
1 , . . . , a

(∞)
r ]. Due to the assumption on trdegCA, we have r > 1.

We apply Proposition 2.11 to A as an R-algebra and obtain an element b ∈ A such that
A0 := A[1/b] is finitely generated over R and still differentially simple. Let b1, . . . , bs ∈ A0 be
generators of A0 as a R-algebra. Then, for every j > 0, we have

jr 6 trdegC C[a
(<j)
1 , . . . , a(<j)

r , b1, . . . , bs] 6 jr + s.

This inequality implies that there existsN such that, for every j > N , a(j)
1 , . . . , a

(j)
r are algebraically

independent over C[a
(<j)
1 , . . . , a

(<j)
r , b1, . . . , bs]. Consider any homomorphism

ϕ : k[a
(6N)
1 , . . . , a(6N)

r , b1, . . . , bs]→ C .

Due to the algebraic independence of the rest of derivatives of a1, . . . , ar, this homomorphism can
be extended to ϕ : A0 → C so that ϕ(aji ) = 0 for every 1 6 i 6 r and j > N . Then the kernel of
the Taylor homomorphism T (ϕ) will contain a(N+1)

1 , . . . , a
(N+1)
r contradicting to the fact that A0

is a simple differential algebra.

Remark 2.13. The proof of the Proposition 2.12 works for every differential field k of characteristic
zero. The only extra thing to do is to define the Taylor homomorphism over an arbitrary differential
field of characteristic zero.

Proof of theorem 2.8. Consider any maximal differential ideal J ⊂ A. Then B := A/J is a differen-
tially simple algebra. Proposition 2.12 implies that B satisfies the requirements of Proposition 2.11,
let b be the element provided by the proposition so that B[1/b] is finitely generated as a commu-
tative algebra. Consider any homomorphism Φ: B[1/b] → C[[t]] which exists by Proposition 2.4.
Proposition 2.10 implies that the image of Φ is contained in C{t}. Therefore, the image of the
composition A→ A/J = B → B[1/b]

Φ−→ C[[t]] is also contained in C{t}.

2.3 Differential-algebraic power series: closure properties
For the rest of the section, we will focus on the “geometry of the affine line”, that is, talk about
formal power series satisfying a differential polynomial equation in one differential variables. In
this subsection, we will establish several closure properties of this class of power series. We will
work in a more general context.

Definition 2.14 (Differentially algebraic element). Let E ⊃ F be an extension of differential fields.
An element a ∈ E is called differentially algebraic over F if there exists a nonzero P ∈ F [x(∞)]
such that P (a) = 0.

A power series f ∈ C[[t]] will be called differentially algebraic if it is differentially algebraic
element of C((t)) over C.

The following lemma will be the key to characterizing differentially algebraic elements. It is an
analogue of the fact that an element of a field extension is algebraic iff the subfield generated by
it is finite extension.
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Lemma 2.15. Let E ⊃ F be an extension of differential fields. An element a ∈ E is differentially
algebraic over F if and only if

trdegF F (a(∞)) <∞.

Proof. Assume that trdegF F (a(∞)) = h <∞. Then a(6h) are algebraically dependent over F , so
there exists a nonzero P ∈ F [x(∞)] of order at most h such that P (a) = 0.

Now assume that a ∈ E is differentially algebraic over F . Let P ∈ F [x(∞)] be the polynomial
of the minimal degree among the polynomials of the minimal order vanishing at a. Let h = ordx P .
Using the very important observation, we can write, for every k > 0,

a(h+k)(sepx P )(a) +Q(a) = 0, (11)

where Q ∈ F [x(<h+k)]. Due to the minimality of P , we have (sepx P )(a) 6= 0, so

a(h+k) ∈ F (a(<h+k)).

Iterating this, we obtain:

F (a(6h+k)) = F (a(6h+k−1)) = . . . = F (a(6h)).

Therefore, F (a(∞)) = F (a(6h)), and it has finite transcendence degree.

Remark 2.16. Note that the proof of Lemma 2.15 implies that trdegF F (a(∞)) is equal to the
order of the minimal differential polynomial over F satisfied by a.

Proposition 2.17. Let E ⊃ F be an extension of differential fields. Let a, b ∈ E be differentially
algebraic over F and b 6= 0. Then a′, a+ b, ab, 1

b are differentially algebraic over F .

Proof. The statement of the proposition follows from Lemma 2.15 combined with the following
transcendence degree bounds.

For a′, since F ((a′)(∞)) ⊆ F (a(∞)), we have trdegF F ((a′)(∞)) 6 trdegF F (a(∞)).
For a+ b, we have F ((a+ b)(∞)) ⊆ F (a(∞), b(∞)), so

trdegF F ((a+ b)(∞)) 6 trdegF F (a(∞)) + trdegF F (b(∞)) <∞.

The cases ab and 1
b are left as Exercise 2.9.

Remark 2.18. The proof of Proposition 2.17 implies that if the orders of the minimal differential
polynomials of a and b do not exceed h1 and h2, respectively, then the order of the minimal
differential polynomial for a+ b (resp., ab) does not exceed h1 + h2.

2.4 Exercises

Exercise 2.1. Consider the function y(t) =
∞∑
i=0

(−1)ii!ti from Example 2.6. Find a nonzero element

C[y(∞)] vanishing at this power series.

Exercise 2.2 (Due to Yu.P. Razmyslov). For every integers n > 1 and 0 6 a1 < a2 < . . . < an,
consider

P := det

∣∣∣∣∣∣∣∣∣∣
x

(a1)
1 x

(a1)
2 . . . x

(a1)
n

x
(a2)
1 x

(a2)
2 . . . x

(a2)
n

...
...

. . .
...

x
(an)
1 x

(an)
2 . . . x

(an)
n

∣∣∣∣∣∣∣∣∣∣
∈ Q[x

(∞)
1 , . . . , x(∞)

n ].

Prove that P ∈
√
〈Wronsk(x1, . . . , xn)〉(∞).

(Hint: use the approach from Lemma 2.5)

Exercise∗∗ 2.3. In the notation of the previous exercise, find

• the degree N such that PN ∈ 〈Wronsk(x1, . . . , xn)〉(∞);

• the minimal order H such that PN ∈ 〈Wronsk(x1, . . . , xn)(6H)〉;

• the expression of PN as an element of 〈Wronsk(x1, . . . , xn)(6H)〉.

See the notebook https://github.com/pogudingleb/DifferentialAlgebra/blob/main/example/
Wronskian_Schur.ipynb for some experimental results for the first question.
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Exercise 2.4. Analyze the proof of Theorem 2.8 and show that every differentially finitely gener-
ated C-algebra has a homomorphism to the differential ring of differentially-algebraic convergent
power series.

Exercise 2.5. For every positive integer n, construct a simple differential C-algebra of transcen-
dence degree n.

Exercise 2.6. Construct a differentially finitely generated C-algebra A such that there is no
injective differential homomorphism A→ C[[t]].

Exercise∗ 2.7 (Convergence in dimension one, following [2]).

1. Let A ⊂ B ⊂ C be C-algebras such that A and C are finitely generated an trdegCA =
trdegCB = trdegC C = 1. Prove that B is finitely generated as well.

2. Let A be a differentially finitely generated C-algebra such that trdegCA = 1. Prove that, for
every differential homomorphism Φ: A→ C[[t]], we have Φ(A) ⊂ C{t}.

Exercise∗∗ 2.8. Let A be a differentially finitely generated C-algebra with trdegCA < ∞. Con-
sider the set X of all points in specCA defining divergent power series solutions. Is it true that X
is conatained in a subvariety of codimension two? Is X always a constructible set?

Exercise 2.9. Finish the proof of Proposition 2.17.

Exercise 2.10. Show that the order bound from Remark 2.18 is tight in the following sense: for
every h1, h2, there exist differential algebraic f1, f2 ∈ C[[t]] such that the order of the minimal
differential polynomial for fi is hi for i = 1, 2 and the order of the minimal polynomial for f1f2 is
h1 + h2.

Exercise 2.11. Let f, g ∈ C[[t]] be differentially algebraic power series such that f(0) = 0. Show
that g(f(t)) is also differentially algebraic. If the orders of the minimal polynomials of f and g are
h1 and h2, respectively, what can be said about the order of the minimal polynomial for g(f(t))?

Exercise 2.12. Let F ⊂ E be an extension of differential fields and a, b ∈ E. Show that, if a is
differentially algebraic over F and b is differentially algebraic over F (a(∞)), then b is differentially
algebraic over F .

Exercise 2.13. Let F ⊂ E be an extension of differential fields. Let a ∈ E be a differentially-
algebraic over F , and set d := trdegF F (a(∞)). Let I be the set of all d-element subsets {h1, . . . , hd}
of Z>0 such that a(h1), . . . , a(hd) are algebraically independent.

1. Give an example of a such that I consists of {0, 1, . . . , d− 1} only.

2. Give an example of a such that I consists of all d-element subsets of Z>0.

Exercise 2.14. In the notation of Exercise 2.13, show that for d = 1 the set I is always of the
form {{0}, {1}, {2}, . . . , {N}} for some N , and every nonnegative N is possible.

Exercise∗∗ 2.15. In the notation of Exercise 2.13, describe what I can look like.

3 Solutions: differential fields

In this section we will consider differential equations over an arbitrary differential field k, and the
solution will be sought in differential field extensions of k. This will allow us to talk about generic
solutions and generic points of differential ideals. We will develop a structure theory of differential
field extension and use it to study differential-algebraic varieties.

3.1 Yet another Nullstellensatz
Proposition 3.1. Abstract Nullstellensatz Let k be a differential field and x = (x1, . . . , xn). Let
f1, . . . , fs, g ∈ k[x(∞)]. Then the following statements are equivalent:

1. g ∈
√
〈f1, . . . , fs〉(∞);

2. g vanishes on every solution of f1 = . . . = fs = 0 in every differential field K ⊃ k.

Proof. TODO
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3.2 Differential transcendence
In the classical algebraic geometry, the dimension of an irreducible algebraic variety can be defined
as the transcendence degree of its rational function field. Differential transcendence degree plays
a similar role in differential algebra.

Definition 3.2 (Differential transcendence). Let k ⊂ K be an extension of differential fields.

• Elements a1, . . . , an ∈ K are differentially transcendental over k is there is nonzero differential
polynomial P ∈ k[x

(∞)
1 , . . . , x

(∞)
1 ] such that P (a1, . . . , an) = 0.

• A set a1, . . . , an ∈ K is called a transcendence basis of K over k if it is a maximal set of
differentially transcendental elements with respect to inclusion.

Lemma 3.3. Let k ⊂ K be an extension of differential fields differentially generated by a1, . . . , am.
Then there is a subset of {a1, . . . , am} which is a transcendence basis of K over k.

Proof. TODO

Our goal will be to prove that, analogously to bases in linear algebra and transcendence bases in
commutative algebra, all differential transcendence bases of an extension have the same cardinality.
Our main tool will be Kolchin polynomials provided by the theorem below.

Theorem 3.4. Let K ⊃ k be a differential field extension differentially generated by a1, . . . , an.
Consider a sequence t0, t1, . . . defined by

t` := trdegk k(a
(6`)
1 , . . . , a

(6`)
1 ) for every ` > 0.

There exist nonegative integers d0, d1 such that t` = d1`+ d0 for sufficiently large `.
The polynomial d1`+ d0 is called the Kolchin polynomial for generators a1, . . . , an.

3.3 Exercises
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