## Trees, maps and Hurwitz numbers

Gilles Schaeffer CNRS \& École Polytechnique ERC Research Starting Grant 208471 "ExploreMaps"

Séminaire Lotharingien de Combinatoire, mars 2012

General summary of the 3 lectures:

Factorizations, maps and ramified coverings

Orientations and decompositions of maps into trees

Applications to Hurwitz numbers

First lecture

## Factorizations, maps and ramified coverings

Permutations, factorizations and increasing maps
Hurwitz original motivation, ramified coverings
Ramified coverings provide bijections "for free"

Permutations, factorizations, increasing maps

## Permutation factorizations

Permutations in cycle notation: $\sigma=(1,2,5)(3,6)(4)(7)=(1,2,5)(3,6)$
Cycle type $=$ distribution of cycle lengths: $\lambda(\sigma)=1^{2} 23$
Transpositions $=$ permutations with type $\lambda=21^{n-1}: \tau=(2,5)$.

## Permutation factorizations

Permutations in cycle notation: $\sigma=(1,2,5)(3,6)(4)(7)=(1,2,5)(3,6)$
Cycle type $=$ distribution of cycle lengths: $\lambda(\sigma)=1^{2} 23$
Transpositions $=$ permutations with type $\lambda=21^{n-1}: \tau=(2,5)$.

Factorisation in tranpositions $=$ decomposition as product of transpositions
$(1,2)(1,3)=(1,2,3)$
$(1,3)(2,3)=(1,2,3)$
$(1,3)(2,3)(3,4)(1,3)=(1,2,4)(3)$

## Permutation factorizations

Permutations in cycle notation: $\sigma=(1,2,5)(3,6)(4)(7)=(1,2,5)(3,6)$
Cycle type $=$ distribution of cycle lengths: $\lambda(\sigma)=1^{2} 23$
Transpositions $=$ permutations with type $\lambda=21^{n-1}: \tau=(2,5)$.

Factorisation in tranpositions $=$ decomposition as product of transpositions
$(1,2)(1,3)=(1,2,3)$
$(1,3)(2,3)=(1,2,3)$
$(1,3)(2,3)(3,4)(1,3)=(1,2,4)(3)$
(ok, I multiply from left to right...)

## Permutation factorizations

Permutations in cycle notation: $\sigma=(1,2,5)(3,6)(4)(7)=(1,2,5)(3,6)$
Cycle type $=$ distribution of cycle lengths: $\lambda(\sigma)=1^{2} 23$
Transpositions $=$ permutations with type $\lambda=21^{n-1}: \tau=(2,5)$.

Factorisation in tranpositions $=$ decomposition as product of transpositions
$(1,2)(1,3)=(1,2,3) \quad(1,3)(2,3)=(1,2,3)$
$(1,3)(2,3)(3,4)(1,3)=(1,2,4)(3)$
(ok, I multiply from left to right...)
The graph of a factorization $\tau_{1} \ldots \tau_{m}=\sigma \in S_{n}$ :

- vertices represent the permuted elements: $\{1, \ldots, n\}$
- edges represent transpositions: an edge $(i, j)$ with index $k$ if $\tau_{k}=(i, j)$



## Permutation factorizations

Permutations in cycle notation: $\sigma=(1,2,5)(3,6)(4)(7)=(1,2,5)(3,6)$
Cycle type $=$ distribution of cycle lengths: $\lambda(\sigma)=1^{2} 23$
Transpositions $=$ permutations with type $\lambda=21^{n-1}: \tau=(2,5)$.

Factorisation in tranpositions $=$ decomposition as product of transpositions
$(1,2)(1,3)=(1,2,3) \quad(1,3)(2,3)=(1,2,3)$
$(1,3)(2,3)(3,4)(1,3)=(1,2,4)(3)$
(ok, I multiply from left to right...)
The graph of a factorization $\tau_{1} \ldots \tau_{m}=\sigma \in S_{n}$ :

- vertices represent the permuted elements: $\{1, \ldots, n\}$
- edges represent transpositions: an edge $(i, j)$ with index $k$ if $\tau_{k}=(i, j)$


Transitive factorization $=$ connected graph

## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$


## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$

Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$


## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$

Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$
- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only
 if the associated graph is a tree.


## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$

Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$
- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only
 if the associated graph is a tree.



## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$

Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$
- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only
 if the associated graph is a tree.

$$
(5,9)(2,3)(6,9)(1,5)(7,9)(8,9)(2,4)(2,5)=(1,2,3,4,5,6,7,8,9)
$$



$$
\begin{array}{cc}
\begin{array}{c}
\text { Cayley trees } \\
\text { with } n \text { nodes } \\
\text { (non-embedded) }
\end{array} & n^{n-2} \\
\text { edge indexing } & (n-1)!
\end{array}
$$

## Factorizations of $n$-cycles (Dénes 1959)

Lemma. If $\sigma$ has $\ell$ cycles then $\sigma^{\prime}=\sigma \cdot(i, j)$ has

- $\ell-1$ cycles if $i$ and $j$ are in different cycles of $\sigma$
- $\ell+1$ cycles if $i$ and $j$ are in the same cycle of $\sigma$


## Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$
- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only
 if the associated graph is a tree.
$(5,9)(2,3)(6,9)(1,5)(7,9)(8,9)(2,4)(2,5)=(1,2,3,4,5,6,7,8,9)$



## Minimal factorizations

Proposition: Let $\lambda=1^{\ell_{1}} \ldots n^{\ell_{n}}$ with $\sum_{i} \ell_{i}=\ell$. A minimal factorization of a permutation of cycle type $\lambda$ has $m=n-\ell$ factors.

## Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$
- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only
 if the associated graph is a tree.
$(5,9)(2,3)(6,9)(1,5)(7,9)(8,9)(2,4)(2,5)=(1,2,3,4,5,6,7,8,9)$



## Minimal factorizations

Proposition: Let $\lambda=1^{\ell_{1}} \ldots n^{\ell_{n}}$ with $\sum_{i} \ell_{i}=\ell$. A minimal factorization of a permutation of cycle type $\lambda$ has $m=n-\ell$ factors.
Their number is $\frac{n!}{\prod_{i} \ell_{i}!i^{\ell}} \prod_{i}\left(i^{i-2}\right)^{\ell_{i}} \frac{m!}{\prod_{i}(i-1)!^{\ell_{i}}}=m!n!\prod_{i} \frac{1}{\ell_{i}!}\left(\frac{i^{i-2}}{i!}\right)^{\ell_{i}}$.
Corollaries:

- At least $n-1$ transpositions are needed to build a cycle of length $n$

- The product $\tau_{1} \ldots \tau_{n-1}$ is a $n$-cycle if and only if the associated graph is a tree.
$(5,9)(2,3)(6,9)(1,5)(7,9)(8,9)(2,4)(2,5)=(1,2,3,4,5,6,7,8,9)$



## Hurwitz formula for the number of

## minimal transitive factorizations in transpositions

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition $n$, and $\ell=\sum_{i} \ell_{i}$. The number of $m$-uples of transpositions $\left(\tau_{1}, \ldots, \tau_{m}\right)$ such that

- (product cycle type) $\tau_{1} \cdots \tau_{m}=\sigma$ has cycle type $\lambda$
- (transitivity) the associated graph is connected
- (minimality) the number of factors is $m=n+\ell-2$
is

$$
n^{\ell-3} \cdot m!\cdot n!\cdot \prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

## Proofs:

(Hurwitz 1891, Strehl 1996) (Goulden-Jackson 1997) (Lando-Zvonkine 1999) (Bousquet-Mélou-Schaeffer 2000) (recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)
$\lambda=n$, factorizations of $n$-cycles: $n^{n-2} \cdot(n-1)$ !
$\lambda=1^{n}$, factorizations of the identity: $n^{n-3} \cdot(2 n-2)$ !

## Hurwitz formula for the number of

## minimal transitive factorizations in transpositions

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition $n$, and $\ell=\sum_{i} \ell_{i}$. The number of $m$-uples of transpositions $\left(\tau_{1}, \ldots, \tau_{m}\right)$ such that

- (product cycle type) $\tau_{1} \cdots \tau_{m}=\sigma$ has cycle type $\lambda$
- (transitivity) the associated graph is connected
- (minimality) the number of factors is $m=n+\ell-2$
is

$$
n^{\ell-3} \cdot m!\cdot n!\cdot \prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

## Proofs:

(Hurwitz 1891, Strehl 1996) (Goulden-Jackson 1997) (Lando-Zvonkine 1999) (Bousquet-Mélou-Schaeffer 2000)
(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)
$\lambda=n$, factorizations of $n$-cycles: $n^{n-2} \cdot(n-1)$ !
$\lambda=1^{n}$, factorizations of the identity: $n^{n-3} \cdot(2 n-2)$ !
Combinatorial interpretation and proof?

Computation of the product and increasing embedding

How do we compute the product directly on the graph


Computation of the product and increasing embedding

How do we compute the product directly on the graph


Computation of the product and increasing embedding

How do we compute the product directly on the graph


The computation is performed along the boundary of the graph because I have consistently drawn edges increasingly in counterclockwise direction around each vertex
$e_{1}<e_{2}<\ldots<e_{k}$


Computation of the product and increasing embedding

How do we compute the product directly on the graph

Stop on crosses!


The computation is performed along the boundary of the graph because I have consistently drawn edges increasingly in counterclockwise direction around each vertex
$e_{1}<e_{2}<\ldots<e_{k}$


Computation of the product and increasing embedding

How do we compute the product directly on the graph

Stop on crosses!


The computation is performed along the boundary of the graph because I have consistently drawn edges increasingly in counterclockwise direction around each vertex


Any tree with indexed edges has a unique such increasing embedding

## Moszkowski's proof <br> for factorizations of an $n$-cycle


(admit a unique embedding as increasing plane trees)

## Moszkowski's proof <br> for factorizations of an $n$-cycle



(admit a unique embedding as increasing plane trees)

## Moszkowski's proof for factorizations of an $n$-cycle



pointed indexed tree with $n$ vertices
(admit a unique embedding as increasing plane trees)

Theorem (Moszkowski, 1989). Bijectior between Cayley trees with $n$ vertices and minimal factorizations in transpositions of $(1,2, \ldots, n)$.

## Moszkowski's proof for factorizations of an $n$-cycle



Theorem (Moszkowski, 1989). Bijectior between Cayley trees with $n$ vertices and minimal factorizations in transpositions of $(1,2, \ldots, n)$.

Proof: there is unique way to put labels so that the computation works!

## Increasing maps

Moszkowski's bijection extends to all types of transitive factorizations in transpositions (with type $\lambda$, non necessarily minimal)

$$
(4,6)(1,6)(1,5)(2,8)(3,4)(1,7)(5,8)(2,3)(4,8)(2,7)(3,8)=(1,6,7)(2,5)(3)(4)(8)
$$

$$
\begin{aligned}
& 1 \rightarrow 6 \\
& 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 7 \\
& 7 \rightarrow 1
\end{aligned}
$$



## Increasing maps

Moszkowski's bijection extends to all types of transitive factorizations in transpositions (with type $\lambda$, non necessarily minimal)

$$
(4,6)(1,6)(1,5)(2,8)(3,4)(1,7)(5,8)(2,3)(4,8)(2,7)(3,8)=(1,6,7)(2,5)(3)(4)(8)
$$

$$
\begin{aligned}
& 1 \rightarrow 6 \\
& 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 7 \\
& 7 \rightarrow 1
\end{aligned}
$$

Increasing map: embedded graph with

- $n$ labeled vertices $\{1, \ldots, n\}$
- $m$ numbered edges $\{1, \ldots, m\}$ (associated to transpositions)

- counterclockwise increasing edges around each vertex
$-\ell$ faces (face with $k$ crosses $=$ cycle of length $k$ in the product)


## Increasing maps

Moszkowski's bijection extends to all types of transitive factorizations in transpositions (with type $\lambda$, non necessarily minimal)

$$
(4,6)(1,6)(1,5)(2,8)(3,4)(1,7)(5,8)(2,3)(4,8)(2,7)(3,8)=(1,6,7)(2,5)(3)(4)(8)
$$

$$
\begin{aligned}
& 1 \rightarrow 6 \\
& 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 7 \\
& 7 \rightarrow 1
\end{aligned}
$$

Increasing map: embedded graph with

- $n$ labeled vertices $\{1, \ldots, n\}$
- $m$ numbered edges $\{1, \ldots, m\}$ (associated to transpositions)

- counterclockwise increasing edges around each vertex
$-\ell$ faces (face with $k$ crosses $=$ cycle of length $k$ in the product)
Minimality: $m=n+\ell-2 \Leftrightarrow$ planarity (Euler: $v+f=e-2$ )


## Increasing maps

Moszkowski's bijection extends to all types of transitive factorizations in transpositions (with type $\lambda$, non necessarily minimal)

$$
(4,6)(1,6)(1,5)(2,8)(3,4)(1,7)(5,8)(2,3)(4,8)(2,7)(3,8)=(1,6,7)(2,5)(3)(4)(8)
$$

$$
\begin{aligned}
& 1 \rightarrow 6 \\
& 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 7 \\
& 7 \rightarrow 1
\end{aligned}
$$

Increasing map: embedded graph with

- $n$ labeled vertices $\{1, \ldots, n\}$
- $m$ numbered edges $\{1, \ldots, m\}$ (associated to transpositions)

- counterclockwise increasing edges around each vertex
$-\ell$ faces (face with $k$ crosses $=$ cycle of length $k$ in the product)
Minimality: $m=n+\ell-2 \Leftrightarrow$ planarity (Euler: $v+f=e-2$ )
Theorem (Poulalhon (1999), Okounkov (2001), Irving (2004),...) This is a bijection between increasing planar maps and minimal transitive factorizations


## Increasing maps

Moszkowski's bijection extends to all types of transitive factorizations in transpositions (with type $\lambda$, non necessarily minimal)

$$
(4,6)(1,6)(1,5)(2,8)(3,4)(1,7)(5,8)(2,3)(4,8)(2,7)(3,8)=(1,6,7)(2,5)(3)(4)(8)
$$

$$
\begin{aligned}
& 1 \rightarrow 6 \\
& 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 7 \\
& 7 \rightarrow 1
\end{aligned}
$$

Increasing map: embedded graph with

- $n$ labeled vertices $\{1, \ldots, n\}$
- $m$ numbered edges $\{1, \ldots, m\}$ (associated to transpositions)

- counterclockwise increasing edges around each vertex
$-\ell$ faces (face with $k$ crosses $=$ cycle of length $k$ in the product)
Minimality: $m=n+\ell-2 \Leftrightarrow$ planarity (Euler: $v+f=e-2$ )
Theorem (Poulalhon (1999), Okounkov (2001), Irving (2004),...) This is a bijection between increasing planar maps and minimal transitive factorizations

Non-minimal $(m=n+\ell-2+2 g) \Leftrightarrow$ increasing map of genus $g$

Origin of the problem...
and a common setup for all permutations/maps relations?

Ramified coverings of the sphere by itself

See book Lando-Zvonkin for more details.

## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering $\phi$ does not depend on $x$ : for instance $n=k$ for $\phi_{k}$.

## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering $\phi$ does not depend on $x$ : for instance $n=k$ for $\phi_{k}$.
The number $n$ of sheets is called the degree of the covering.

## Ramified coverings of the sphere by itself

Let $D=\{z| | z \mid<1\} \subset \mathbb{C}$ be the unit open disc, and let $\sim$ denote equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all $x$ in $\mathcal{I}$ there exists $n \geq 1$ and a neighborhood $V$ of $x$ such that $\phi^{-1}(V) \sim D \times\{1, \ldots, n\}$, and the restriction of $\phi$ to each sheet $D_{i}$ (connected component of the preimage) is an homeomorphism $\phi_{\mid D_{i}}: D_{i} \xrightarrow{\sim} D$.

## Example:

Let $A_{r}$ be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$. Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.


By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering $\phi$ does not depend on $x$ : for instance $n=k$ for $\phi_{k}$.
The number $n$ of sheets is called the degree of the covering.
What is we try to extend from $A_{r}$ to $D$ ?

## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.


## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?


## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?
The mapping $\phi_{k}: D \rightarrow D$ has a connected ramification at $x=0$.


## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?
The mapping $\phi_{k}: D \rightarrow D$ has a connected ramification at $x=0$.
A mapping $\phi$ is ramified at $x=0$ if

- there is a neighborhood $V$ of the origin such that $\phi^{-1}(V) \sim D \times[1, \ldots, p]$ and,

- the restriction of $\phi$ to each component of $\phi^{-1}(V)$ is homeomorphic to $\phi_{k}$ for some $k$.


## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?
The mapping $\phi_{k}: D \rightarrow D$ has a connected ramification at $x=0$.
A mapping $\phi$ is ramified at $x=0$ if

- there is a neighborhood $V$ of the origin such that $\phi^{-1}(V) \sim D \times[1, \ldots, p]$ and,

- the restriction of $\phi$ to each component of $\phi^{-1}(V)$ is homeomorphic to $\phi_{k}$ for some $k$.


## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?
The mapping $\phi_{k}: D \rightarrow D$ has a connected ramification at $x=0$.
A mapping $\phi$ is ramified at $x=0$ if

- there is a neighborhood $V$ of the origin such that $\phi^{-1}(V) \sim D \times[1, \ldots, p]$ and,

- the restriction of $\phi$ to each component of $\phi^{-1}(V)$ is homeomorphic to $\phi_{k}$ for some $k$.

Regular (aka unramified) value $=$ ramified with $\phi_{1}$ on each component.

## Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from $A_{r}$ to $D$ ?
The mapping $\phi_{k}: D^{*} \rightarrow D^{*}$ is a covering. but not $\phi_{k}: D \rightarrow D$.

What happens at $x=0$ ?
The mapping $\phi_{k}: D \rightarrow D$ has a connected ramification at $x=0$.
A mapping $\phi$ is ramified at $x=0$ if

- there is a neighborhood $V$ of the origin

- the restriction of $\phi$ to each component of $\phi^{-1}(V)$ is homeomorphic to $\phi_{k}$ for some $k$.

Regular (aka unramified) value $=$ ramified with $\phi_{1}$ on each component.

## Ramified coverings of the sphere by itself (Cont'd)

A mapping $\phi$ is a ramified covering of $\mathbb{S}$ by $\mathbb{S}$ if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- $\phi$ is ramified over each $x_{i}$



## Ramified coverings of the sphere by itself (Cont'd)

A mapping $\phi$ is a ramified covering of $\mathbb{S}$ by $\mathbb{S}$ if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- $\phi$ is ramified over each $x_{i}$


On each component $V_{j}$ of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.

regular value

$\lambda^{(1)}=1^{5} \quad \lambda^{(2)}=1,2^{2} \quad \lambda^{(2)}=2,3$
critical value
critical value

## Ramified coverings of the sphere by itself (Cont'd)

A mapping $\phi$ is a ramified covering of $\mathbb{S}$ by $\mathbb{S}$ if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- $\phi$ is ramified over each $x_{i}$


On each component $V_{j}$ of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.

regular value
critical value
critical value
$\lambda^{(1)}=1^{5}$
$\lambda^{(2)}=1,2^{2}$
$\lambda^{(2)}=2,3$

## Ramified coverings of the sphere by itself (Cont'd)

A mapping $\phi$ is a ramified covering of $\mathbb{S}$ by $\mathbb{S}$ if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- $\phi$ is ramified over each $x_{i}$


On each component $V_{j}$ of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.
The ramification type over a critical value $x_{i}$ is the partition $\lambda^{(i)}$

$$
\mathcal{I}^{(i)}=\mathbb{S}
$$

The passport of a ramified covering is the list $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$

> regular value



$$
\lambda^{(1)}=1^{5} \quad \lambda^{(2)}=1,2^{2} \quad \lambda^{(2)}=2,3
$$

## Ramified coverings of the sphere by itself (Cont'd)



## Ramified coverings of the sphere by itself (Cont'd)



## Ramified coverings of the sphere by itself (Cont'd)

To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

$$
\begin{array}{ccc}
\text { regular value } & \text { critical value } & \text { critical value } \\
\lambda^{(1)}=1^{5} & \lambda^{(2)}=1,2^{2} & \lambda^{(2)}=2,3
\end{array}
$$

the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

## Ramified coverings of the sphere by itself (Cont'd)

To understand the "shape" of the covering,


## Ramified coverings of the sphere by itself (Cont'd)

To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

- $n$ independant preimages as long as we stay away from critical points



## Ramified coverings of the sphere by itself (Cont'd)



To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

- $n$ independant preimages as long as we stay away from critical points
- a contractible loop on $\mathcal{I}$


$$
\begin{array}{ccc}
\text { regular value } & \text { critical value } & \text { critical value } \\
\lambda^{(1)}=1^{5} & \lambda^{(2)}=1,2^{2} & \lambda^{(2)}=2,3
\end{array}
$$

the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

## Ramified coverings of the sphere by itself (Cont'd)



## Ramified coverings of the sphere by itself (Cont'd)


critical value
$\lambda^{(1)}=1^{5} \quad \lambda^{(2)}=1,2^{2}$
$\lambda^{(2)}=2,3$
the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

## Ramified coverings of the sphere by itself (Cont'd)



To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

- $n$ independant preimages as long as we stay away from critical points
- a contractible loop on $\mathcal{I}$ yields $n$ contractible loops on $\mathcal{D}$


$$
\begin{array}{ccc}
\text { regular value } & \text { critical value } & \text { critical value } \\
\lambda^{(1)}=1^{5} & \lambda^{(2)}=1,2^{2} & \lambda^{(2)}=2,3
\end{array}
$$

the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

## Ramified coverings of the sphere by itself (Cont'd)



To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

- $n$ independant preimages as long as we stay away from critical points
- a contractible loop on $\mathcal{I}$
yields $n$ contractible loops on $\mathcal{D}$
 but if we wind around critical points some sheets may get permuted
the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering


## Ramified coverings of the sphere by itself (Cont'd)



## Ramified coverings of the sphere by itself (Cont'd)



## Ramified coverings of the sphere by itself (Cont'd)



To understand the "shape" of the covering, draw paths on $\mathcal{I}$ and study its preimages.

- $n$ independant preimages as long as we stay away from critical points
- a contractible loop on $\mathcal{I}$
yields $n$ contractible loops on $\mathcal{D}$ but if we wind around critical points some sheets may get permuted
- visiting critical points create multiple values or "vertices"
$\Rightarrow$ The partitions $\lambda^{(i)}$ are partitions of $n$, degree of the covering.


## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$ $\Rightarrow$ identity permutation

## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$ $\Rightarrow$ identity permutation

Concatenation of two loops $\Rightarrow$ product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$

## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$ $\Rightarrow$ identity permutation

Concatenation of two loops $\Rightarrow$ product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$

## Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.


Loop $\Rightarrow$ permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$ $\Rightarrow$ identity permutation

Concatenation of two loops $\Rightarrow$ product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

## coverings with 3 critical values and bipartite maps



3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps


1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations


3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
$m+1$ critical values, $m$-constellations, permutations

$m+1$ critical values, $m$-constellations, permutations
The preimage of the $m$-star is called a star-constellation.

Thm. Planar star-constellations with:

- $n$ labelled $m$-stars,
$-\lambda_{j}^{\square}$ faces of degree $j$,
- $\lambda_{j}^{(i)}$ color $i$ vertices of degree $j$
are in bijection with minimal transitive factorizations

$$
\sigma_{1} \cdots \sigma_{m}=\sigma_{\square}
$$

with $\sigma_{i}$ of cyclic type $\lambda^{(i)}$.

## Monodromy, permutations, constellations summary

Theorem. There is a bijection between

- Labelled ramified covering of $\mathbb{S}$ of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations $\left(\sigma_{1} \cdots \sigma_{m}=\sigma_{0}\right)$ of type $\Lambda$
- labelled $m$-star-constellations of type $\Lambda$.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality $\Leftrightarrow$ planarity.


## Monodromy, permutations, constellations summary

Theorem. There is a bijection between

- Labelled ramified covering of $\mathbb{S}$ of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ( $\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$ ) of type $\Lambda$
- labelled $m$-star-constellations of type $\Lambda$.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality $\Leftrightarrow$ planarity.


## Specializations.

- $m=2$ : bipartite maps with $n$ edges
$— m=2$ and $\lambda_{\bullet}=2^{\frac{n}{2}}$ : all $\bullet$ have $\operatorname{deg} 2 \Leftrightarrow$ nonbipartite maps ( $\frac{n}{2}$ edges)
— for all $i \geq 1, \lambda^{(i)}=21^{n-2}$ : factorizations in transpositions. coverings with almost only simple branch points; increasing maps

Ramified coverings and "trivial" bijections: combinatorial data structures

Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Application to the design of trivial bijections for maps


Keep the same covering, give different representations (data structures)
$\Rightarrow$ all these are bijections

Variants of star-constellations


Keep the same covering, give different representations (data structures) $\Rightarrow$ all these are bijections

Variants of star-constellations


Keep the same covering, give different representations (data structures) $\Rightarrow$ all these are bijections

Variants of star-constellations


Keep the same covering, give different representations (data structures) $\Rightarrow$ all these are bijections

Variants of star-constellations

$m$-eulerian maps

Keep the same covering, give different representations (data structures) $\Rightarrow$ all these are bijections

Today
Factorizations, maps and ramified coverings
Permutations, factorizations and increasing maps Hurwitz original motivation, ramified coverings
Ramified coverings provide bijections "for free"

Later...
Orientations and decompositions of maps into trees
Applications to Hurwitz numbers

## A formula for general factorizations [BMS00]

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition of $n$, and $\ell=\sum_{i} \ell_{i}$. The number of $m$-uple of permutations ( $\sigma_{1}, \ldots, \sigma_{m}$ ) such that

- (factorization) $\sigma_{1} \cdots \sigma_{m}=\sigma$ with cycle type $\lambda$
- (transitivity) $\left\langle\sigma_{1}, \ldots, \sigma_{m}\right\rangle$ acts transitively on $\{1, \ldots, n\}$
- (minimality) the total rank of factors is $\sum_{i} r\left(\sigma_{i}\right)=n+\ell-2$
is

$$
m \frac{((m-1) n-1)!}{(m n-(n+\ell-2))!} \cdot n!\cdot \prod_{i} \frac{1}{\ell_{i}!}\binom{m i-1}{i}^{\ell_{i}}
$$

## Proofs:

(Bousquet-Mélou-Schaeffer 2000) (Goulden-?? 2009)
(bijection + inclusion/exclusion)(gfs and differential eqns)
$\lambda=n$, factorizations of $n$-cycles: $\frac{1}{(m n+1)}\binom{m n+1}{n} \cdot(n-1)$ !
$\lambda=1^{n}$, identity factorizations: $\frac{m}{(m-2) n+2} \frac{(m-1)^{n-1}}{(m-2) n+1}\binom{(m-1) n}{n} \cdot(n-1)$ !

## Our aim in the rest of the lectures

Prove the following two results using two bijective methods:
Factorization in transpositions:
$\lambda=1^{n}$, factorizations of the identity: $n^{n-3} \cdot(2 n-2)$ !
Need to count fully increasing quadrangulations

Factorizations in arbitrary factors:
$\lambda=1^{n}$, factorizations of the identity: $m \frac{(m n-n-1)!}{(m n-2 n+2)!}(m-1)^{n}$
Need to count ( $m+1$ )-constellations.

The two methods extend to general $\lambda$.
The second method extends to non minimal factorizations (higher genus)

Second lecture
Orientation and the decomposition of maps into trees

- A quick reminder about trees
- General idea: decompose a map into two trees
- 2 strategies explain (almost) all known bijections
- minimal orientations and direct opening
- left accessible orientations and the master bijection

A quick reminder about trees

## Dyck paths and plane trees

Dyck path of length $2 n=$ contour of a plane tree with $n$ edges


The Dyck code of a tree is obtained during the walk around it upon:

- writing $u$ the first time a vertex is visited (up steps)
- writing $d$ the last time a vertex is visited (down steps)


## Encodings of trees by words

## We shall need two other classical codes:

## Encodings of trees by words

We shall need two other classical codes:

- the height code: write the height of each vertex during its first visit



## Encodings of trees by words

We shall need two other classical codes:

- the height code: write the height of each vertex during its first visit

- degree code: write the degree of each vertex during its first visit



## Cycle lemma and parking functions

after $45^{\circ}$ rotation: let $P(2 n)$ denote paths from $(0,0)$ to ( $n, n+1$ ) ending by an horizontal step

$$
|P(2 n)|=\binom{2 n}{n}
$$



## Cycle lemma and parking functions

after $45^{\circ}$ rotation: let $P(2 n)$ denote paths from $(0,0)$ to ( $n, n+1$ ) ending by an horizontal step

$$
|P(2 n)|=\binom{2 n}{n}
$$



Let two paths $w$ and $w^{\prime}$ be conjugate if there are $u$ and $v$ s.t. $w=u v$ and $w^{\prime}=v u$.

Cycle lemma and parking functions
after $45^{\circ}$ rotation: let $P(2 n)$ denote paths from $(0,0)$ to ( $n, n+1$ ) ending by an horizontal step

$$
|P(2 n)|=\binom{2 n}{n}
$$



Let two paths $w$ and $w^{\prime}$ be conjugate if there are $u$ and $v$ s.t. $w=u v$ and $w^{\prime}=v u$.

Cycle lemma: in each conjugacy class exactly one path is positive

Cycle lemma and parking functions
after $45^{\circ}$ rotation: let $P(2 n)$ denote paths from $(0,0)$ to ( $n, n+1$ ) ending by an horizontal step

$$
|P(2 n)|=\binom{2 n}{n}
$$



Let two paths $w$ and $w^{\prime}$ be conjugate if there are $u$ and $v$ s.t. $w=u v$ and $w^{\prime}=v u$.

Cycle lemma: in each conjugacy class exactly one path is positive $n+1$ paths in $P(2 n)$ yield 1 path in $D(2 n)$ :

$$
(n+1)|D(2 n)|=|P(2 n)| .
$$

## Cycle lemma and parking functions

take a fonction $f$ of $[n] \rightarrow[n+1]$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 8 | 8 | 2 | 8 | 6 |



## Cycle lemma and parking functions

take a fonction $f$ of $[n] \rightarrow[n+1]$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 8 | 8 | 2 | 8 | 6 |

represent it as a path


## Cycle lemma and parking functions

take a fonction $f$ of $[n] \rightarrow[n+1]$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 8 | 8 | 2 | 8 | 6 |

represent it as a path

$f, f^{\prime}$ conjugate $\Leftrightarrow f(i)-f^{\prime}(i) \bmod n+1=$ cte
Cycle lemma: in each conjugacy class exactly one path is positive a function whose path is positive is a Parking function

## Cycle lemma and parking functions

take a fonction $f$ of $[n] \rightarrow[n+1]$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 8 | 8 | 2 | 8 | 6 |

represent it as a path

$f, f^{\prime}$ conjugate $\Leftrightarrow f(i)-f^{\prime}(i) \bmod n+1=$ cte
Cycle lemma: in each conjugacy class exactly one path is positive a function whose path is positive is a Parking function the number of Parking functions $[n] \rightarrow[n+1]$ is $\frac{1}{n+1}(n+1)^{n}=(n+1)^{n-1}$

Parking function and codes of trees


## Parking function and codes of trees


$(n+1)^{n-1}$ Cayley trees with $n+1$ labeled vertices

## Parking function and codes of trees


$(n+1)^{n-1}$ Cayley trees with $n+1$ labeled vertices

Put labels on edges:

## Parking function and codes of trees


$(n+1)^{n-1}$ Cayley trees with $n+1$ labeled vertices

Put labels on edges:

$(n+1)^{n-1}$ rooted Cayley trees with $n$ indexed edges

From maps to trees (I): tree-rooted maps
first strategy: Mullin primal dual decomposition

## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.

## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.


## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.


## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.


## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.


## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.


## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Euler's relation: (\#vertices-1)+(\#faces-1) $=\#$ edges

## Planar maps, spanning trees and duality

Recall a planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).
From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Euler's relation: (\#vertices-1)+(\#faces-1) = \#edges

Proof?


Encoding tree-rooted maps with pairs of trees
Starting at a root corner turn around the tree


Encoding tree-rooted maps with pairs of trees
Starting at a root corner turn around the tree


## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced parenthesis word


## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced parenthesis word


## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced parenthesis word


Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word

## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced parenthesis word


Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word

## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced

anced

## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced

anced

## Encoding tree-rooted maps with pairs of trees

Starting at a root corner turn around the tree non visited edges $=$ balanced parenthesis word

anced

From maps to trees (I): tree-rooted maps first strategy: Mullin primal dual decomposition intermede: minimal orientations
second strategy: unfolding


From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root


From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree


From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree


From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.


From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.


It is called a minimal orientation (for the order induced by circuit reversal).

## From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.


It is called a minimal orientation (for the order induced by circuit reversal). A oriented map is accessible if every vertex can be reach by an oriented path from the root.

From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.


It is called a minimal orientation (for the order induced by circuit reversal). A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi) This is a bijection between tree-rooted maps with $n$ edges and minimum accessible maps with $n$ edges

From tree-rooted maps to minimal accessible maps
Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.


It is called a minimal orientation (for the order induced by circuit reversal). A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi) This is a bijection between tree-rooted maps with $n$ edges and minimum accessible maps with $n$ edges

The tree is recovered by reconstructing its contour (or equivalently by leftmost depth first search).

From maps to trees (I): tree-rooted maps first strategy: Mullin primal dual decomposition intermede: minimal orientations second strategy: unfolding


## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map


## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


In the unfolded map, the plain edges form a spanning tree.
(clockwise cycles are ruled out by external edges)
(a counterclockwise cycle would be non accessible from the outside)

## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


In the unfolded map, the plain edges form a spanning tree.
(clockwise cycles are ruled out by external edges)
(a counterclockwise cycle would be non accessible from the outside)
The unfolded map is tree-rooted

## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


In the unfolded map, the plain edges form a spanning tree.
(clockwise cycles are ruled out by external edges)
(a counterclockwise cycle would be non accessible from the outside)
The unfolded map is tree-rooted
The dual tree is naturally bicolored

## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


In the unfolded map, the plain edges form a spanning tree.
(clockwise cycles are ruled out by external edges)
(a counterclockwise cycle would be non accessible from the outside)
The unfolded map is tree-rooted
The dual tree is naturally bicolored

## Bernardi's decomposition of minimal accessible maps

Consider a minimal accessible map
Define its vertex unfolding:


In the unfolded map, the plain edges form a spanning tree.
(clockwise cycles are ruled out by external edges)
(a counterclockwise cycle would be non accessible from the outside)
The unfolded map is tree-rooted
The dual tree is naturally bicolored

## Bernardi's master bijection for tree-rooted maps

The primal and dual trees of the unfolded maps are glued canonically (no shuffling of the codes required)


## Bernardi's master bijection for tree-rooted maps

The primal and dual trees of the unfolded maps are glued canonically (no shuffling of the codes required)


Conversely gluying an arbitrary tree with $n$ edges with an arbitrary tree with $s+f=n+2$ vertices yields a left-accessible map

Theorem(Bernardi) This is a bijection between such pairs of trees and minimal accessible maps with $n$ edges, (and tree-rooted maps via previous Theorem).

Corollary: $\quad \sum_{i=0}^{n}\binom{2 n}{i} C_{i} C_{n-i}=C_{n+1} C_{n}$

Summary: two strategies for tree-rooted maps

$\sum_{i=0}^{n}\binom{2 n}{i} C_{i} C_{n-i}=C_{n+1} C_{n}$


From maps to trees (II): eulerian maps first strategy: blossoming trees

## Encoding rooted maps with trees

Let us recycle the first idea used for tree-rooted maps
using a canonical spanning tree


## Encoding rooted maps with trees

Let us recycle the first idea used for tree-rooted maps
using a canonical spanning tree


Then write the code of the primal tree on the chosen canonical tree

## Encoding rooted maps with trees

Let us recycle the first idea used for tree-rooted maps
using a canonical spanning tree


Then write the code of the primal tree on the chosen canonical tree The map is recovered from the code by closure.

## Encoding rooted maps with trees

Let us recycle the first idea used for tree-rooted maps using a canonical spanning tree


Then write the code of the primal tree on the chosen canonical tree The map is recovered from the code by closure.
Our code of the map will be a canonical decorated tree Question is "How do we choose the canonical spanning tree ?"

## Minimal orientations and canonical spanning trees

Idea: Use Bernardi's first bijection the other way round:
Choose a minimal accessible orientation to get a spanning tree
Our pb becomes:
How to choose a canonical accessible minimal orientation?

## Minimal orientations and canonical spanning trees

Idea: Use Bernardi's first bijection the other way round:
Choose a minimal accessible orientation to get a spanning tree
Our pb becomes:
How to choose a canonical accessible minimal orientation?
A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map $M$ if there exists an orientation of $M$ such that for each vertex $v$ the outdegree of $v$ is $f(v)$.

## Minimal orientations and canonical spanning trees

Idea: Use Bernardi's first bijection the other way round:
Choose a minimal accessible orientation to get a spanning tree
Our pb becomes:
How to choose a canonical accessible minimal orientation?
A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map $M$ if there exists an orientation of $M$ such that for each vertex $v$ the outdegree of $v$ is $f(v)$.

Theorem (Felsner 2004). Let $\alpha$ be a feasible function on a plane map $M$. Then $\alpha$ has a unique $\alpha$-orientation without clockwise cycles.

## Minimal orientations and canonical spanning trees

Idea: Use Bernardi's first bijection the other way round:
Choose a minimal accessible orientation to get a spanning tree
Our pb becomes:
How to choose a canonical accessible minimal orientation?
A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map $M$ if there exists an orientation of $M$ such that for each vertex $v$ the outdegree of $v$ is $f(v)$.

Theorem (Felsner 2004). Let $\alpha$ be a feasible function on a plane map $M$. Then $\alpha$ has a unique $\alpha$-orientation without clockwise cycles.

Our pb becomes: How to choose a canonical $\alpha$ ? (and check accessibility)

## Minimal orientations and canonical spanning trees

Idea: Use Bernardi's first bijection the other way round:
Choose a minimal accessible orientation to get a spanning tree
Our pb becomes:
How to choose a canonical accessible minimal orientation?
A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map $M$ if there exists an orientation of $M$ such that for each vertex $v$ the outdegree of $v$ is $f(v)$.

Theorem (Felsner 2004). Let $\alpha$ be a feasible function on a plane map $M$. Then $\alpha$ has a unique $\alpha$-orientation without clockwise cycles.

Our pb becomes: How to choose a canonical $\alpha$ ? (and check accessibility) Fact: For many subclasses $\mathcal{F}$ of planar maps, there exists an $\alpha_{\mathcal{F}}$ s.t.:

A planar map is in $\mathcal{F}$ if and only if it admits an $\alpha_{\mathcal{F}}$-orientation.

## The example of eulerian maps

A map is eulerian if it admits a cycle that visits every edge exactly once.
Let $\frac{1}{2}$ deg denote the $\frac{1}{2}$ degree function.
Proposition. A map is eulerian if and only if its admits a $\frac{1}{2}$ deg-orientation.

a map is 2 -connected $\Leftrightarrow$ it admits a bipolar orientation $\Leftrightarrow$ its quadrangulation admits an orientation with $\alpha(v)=2$
a map is a simple triangulation $\Leftrightarrow$ it admits an orientation with $\alpha(v)=3$

The example of eulerian maps

endow with min orient

The example of eulerian maps


The example of eulerian maps


$$
\begin{aligned}
& A B=A \theta \\
& x^{2}-x^{2}
\end{aligned}
$$

The example of eulerian maps


Corrolary. This is a bijection between eulerian map with $d_{i}$ vertices of degree $i$ and rooted* plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges

The example of eulerian maps


Corrolary. This is a bijection between eulerian map with $d_{i}$ vertices of degree $i$ and rooted* plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced (half-edges must form balanced parentheses)


## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced


## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex


## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex



## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex


## $n$ nœuds

 $n+2$ feuilles

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex
$n$ nœuds $n+2$ feuilles


$$
\frac{1}{n+1}\binom{2 n}{n}
$$

$$
\frac{3^{n}}{n+1}\binom{2 n}{n}
$$

## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex
$n$ nœuds

$n+2$ feuilles

$$
\frac{3^{n}}{n+1}\binom{2 n}{n}
$$

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

balanced?


## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex

balanced?



## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex

balanced?


However, 2 among $n+2$ are balanced:

## The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with $d_{i}$ vertices of degree $i$ and rooted plane trees with $d_{i}$ vertices of total degree $2 i$ s.t.

- a vertex of total degree $2 i$ has $i-1$ incoming half-edges
- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex

balanced?

$\frac{2}{n+2} \frac{3^{n}}{n+1}\binom{2 n}{n}$
(Tutte 1964, S. 1997)


## Summary of the blossoming tree strategy

To enumerate maps admitting $\alpha_{\mathcal{F}}$-orientations:

- endow them with their minimal $\alpha_{\mathcal{F}}$-orientation (hope it is accessible)
- construct the associated canonical spanning trees (Bernardi)
- open the resulting tree-rooted maps (Mullin)
- count the encoding balanced trees


## Summary of the blossoming tree strategy

To enumerate maps admitting $\alpha_{\mathcal{F}}$-orientations:

- endow them with their minimal $\alpha_{\mathcal{F}}$-orientation (hope it is accessible)
- construct the associated canonical spanning trees (Bernardi)
- open the resulting tree-rooted maps (Mullin)
- count the encoding balanced trees

In Bernardi original bijection, the basepoint must be in the outer face. But in some cases the orientation is not outerface accessible. This approach was further extended in (Albenque, Poulalhon 2012) to cover essentially all known blossoming bijections, including Bernardi-Fusy's fractional orientations.

Third lecture

## Applications to factorization problems

Which factorisations, which maps?
$m$-eulerian maps
Hurwitz problem

Conclusion

## What do we want to enumerate?

Recall. There is a bijection between

- Labelled ramified covering of $\mathbb{S}$ of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations $\left(\sigma_{1} \cdots \sigma_{m}=\sigma_{0}\right)$ of type $\Lambda$
- labelled $m$-star-constellations of type $\Lambda$.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality $\Leftrightarrow$ planarity.


## What do we want to enumerate?

Recall. There is a bijection between

- Labelled ramified covering of $\mathbb{S}$ of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ( $\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$ ) of type $\Lambda$
- labelled $m$-star-constellations of type $\Lambda$.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality $\Leftrightarrow$ planarity.
Today. Minimal transitive factorizations of $\sigma_{0}=i d$.

$$
\begin{gathered}
\quad m \text { arbitray factors } \\
\Rightarrow \sum_{i=1}^{m}\left(n-\ell_{i}\right)=2 n-2
\end{gathered}
$$

$m$-constellations

transpositions

$$
\Rightarrow m=2 \ell-2
$$

increasing maps


## What do we want to enumerate?

Recall. There is a bijection between

- Labelled ramified covering of $\mathbb{S}$ of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ( $\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$ ) of type $\Lambda$
- labelled $m$-star-constellations of type $\Lambda$.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality $\Leftrightarrow$ planarity.
Today. Minimal transitive factorizations of $\sigma_{0}=i d$.
$\quad m$ arbitray factors
$\Rightarrow \sum_{i=1}^{m}\left(n-\ell_{i}\right)=2 n-2$
$m$-constellations
$m$-eulerian maps

transpositions
$\Rightarrow m=2 \ell-2$
increasing maps
increasing
quadrangulations

From maps to trees: constellations

## $\alpha$-orientations for $m$-eulerian maps

Bipartite map with black and white vertices of degree $m$ such that:

- faces with labels in $\{1, \ldots, m\}$
- around black vertices, face labels read $1, \ldots, m$ in cw order
- around white vertices, face labels read $1, \ldots, m$ in ccw order



## $\alpha$-orientations for $m$-eulerian maps

Bipartite map with black and white vertices of degree $m$ such that:

- faces with labels in $\{1, \ldots, m\}$
- around black vertices, face labels read $1, \ldots, m$ in cw order
- around white vertices, face labels read $1, \ldots, m$ in ccw order


Orient each edge so that the minimum incident label is on the left

## $\alpha$-orientations for $m$-eulerian maps

Bipartite map with black and white vertices of degree $m$ such that:

- faces with labels in $\{1, \ldots, m\}$
- around black vertices, face labels read $1, \ldots, m$ in cw order
- around white vertices, face labels read $1, \ldots, m$ in ccw order


Orient each edge so that the minimum incident label is on the left
Then each black vertex has indegree $\alpha_{c}($ black $)=m-1$, each white vertex has indegree $\alpha_{c}($ white $)=k$ for some $k \geq 1$.

## $\alpha$-orientations for $m$-eulerian maps

Bipartite map with black and white vertices of degree $m$ such that:

- faces with labels in $\{1, \ldots, m\}$
- around black vertices, face labels read $1, \ldots, m$ in cw order
- around white vertices, face labels read $1, \ldots, m$ in ccw order


Orient each edge so that the minimum incident label is on the left
Then each black vertex has indegree $\alpha_{c}($ black $)=m-1$, each white vertex has indegree $\alpha_{c}($ white $)=k$ for some $k \geq 1$.

Proposition: A bipartite map is $m$-eulerian iff it admits an $\alpha_{c}$-orientation.

## $\alpha$-orientations for $m$-eulerian maps

Bipartite map with black and white vertices of degree $m$ such that:

- faces with labels in $\{1, \ldots, m\}$
- around black vertices, face labels read $1, \ldots, m$ in cw order
- around white vertices, face labels read $1, \ldots, m$ in ccw order


Orient each edge so that the minimum incident label is on the left
Then each black vertex has indegree $\alpha_{c}($ black $)=m-1$, each white vertex has indegree $\alpha_{c}($ white $)=k$ for some $k \geq 1$.

Proposition: A bipartite map is $m$-eulerian iff it admits an $\alpha_{c}$-orientation.
This orientation is accessible, in fact strongly connected.
We can apply our strategy!

## Openning a $m$-eulerian map



Openning a $m$-eulerian map


Openning a $m$-eulerian map


Openning a $m$-eulerian map


## Openning a $m$-eulerian map



Corrolary. This is a bijection between $m$-eulerian maps and rooted* plane trees with black and white vertices of total degree $m$ s.t.

- every non-root black vertex has indegree 1 and $m-2$ half-edges


## Openning a $m$-eulerian map



Corrolary. This is a bijection between $m$-eulerian maps and rooted* plane trees with black and white vertices of total degree $m$ s.t.

- every non-root black vertex has indegree 1 and $m-2$ half-edges
- half-edges are incoming at black, outgoing at white, the tree is balanced


## The enumeration of constellations

Theorem:[Bousquet-Mélou-S. 2000] $m$-eulerian maps are in bijection* with trees such that:

- white vertices carry $m-1$ sibblings (black vertices or half-edges)
- black vertices carry $m-2$ half-edges and a white child.


The enumeration of constellations
Theorem:[Bousquet-Mélou-S. 2000] $m$-eulerian maps are in bijection* with trees such that:

- white vertices carry $m-1$ sibblings (black vertices or half-edges)
- black vertices carry $m-2$ half-edges and a white child.


Counting the trees: this is a familly of simple tree

$$
A_{-\square}(t)=\left(1+A_{-\bullet}(t)\right)^{m-1}, \quad A_{-\bullet}(t)=(m-1) \cdot A_{-\square}(t)
$$

or observe directly that they are $(m-1)$-ary trees with $(m-1)$ types of edges

$$
\Rightarrow \quad \frac{1}{(m-2) n+1}\binom{(m-1) n}{n} \cdot(m-1)^{n-1}
$$

## The enumeration of constellations

Theorem:[Bousquet-Mélou-S. 2000] $m$-eulerian maps are in bijection* with trees such that:

- white vertices carry $m-1$ sibblings (black vertices or half-edges)
- black vertices carry $m-2$ half-edges and a white child.
- that are balanced


Counting the trees: this is a familly of simple tree

$$
A_{-\square}(t)=\left(1+A_{-\bullet}(t)\right)^{m-1}, \quad A_{-\bullet}(t)=(m-1) \cdot A_{-\square}(t)
$$

or observe directly that they are $(m-1)$-ary trees with ( $m-1$ ) types of edges

$$
\Rightarrow \frac{m}{(m-2) n+2} \frac{1}{(m-2) n+1}\binom{(m-1) n}{n} \cdot(m-1)^{n-1}
$$

## A formula for general factorizations [BMS00]

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition of $n$, and $\ell=\sum_{i} \ell_{i}$. The number of $m$-uple of permutations ( $\sigma_{1}, \ldots, \sigma_{m}$ ) such that

- (factorization) $\sigma_{1} \cdots \sigma_{m}=\sigma$ with cycle type $\lambda$
- (transitivity) $\left\langle\sigma_{1}, \ldots, \sigma_{m}\right\rangle$ acts transitively on $\{1, \ldots, n\}$
- (minimality) the total rank of factors is $\sum_{i} r\left(\sigma_{i}\right)=n+\ell-2$
is

$$
m \frac{((m-1) n-1)!}{(m n-(n+\ell-2))!} \cdot n!\cdot \prod_{i} \frac{1}{\ell_{i}!}\binom{m i-1}{i}^{\ell_{i}}
$$

## Proofs:

(Bousquet-Mélou-Schaeffer 2000) (Goulden-?? 2009)
(bijection + inclusion/exclusion)(gfs and differential eqns)
$\lambda=n$, factorizations of $n$-cycles: $\frac{1}{(m n+1)}\binom{m n+1}{n} \cdot(n-1)$ !
$\lambda=1^{n}$, identity factorizations: $\frac{m}{(m-2) n+2} \frac{(m-1)^{n-1}}{(m-2) n+1}\binom{(m-1) n}{n} \cdot(n-1)$ !

From maps to trees: Hurwitz formula

## $\alpha$-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order



## $\alpha$-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order


Orient each edge so that the minimum incident label is on the left
Then each black vertex has indegree $\alpha_{h}($ black $)=m-1$, outdegree 1 each white vertex has indegree $\alpha_{h}($ white $)=1$.

## $\alpha$-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order


Orient each edge so that the minimum incident label is on the left Then each black vertex has indegree $\alpha_{h}($ black $)=m-1$, outdegree 1 each white vertex has indegree $\alpha_{h}($ white $)=1$.

As before, this orientation is accessible, in fact strongly connected.
opening of an increasing quadrangulation


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


Hurwitz formula for increasing quadrangulations
Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size $n$ ) are in bijection with simple Hurwitz trees having $n$ unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.


## From simple Hurwitz trees to factorizations

A local rule to create increasing half edges



Cas 2:


Two half-edges with same label $\Rightarrow$ edge and face of degree 4


Iterate the local rules as long as possible...

From simple Hurwitz trees to factorizations


From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

## From simple Hurwitz trees to factorizations


vertex label are useless
for the bijection

adding buds


Parings and adding buds again

## From simple Hurwitz trees to factorizations



## From simple Hurwitz trees to factorizations



## From simple Hurwitz trees to factorizations


vertex label are useless
for the bijection


adding buds


Lemma. When it stops, there are only white half-edges left.

## From simple Hurwitz trees to factorizations



Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex and reload labels.

## From simple Hurwitz trees to factorizations



Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex and reload labels.

## From simple Hurwitz trees to factorizations



We connect them to a new black vertex and reload labels.
Face number $i$ defines transposition $\tau_{i}$. Lemma: the product is the identity permutation.

$$
(6,7)(4,5)(3,4)(3,6)(2,5)(1,2)(5,6)(1,4)(2,7)(1,7)(3,7)(2,6)=(1)(2)(3)(4)(5)(6)(7)
$$

## From simple Hurwitz trees to factorizations



Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between

- simple Hurwitz trees of size $n$, and
- minimal transitive factorizations of the identity in $S_{n}$.


## From simple Hurwitz trees to factorizations



Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between - simple Hurwitz trees of size $n$, and

- minimal transitive factorizations of the identity in $S_{n}$.

$$
\text { type } \lambda
$$

## Hurwitz formula for the number of

## minimal transitive factorizations in transpositions

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition $n$, and $\ell=\sum_{i} \ell_{i}$. The number of $m$-uples of transpositions $\left(\tau_{1}, \ldots, \tau_{m}\right)$ such that

- (product cycle type) $\tau_{1} \cdots \tau_{m}=\sigma$ has cycle type $\lambda$
- (transitivity) the associated graph is connected
- (minimality) the number of factors is $m=n+\ell-2$
is

$$
n^{\ell-3} \cdot m!\cdot n!\cdot \prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

## Proofs:

(Hurwitz 1891, Strehl 1996) (Goulden-Jackson 1997) (Lando-Zvonkine 1999) (Bousquet-Mélou-Schaeffer 2000) (recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)
$\lambda=n$, factorizations of $n$-cycles: $n^{n-2} \cdot(n-1)$ !
$\lambda=1^{n}$, factorizations of the identity: $n^{n-3} \cdot(2 n-2)$ !

## Arbres de Hurwitz de type $\lambda$ et formule d'Hurwitz

Pour traiter le cas général de la formule il faut définir des arbres de Hurwitz de type $\lambda$ : ce sont des arbres plans avec

- $n-1$ sommets noirs de degré 2 ou 1 , étiqueté avec $\{1, \ldots, n-1\}$
- $\ell$ sommets blancs dont $\ell_{i}$ portent $i$ séparateurs et $i-1$ feuilles noires
- $m=n+\ell-2$ arêtes avec étiquettes distintes dans $\{1, \ldots, m\}$
- les arêtes sont croissantes en sens direct entre 2 séparateurs


$$
H_{n}=n^{n-2}(n-1)!\quad H_{1} n=n^{n-3}(2 n-2)!\quad H_{\lambda}=n^{\ell-3} m!n!\prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

## Arbres de Hurwitz de type $\lambda$ et formule d'Hurwitz

Pour traiter le cas général de la formule il faut définir des arbres de Hurwitz de type $\lambda$ : ce sont des arbres plans avec

- $n-1$ sommets noirs de degré 2 ou 1 , étiqueté avec $\{1, \ldots, n-1\}$
- $\ell$ sommets blancs dont $\ell_{i}$ portent $i$ séparateurs et $i-1$ feuilles noires
- $m=n+\ell-2$ arêtes avec étiquettes distintes dans $\{1, \ldots, m\}$
- les arêtes sont croissantes en sens direct entre 2 séparateurs

Lemme. Le nb d'arbres d'Hurwitz de type $\lambda$ est $n^{\ell-3} m!n!\prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}$
Théorème La clôture s'étend en une bijection des arbres de Hurwitz de type $\lambda$ avec les factorisations minimales transitives en transpositions de permutations de type cyclique $\lambda$.

Corollare: La formule d'Hurwitz.

$$
H_{n}=n^{n-2}(n-1)!\quad H_{1} n=n^{n-3}(2 n-2)!\quad H_{\lambda}=n^{\ell-3} m!n!\prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

## Conclusion

- Cayley trees are plane trees and

Hurwitz formula counts variant of Cayley trees

- A second strategy (and proof) using Hurwitz mobiles also extends to higher genus
- Open problems:
double Hurwitz numbers
inequivalent factorisations in transpositions


## Post Scriptum

## Lately we realized that we should have found this much earlier...



## Post Scriptum

## Lately we realized that we should have found this much earlier...



## Post Scriptum

## Lately we realized that we should have found this much earlier...



That's all!

