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General summary of the 3 lectures:

Factorizations, maps and ramified coverings

Orientations and decompositions of maps into trees

Applications to Hurwitz numbers



First lecture

Permutations, factorizations and increasing maps

Hurwitz original motivation, ramified coverings

Ramified coverings provide bijections ”for free”

Factorizations, maps and ramified coverings



Permutations, factorizations, increasing maps



Permutation factorizations

Permutations in cycle notation: σ = (1, 2, 5)(3, 6)(4)(7) = (1, 2, 5)(3, 6)

Cycle type = distribution of cycle lengths: λ(σ) = 12 2 3

Transpositions = permutations with type λ = 2 1n−1: τ = (2, 5).
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Factorizations of n-cycles (Dénes 1959)

Lemma. If σ has ` cycles then σ′ = σ · (i, j) has

• `− 1 cycles if i and j are in different cycles of σ

• `+ 1 cycles if i and j are in the same cycle of σ
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Lemma. If σ has ` cycles then σ′ = σ · (i, j) has

• `− 1 cycles if i and j are in different cycles of σ

• `+ 1 cycles if i and j are in the same cycle of σ

Corollaries:
• At least n− 1 transpositions are needed to build

a cycle of length n



Factorizations of n-cycles (Dénes 1959)
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τk = (i, j)
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Corollaries:
• At least n− 1 transpositions are needed to build

a cycle of length n

• The product τ1 . . . τn−1 is a n-cycle if and only
if the associated graph is a tree.
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Minimal factorizations

Proposition: Let λ = 1`1 . . . n`n with
P
i `i = `. A minimal factorization

of a permutation of cycle type λ has m = n− ` factors.
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Hurwitz formula for the number of
minimal transitive factorizations in transpositions

Theorem. Let λ = 1`1 , . . . , n`n be a partition n, and ` =
P
i `i.

The number of m-uples of transpositions (τ1, . . . , τm) such that

• (product cycle type) τ1 · · · τm = σ has cycle type λ

• (transitivity) the associated graph is connected

• (minimality) the number of factors is m = n+ `− 2

is

n`−3 ·m! · n! ·
Y
i≥1
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λ = n, factorizations of n-cycles: nn−2 · (n− 1)!

λ = 1n, factorizations of the identity: nn−3 · (2n− 2)!

(Hurwitz 1891, Strehl 1996) (Goulden–Jackson 1997) (Lando–Zvonkine 1999) (Bousquet-Mélou–Schaeffer 2000)

(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)

Proofs:
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Combinatorial interpretation and proof?



Computation of the product and increasing embedding
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Moszkowski’s proof
for factorizations of an n-cycle
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Proof: there is unique way to put labels so that the computation works!



Increasing maps
Moszkowski’s bijection extends to all types of transitive factorizations in
transpositions (with type λ, non necessarily minimal)
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– ` faces (face with k crosses = cycle of length k in the product)

(associated to transpositions)

– counterclockwise increasing edges around each vertex
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– ` faces (face with k crosses = cycle of length k in the product)
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Theorem (Poulalhon (1999), Okounkov (2001), Irving (2004),. . . ) This is a
bijection between increasing planar maps and minimal transitive factorizations



Origin of the problem...

Ramified coverings of the sphere by itself

See book Lando-Zvonkin for more details.

and a common setup for all permutations/maps relations?



Ramified coverings of the sphere by itself

Let Ar be the annulus {z | r < |z| < 1} ⊂ C.

Consider φk : Ar → Ark with φk(z) = zk.

φ3

Let D = {z | |z| < 1} ⊂ C be the unit open disc, and let ∼ denote
equivalence up to homeomorphisms (bijective, bicontinuous mappings).

A mapping φ : D → I is a covering if, for all x
in I there exists n ≥ 1 and a neighborhood V
of x such that φ−1(V ) ∼ D × {1, . . . , n},
and the restriction of φ to each sheet Di
(connected component of the preimage)

is an homeomorphism φ|Di : Di
∼→ D.

Example:
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By continuity, the number n = |φ−1(x)| of sheets of a
covering φ does not depend on x: for instance n = k for φk.
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Ramified coverings of the sphere by itself
Recall φk : Ar → Ark with φk(z) = zk.

φ3

Extend from Ar to D?

A mapping φ is ramified at x = 0 if

The mapping φk : D∗ → D∗ is a covering.

What happens at x = 0?

The mapping φk : D → D has a
connected ramification at x = 0.

• the restriction of φ to each component of φ−1(V ) is
homeomorphic to φk for some k.

• there is a neighborhood V of the origin
such that φ−1(V ) ∼ D × [1, . . . , p] and,

Regular (aka unramified) value = ramified with φ1 on each component.

ramified regular

but not φk : D → D.
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A mapping φ is a ramified covering of S by S if there exists a finite subset
X = {x1, . . . , xp} such that:

Ramified coverings of the sphere by itself (Cont’d)

λ(1) = 15 λ(2) = 1, 22 λ(2) = 2, 3

the passport Λ = (λ(1), . . . , λ(p)) of a ramified covering
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• φS\φ−1(X) is a covering, and

• φ is ramified over each xi generically
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φ3

φ2

id

The ramification type over a
critical value xi is the partition λ(i)

On each component Vj of φ−1(V (xi)),

φ ∼ φ
λ

(i)
j

for some integer λ
(i)
j .

The passport of a ramified covering
is the list Λ = (λ(1), . . . , λ(p))
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Ramified coverings of the sphere by itself (Cont’d)

λ(1) = 15 λ(2) = 1, 22 λ(2) = 2, 3

the passport Λ = (λ(1), . . . , λ(p)) of a ramified covering

regular value critical value critical value

To understand the ”shape” of the covering,

draw paths on I and study
its preimages.

• n independant preimages as long
as we stay away from critical points

some sheets may get permuted

• visiting critical points create
multiple values or ”vertices”

⇒ The partitions λ(i)

are partitions of n,
degree of the covering.

• a contractible loop on I
yields n contractible loops on D

D = S

I = S

but if we wind around critical points
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On I, draw an edge between •
and ◦ via the basepoint

We get a planar map:

that is, a graph embedded
on the sphere with simply
connected faces

Proof. Faces are simply connected because
a loop around the edge in I can be
deformed to a loop around 2

Theorem. This is a bijection
between bipartite planar maps

and ramified coverings of S by S
with 3 critical values.
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A loop around a critical value
yields a permutation

σ◦ = (1, 3, 6)(2, 5, 4)(7, 8)
with cyclic type λ◦

σ• = (1)(2, 6)(3, 5)(4, 7)(8)
with cyclic type λ•

Cycle types ⇔ degree
distributions

What about σ2 and λ2 ?

But loop around 2 =
concatenate loop around ◦ and •

σ2 = (2, 3)(1, 5, 7, 8, 4, 6)

loops around 2 = faces

Proposition: σ◦σ• = σ2.
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m+ 1 critical values, m-constellations, permutations
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The preimage of the m-star is
called a star-constellation.

Thm. Planar star-constellations with:
– n labelled m-stars,
– λ2

j faces of degree j,

– λ
(i)
j color i vertices of degree j

are in bijection with minimal
transitive factorizations

σ1 · · ·σm = σ2

with σi of cyclic type λ(i).4

4

4

4

4



Monodromy, permutations, constellations

Theorem. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

summary

D = S ⇔ minimality ⇔ planarity.



Monodromy, permutations, constellations

Theorem. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

summary

Specializations.

— m = 2: bipartite maps with n edges

D = S ⇔ minimality ⇔ planarity.

— m = 2 and λ• = 2
n
2 : all • have deg 2⇔ nonbipartite maps (n

2
edges)

— for all i ≥ 1, λ(i) = 21n−2: factorizations in transpositions.

coverings with almost only simple branch points; increasing maps



Ramified coverings and ”trivial” bijections:

combinatorial data structures
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with λ• = 2
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Application to the design of trivial bijections for maps

Let Λ = (λ2, λ•, λ◦)

with λ• = 2
n
2

◦—•—• ⇒ bipartite map

with λ• = 2
n
2
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Application to the design of trivial bijections for maps

Let Λ = (λ2, λ•, λ◦)

with λ• = 2
n
2

◦—•—• ⇒ bipartite map

◦—|⇒ nonbipartite map

2—|⇒ dual map

2—◦ ⇒ quadrangulation

Keep the same covering, give different representations (data structures)
⇒ all these are bijections
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m-eulerian maps

Keep the same covering, give different representations (data structures)
⇒ all these are bijections



Today

Permutations, factorizations and increasing maps

Hurwitz original motivation, ramified coverings

Ramified coverings provide bijections ”for free”

Factorizations, maps and ramified coverings

Orientations and decompositions of maps into trees

Applications to Hurwitz numbers

Later...



A formula for general factorizations [BMS00]

Theorem. Let λ = 1`1 , . . . , n`n be a partition of n, and ` =
P
i `i.

The number of m-uple of permutations (σ1, . . . , σm) such that

• (factorization) σ1 · · ·σm = σ with cycle type λ

• (transitivity) 〈σ1, . . . , σm〉 acts transitively on {1, . . . , n}
• (minimality) the total rank of factors is

P
i r(σi) = n+ `− 2

is

m
((m− 1)n− 1)!

(mn− (n+ `− 2))!
· n! ·

Y
i

1

`i!

“mi− 1

i

”`i
Proofs:

(Bousquet-Mélou–Schaeffer 2000) (Goulden–?? 2009)

(bijection + inclusion/exclusion)(gfs and differential eqns)

λ = n, factorizations of n-cycles: 1
(mn+1)

`mn+1
n

´
· (n− 1)!

λ = 1n, identity factorizations: m
(m−2)n+2

(m−1)n−1

(m−2)n+1

`(m−1)n
n

´
· (n− 1)!



Our aim in the rest of the lectures

Factorization in transpositions:
λ = 1n, factorizations of the identity: nn−3 · (2n− 2)!

Factorizations in arbitrary factors:

λ = 1n, factorizations of the identity: m (mn−n−1)!
(mn−2n+2)!

(m− 1)n

Prove the following two results using two bijective methods:

The two methods extend to general λ.

The second method extends to non minimal factorizations (higher genus)

Need to count fully increasing quadrangulations

Need to count (m+ 1)-constellations.



Second lecture

Orientation and the decomposition of maps into trees

- General idea: decompose a map into two trees

- 2 strategies explain (almost) all known bijections

- minimal orientations and direct opening

- left accessible orientations and the master bijection

- A quick reminder about trees



A quick reminder about trees



Dyck paths and plane trees

Dyck path of length 2n = contour of a plane tree with n edges

The Dyck code of a tree is obtained during the walk around it upon:

– writing u the first time a vertex is visited (up steps)

– writing d the last time a vertex is visited (down steps)



Encodings of trees by words

We shall need two other classical codes:



Encodings of trees by words

We shall need two other classical codes:
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Encodings of trees by words

We shall need two other classical codes:

– the height code: write the height of each vertex during its first visit

1 1 2 2 23 3

– degree code: write the degree of each vertex during its first visit

2

0 3

0

0

2

0

0 2 0 3 0 2 0 0 0

2
0

3
2

0 0
0

0

i
i



Cycle lemma and parking functions

|P (2n)| =
`2n
n

´
after 45o rotation: let P (2n) denote paths from (0, 0) to
(n, n+ 1) ending by an horizontal step
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|P (2n)| =
`2n
n

´

Cycle lemma: in each conjugacy class exactly one path is positive

after 45o rotation: let P (2n) denote paths from (0, 0) to
(n, n+ 1) ending by an horizontal step

Let two paths w and w′ be conjugate if there
are u and v s.t. w = uv and w′ = vu.



Cycle lemma and parking functions

|P (2n)| =
`2n
n

´

Cycle lemma: in each conjugacy class exactly one path is positive

n+ 1 paths in P (2n) yield 1 path in D(2n):

after 45o rotation: let P (2n) denote paths from (0, 0) to
(n, n+ 1) ending by an horizontal step

(n+ 1)|D(2n)| = |P (2n)|.

Let two paths w and w′ be conjugate if there
are u and v s.t. w = uv and w′ = vu.



Cycle lemma and parking functions

take a fonction f of [n]→ [n+ 1]

1 2 3 4 5 6 7
2 6 8 8 2 8 6

1

2 3 4 5
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n+1
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represent it as a path



Cycle lemma and parking functions

f , f ′ conjugate ⇔ f(i)− f ′(i) mod n+ 1 = cte

take a fonction f of [n]→ [n+ 1]

1 2 3 4 5 6 7
2 6 8 8 2 8 6
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2 3 4 5

6 7

n+1
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Cycle lemma and parking functions

Cycle lemma: in each conjugacy class exactly one path is positive

the number of Parking functions [n]→ [n+ 1] is 1
n+1

(n+ 1)n = (n+ 1)n−1

f , f ′ conjugate ⇔ f(i)− f ′(i) mod n+ 1 = cte

take a fonction f of [n]→ [n+ 1]

1 2 3 4 5 6 7
2 6 8 8 2 8 6

1

2 3 4 5

6 7

n+1

1

5

2

7

3

4

6

1

represent it as a path 1

5

2
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6

a function whose path is positive is a Parking function



Parking function and codes of trees
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Parking function and codes of trees

1

5

2

7

3

4

6
Consider the path as the degree code of a tree

2 7

3 4 6

1 5 Put label on vertices
(root gets n+ 1)

8

2 7

3
4

6

5
1

(n+ 1)n−1 Cayley trees with n+ 1 labeled vertices

(n+ 1)n−1 rooted Cayley trees with n indexed edges

Put labels on edges:

2 7

3 4 6

1
5

Take a parking function



From maps to trees (I): tree-rooted maps

first strategy: Mullin primal dual decomposition
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From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A
tree-rooted map is a map with a spanning tree.

The dual map of a tree-rooted map is a tree-rooted map: it is naturally
endowed with a dual spanning tree.
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Euler’s relation:
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Proof ?

Proof?

Recall a planar map is a proper embedding of a connected graph
on the sphere (considered up to homeomorphisms).
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Encoding tree-rooted maps with pairs of trees

turn around the tree
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non visited edges = balanced
parenthesis word

Code of the tree-rooted map = tree decorated by a balanced
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Observe that closure edges turn
clockwise around the tree.



Encoding tree-rooted maps with pairs of trees

turn around the tree

Using the code of the tree by
its contour word:

non visited edges = balanced
parenthesis word

Code of the tree-rooted map = tree decorated by a balanced
parenthesis word = shuffle of two Dyck words

uuuududuuudududddddudd

Starting at a root corner

Observe that closure edges turn
clockwise around the tree.



Encoding tree-rooted maps with pairs of trees

turn around the tree

Using the code of the tree by
its contour word:

non visited edges = balanced
parenthesis word

Code of the tree-rooted map = tree decorated by a balanced
parenthesis word = shuffle of two Dyck words

The number of tree rooted planar maps with n edges isPn
i=0

`2n
i

´
CiCn−i where Cn denotes Catalan numbers.

uuuududuuudududddddudd

Starting at a root corner

Observe that closure edges turn
clockwise around the tree.



From maps to trees (I): tree-rooted maps

first strategy: Mullin primal dual decomposition

second strategy: unfolding

intermede: minimal orientations Bernardi’s master
bi-theorem
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Orient the tree edges away from the root

From tree-rooted maps to minimal accessible maps

Orient the other edges couterclockwise
around the tree

It is called a minimal orientation (for the order induced by circuit reversal).

The resulting orientation
has no clockwise circuit.

A oriented map is accessible if every vertex can be reach by an oriented
path from the root.



Orient the tree edges away from the root

From tree-rooted maps to minimal accessible maps

Orient the other edges couterclockwise
around the tree

It is called a minimal orientation (for the order induced by circuit reversal).

The resulting orientation
has no clockwise circuit.

Theorem (Bernardi) This is a bijection between tree-rooted maps
with n edges and minimum accessible maps with n edges

A oriented map is accessible if every vertex can be reach by an oriented
path from the root.



Orient the tree edges away from the root

From tree-rooted maps to minimal accessible maps

Orient the other edges couterclockwise
around the tree

The tree is recovered by reconstructing its contour (or equivalently by
leftmost depth first search).

It is called a minimal orientation (for the order induced by circuit reversal).

The resulting orientation
has no clockwise circuit.

Theorem (Bernardi) This is a bijection between tree-rooted maps
with n edges and minimum accessible maps with n edges

A oriented map is accessible if every vertex can be reach by an oriented
path from the root.



From maps to trees (I): tree-rooted maps

first strategy: Mullin primal dual decomposition

second strategy: unfolding

intermede: minimal orientations Bernardi’s master
bi-theorem
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Bernardi’s decomposition of minimal accessible maps

Define its vertex unfolding:

Consider a minimal accessible map

In the unfolded map, the plain
edges form a spanning tree.

The unfolded map is
tree-rooted

The dual tree is
naturally bicolored

(clockwise cycles are ruled out by external edges)

(a counterclockwise cycle would be non
accessible from the outside)
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(no shuffling of the codes required)



Bernardi’s master bijection for tree-rooted maps

The primal and dual trees of the unfolded maps are glued canonically

(no shuffling of the codes required)

Conversely gluying an arbitrary tree with n edges with an arbitrary tree
with s+ f = n+ 2 vertices yields a left-accessible map

Theorem(Bernardi) This is a bijection between such pairs of trees and
minimal accessible maps with n edges, (and tree-rooted maps via
previous Theorem).

Corollary:
Pn
i=0

`2n
i

´
CiCn−i = Cn+1Cn



Summary: two strategies for tree-rooted maps

Pn
i=0

`2n
i

´
CiCn−i = Cn+1Cn



From maps to trees (II): eulerian maps

first strategy: blossoming trees
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Encoding rooted maps with trees

Let us recycle the first idea used for tree-rooted maps

using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree

Our code of the map will be a canonical decorated tree

Question is ”How do we choose the canonical spanning tree ?”

The map is recovered from the code by closure.



Minimal orientations and canonical spanning trees

Idea: Use Bernardi’s first bijection the other way round:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?
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Minimal orientations and canonical spanning trees

Idea: Use Bernardi’s first bijection the other way round:

Theorem (Felsner 2004). Let α be a feasible function on a plane map M .
Then α has a unique α-orientation without clockwise cycles.

A function α : V → N is feasible on a plane map M if there exists an
orientation of M such that for each vertex v the outdegree of v is f(v).

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

Our pb becomes: How to choose a canonical α? (and check accessibility)

Fact: For many subclasses F of planar maps, there exists an αF s.t.:

A planar map is in F if and only if it admits an αF -orientation.



The example of eulerian maps

A map is eulerian if it admits a cycle that visits every edge exactly once.

Let 1
2

deg denote the 1
2

degree function.

Proposition. A map is eulerian if and only if its admits a 1
2

deg-orientation.

a map is 2-connected ⇔ it admits a bipolar orientation

a map is a simple triangulation ⇔ it admits an orientation with α(v) = 3

⇔ its quadrangulation admits
an orientation with α(v) = 2
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min orient
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Corrolary. This is a bijection between eulerian map with di vertices of degree
i and rooted∗ plane trees with di vertices of total degree 2i s.t.

- a vertex of total degree 2i has i− 1 incoming half-edges



The example of eulerian maps

endow with
min orient

find spanning

tree

open

Corrolary. This is a bijection between eulerian map with di vertices of degree
i and rooted∗ plane trees with di vertices of total degree 2i s.t.

- a vertex of total degree 2i has i− 1 incoming half-edges

- the tree is balanced (half-edges must form balanced parentheses)
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- the tree is balanced
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degree i and rooted plane trees with di vertices of total degree 2i s.t.

- a vertex of total degree 2i has i− 1 incoming half-edges

- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex
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Corrolary. This is a bijection between eulerian maps with di vertices of
degree i and rooted plane trees with di vertices of total degree 2i s.t.

- a vertex of total degree 2i has i− 1 incoming half-edges
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The example of eulerian maps

Corrolary. This is a bijection between eulerian maps with di vertices of
degree i and rooted plane trees with di vertices of total degree 2i s.t.

- a vertex of total degree 2i has i− 1 incoming half-edges

- the tree is balanced

Example. 4-regular maps: all vertices have degree 4

- the tree has 1 incoming half edge per vertex

1
n+1

`2n
n

´ 3n

n+1

`2n
n

´n nœuds
n+2 feuilles

balanced?

no

2
n+2

3n

n+1

`2n
n

´
However, 2 among n+ 2 are balanced:

(Tutte 1964, S. 1997)



Summary of the blossoming tree strategy

– endow them with their minimal αF -orientation (hope it is accessible)

– construct the associated canonical spanning trees (Bernardi)

– open the resulting tree-rooted maps (Mullin)

– count the encoding balanced trees

To enumerate maps admitting αF -orientations:



Summary of the blossoming tree strategy

This approach was further extended in (Albenque, Poulalhon 2012) to
cover essentially all known blossoming bijections, including
Bernardi-Fusy’s fractional orientations.

In Bernardi original bijection, the basepoint must be in the outer face.
But in some cases the orientation is not outerface accessible.

– endow them with their minimal αF -orientation (hope it is accessible)

– construct the associated canonical spanning trees (Bernardi)

– open the resulting tree-rooted maps (Mullin)

– count the encoding balanced trees

To enumerate maps admitting αF -orientations:



Third lecture

Applications to factorization problems

Which factorisations, which maps?

m-eulerian maps

Hurwitz problem

Conclusion



Recall. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

D = S ⇔ minimality ⇔ planarity.

What do we want to enumerate?



Recall. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

D = S ⇔ minimality ⇔ planarity.

What do we want to enumerate?

Today. Minimal transitive factorizations of σ0 = id.

m arbitray factors
⇒
Pm
i=1(n− `i) = 2n− 2

transpositions
⇒ m = 2`− 2

m-constellations increasing maps

1
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3
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m-eulerian maps

Recall. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

D = S ⇔ minimality ⇔ planarity.

What do we want to enumerate?

Today. Minimal transitive factorizations of σ0 = id.

m arbitray factors
⇒
Pm
i=1(n− `i) = 2n− 2

transpositions
⇒ m = 2`− 2

m-constellations increasing maps

increasing
quadrangulations

1

2

3
1

2

3

1

1

3 2

2
3m = 3

1

1

3 2

2
3

1

1

3

2

2
3



From maps to trees: constellations



α-orientations for m-eulerian maps

Bipartite map with black and white vertices of degree m such that:

– faces with labels in {1, . . . ,m}
– around black vertices, face labels

read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order
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α-orientations for m-eulerian maps

Bipartite map with black and white vertices of degree m such that:

Orient each edge so that the minimum incident label is on the left

– faces with labels in {1, . . . ,m}
– around black vertices, face labels

read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order
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α-orientations for m-eulerian maps

Bipartite map with black and white vertices of degree m such that:

Orient each edge so that the minimum incident label is on the left

– faces with labels in {1, . . . ,m}
– around black vertices, face labels

read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order

Then each black vertex has indegree αc(black) = m− 1,

each white vertex has indegree αc(white) = k for some k ≥ 1.
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α-orientations for m-eulerian maps

Bipartite map with black and white vertices of degree m such that:

Orient each edge so that the minimum incident label is on the left

– faces with labels in {1, . . . ,m}
– around black vertices, face labels

read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order

Then each black vertex has indegree αc(black) = m− 1,

each white vertex has indegree αc(white) = k for some k ≥ 1.

Proposition: A bipartite map is m-eulerian iff it admits an αc-orientation.
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α-orientations for m-eulerian maps

Bipartite map with black and white vertices of degree m such that:

Orient each edge so that the minimum incident label is on the left

– faces with labels in {1, . . . ,m}
– around black vertices, face labels

read 1, . . . ,m in cw order

– around white vertices, face labels
read 1, . . . ,m in ccw order

Then each black vertex has indegree αc(black) = m− 1,

each white vertex has indegree αc(white) = k for some k ≥ 1.

This orientation is accessible, in fact strongly connected.

Proposition: A bipartite map is m-eulerian iff it admits an αc-orientation.

1

1

3 2

2

3

We can apply our strategy!



Openning a m-eulerian map
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endow with min
αc-orient

(return cycles)
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Openning a m-eulerian map

endow with min
αc-orient

(return cycles)
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Openning a m-eulerian map

endow with min
αc-orient

(return cycles)

1

1

3 2

2

3

find spanning tree

open

1

1

3 2

2

3

1

1

3 2

2

3

1

1

3 2

2

3

Corrolary. This is a bijection between m-eulerian maps and rooted∗ plane
trees with black and white vertices of total degree m s.t.

- every non-root black vertex has indegree 1 and m− 2 half-edges



Openning a m-eulerian map

endow with min
αc-orient

(return cycles)

1

1

3 2

2

3

find spanning tree

open

1

1

3 2

2

3

1

1

3 2

2

3

1

1

3 2

2

3

Corrolary. This is a bijection between m-eulerian maps and rooted∗ plane
trees with black and white vertices of total degree m s.t.

- every non-root black vertex has indegree 1 and m− 2 half-edges

- half-edges are incoming at black, outgoing at white, the tree is balanced



– black vertices carry m− 2 half-edges
and a white child.

Theorem:[Bousquet-Mélou–S. 2000] m-eulerian maps are in bijection∗

with trees such that:

– white vertices carry m− 1 sibblings
(black vertices or half-edges)

The enumeration of constellations



– black vertices carry m− 2 half-edges
and a white child.

Theorem:[Bousquet-Mélou–S. 2000] m-eulerian maps are in bijection∗

with trees such that:

– white vertices carry m− 1 sibblings
(black vertices or half-edges)

The enumeration of constellations

Counting the trees: this is a familly of simple tree

A−2(t) = (1 +A−•(t))m−1, A−•(t) = (m− 1) ·A−2(t)

or observe directly that they are (m−1)-ary trees with (m−1) types of edges

⇒ 1
(m−2)n+1

`(m−1)n
n

´
· (m− 1)n−1



– black vertices carry m− 2 half-edges
and a white child.

Theorem:[Bousquet-Mélou–S. 2000] m-eulerian maps are in bijection∗

with trees such that:

– white vertices carry m− 1 sibblings
(black vertices or half-edges)

The enumeration of constellations

Counting the trees: this is a familly of simple tree

A−2(t) = (1 +A−•(t))m−1, A−•(t) = (m− 1) ·A−2(t)

or observe directly that they are (m−1)-ary trees with (m−1) types of edges

⇒ 1
(m−2)n+1

`(m−1)n
n

´
· (m− 1)n−1

– that are balanced

m
(m−2)n+2



A formula for general factorizations [BMS00]

Theorem. Let λ = 1`1 , . . . , n`n be a partition of n, and ` =
P
i `i.

The number of m-uple of permutations (σ1, . . . , σm) such that

• (factorization) σ1 · · ·σm = σ with cycle type λ

• (transitivity) 〈σ1, . . . , σm〉 acts transitively on {1, . . . , n}
• (minimality) the total rank of factors is

P
i r(σi) = n+ `− 2

is

m
((m− 1)n− 1)!

(mn− (n+ `− 2))!
· n! ·

Y
i

1

`i!

“mi− 1

i

”`i
Proofs:

(Bousquet-Mélou–Schaeffer 2000) (Goulden–?? 2009)

(bijection + inclusion/exclusion)(gfs and differential eqns)

λ = n, factorizations of n-cycles: 1
(mn+1)

`mn+1
n

´
· (n− 1)!

λ = 1n, identity factorizations: m
(m−2)n+2

(m−1)n−1

(m−2)n+1

`(m−1)n
n

´
· (n− 1)!



From maps to trees: Hurwitz formula



α-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

– faces have labels in {1, . . . , 2n− 2}
– around labeled vertices, face labels

increase in ccw order

– around white vertices, face labels
increase in cw order
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α-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

– faces have labels in {1, . . . , 2n− 2}
– around labeled vertices, face labels

increase in ccw order

– around white vertices, face labels
increase in cw order

Orient each edge so that the minimum incident label is on the left

Then each black vertex has indegree αh(black) = m− 1, outdegree 1

each white vertex has indegree αh(white) = 1.
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α-orientations for increasing quadrangulations

Planar quadrangulations (faces are 4-gons) such that:

– faces have labels in {1, . . . , 2n− 2}
– around labeled vertices, face labels

increase in ccw order

– around white vertices, face labels
increase in cw order

Orient each edge so that the minimum incident label is on the left

Then each black vertex has indegree αh(black) = m− 1, outdegree 1

each white vertex has indegree αh(white) = 1.

As before, this orientation is accessible, in fact strongly connected.
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opening of an increasing quadrangulation
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opening of an increasing quadrangulation

endow with min
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opening of an increasing quadrangulation

endow with min
αc-orient

(return cycles)

find spanning tree
1

12
7

5
6

9

10
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4
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5
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9
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3
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4
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5
6
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3

2
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open

1

12

7
5

6

9

10 8

3
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11

but forget half-edges

give labels to edges

eliminate root black
vertex



Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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nn−3 ·(2n−2)!

Corollary. The number of transitive
factorisations of the identity of Sn
in 2n− 2 transpositions is nn−3(2n− 2)!.



From simple Hurwitz trees to factorizations

i k

k

j
i

kj
Cas 1:

i k
j

i

i

kjCas 2:

ou

k m
`

k
i

k

j

A local rule to create increasing half edges

Two half-edges with same label ⇒ edge and face of degree 4

Iterate the local rules as long as possible...

1111 11 11

11111111
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Face number i defines transposition τi . Lemma: the product is the identity permutation.

(6,7)(4,5)(3,4)(3,6)(2,5)(1,2)(5,6)(1,4)(2,7)(1,7)(3,7)(2,6)=(1)(2)(3)(4)(5)(6)(7)

adding buds Parings and adding buds again

again again



1
12

7
56

9

10

8
32

4

11 1
12

7
5

6
9

10

8
32

4

11

1
12

7

5
6

9

10

8 3
2

4

11 1
12

7

5
6

9

10

8 3
2

4
11 1

12
7

5
6

9

10
8 3

2

4
11

1
12

7
56

9

10

8
32

4

11

From simple Hurwitz trees to factorizations

11

2
35

6

4

11 4

5
2

6

3

vertex label are useless
for the bijection

7

adding buds Parings and adding buds again

again again

Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between
– simple Hurwitz trees of size n, and
– minimal transitive factorizations of the identity in Sn.
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Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between
– simple Hurwitz trees of size n, and
– minimal transitive factorizations of the identity in Sn.

type λ



Hurwitz formula for the number of
minimal transitive factorizations in transpositions

Theorem. Let λ = 1`1 , . . . , n`n be a partition n, and ` =
P
i `i.

The number of m-uples of transpositions (τ1, . . . , τm) such that

• (product cycle type) τ1 · · · τm = σ has cycle type λ

• (transitivity) the associated graph is connected

• (minimality) the number of factors is m = n+ `− 2

is

n`−3 ·m! · n! ·
Y
i≥1

1

`i!

„
ii

i!

«`i

λ = n, factorizations of n-cycles: nn−2 · (n− 1)!

λ = 1n, factorizations of the identity: nn−3 · (2n− 2)!

(Hurwitz 1891, Strehl 1996) (Goulden–Jackson 1997) (Lando–Zvonkine 1999) (Bousquet-Mélou–Schaeffer 2000)

(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)

Proofs:



Arbres de Hurwitz de type λ et formule d’Hurwitz
Pour traiter le cas général de la formule il faut définir des arbres
de Hurwitz de type λ: ce sont des arbres plans avec

- n− 1 sommets noirs de degré 2 ou 1, étiqueté avec {1, . . . , n− 1}
- ` sommets blancs dont `i portent i séparateurs et i−1 feuilles noires

- m = n+ `− 2 arêtes avec étiquettes distintes dans {1, . . . ,m}
- les arêtes sont croissantes en sens direct entre 2 séparateurs

Hn = nn−2(n − 1)! H1n = nn−3(2n − 2)! Hλ = n`−3m!n!
Q
i≥1

1
`i!

„
ii

i!

«`i

4

11

2 3

5

6

8

7

1

2
34

5

7 9 10

11

12

13
14

15

16



Arbres de Hurwitz de type λ et formule d’Hurwitz
Pour traiter le cas général de la formule il faut définir des arbres
de Hurwitz de type λ: ce sont des arbres plans avec

Lemme. Le nb d’arbres d’Hurwitz de type λ est

Théorème La clôture s’étend en une bijection des arbres de Hurwitz de
type λ avec les factorisations minimales transitives en transpositions de
permutations de type cyclique λ.

n`−3m!n!
Q
i≥1

1
`i!

“
ii

i!

”`i

Corollare: La formule d’Hurwitz.

- n− 1 sommets noirs de degré 2 ou 1, étiqueté avec {1, . . . , n− 1}
- ` sommets blancs dont `i portent i séparateurs et i−1 feuilles noires

- m = n+ `− 2 arêtes avec étiquettes distintes dans {1, . . . ,m}
- les arêtes sont croissantes en sens direct entre 2 séparateurs

Hn = nn−2(n − 1)! H1n = nn−3(2n − 2)! Hλ = n`−3m!n!
Q
i≥1

1
`i!

„
ii

i!

«`i



Conclusion

— Cayley trees are plane trees and

Hurwitz formula counts variant of Cayley trees

— Open problems:

double Hurwitz numbers

inequivalent factorisations in transpositions

— A second strategy (and proof) using Hurwitz mobiles

also extends to higher genus



Post Scriptum

Lately we realized that we should have found this much earlier...

Factorizations in
arbitrary permutations factorization in transpositions

require n−1
cycles per factors

Constellations

m-eulerian maps

require n−1
vertices with label i

require n−1 faces
with label i

bi/quadrangulations

kissing constellations

m-eulerian trees hairy trees

quadrangulations

Hurwitz trees

∼ ∼

increasing increasing

∼

∼

∼

∼ ∼
∼

remove all leaves
and buds

∼
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Lately we realized that we should have found this much earlier...

Factorizations in
arbitrary permutations factorization in transpositions

require n−1
cycles per factors

Constellations

m-eulerian maps

require n−1
vertices with label i

require n−1 faces
with label i

bi/quadrangulations

kissing constellations

m-eulerian trees hairy trees

quadrangulations

Hurwitz trees

∼ ∼

increasing increasing

∼

∼

∼

∼ ∼
∼

remove all leaves
and buds

mobiles

∼

Hurwitz mobiles

∼

∼

increasing maps

∼

∼require ***



That’s all!


