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Regular colored graphs, why?

One of the motivation for studying them is that they appear to be a
valuable discrete model of quantum gravity in 2d.

What about higher dimensions? Several concurrent approaches...

none of which is considered as completely satisfying

— Lorenzian geometries, D = 2 + 1: layers of triangulations

Two ”discrete → continuum” approaches for D = 3 (I know of):

— Euclidean geometries, D = 3: arbitrary pure simplicial complexes?

Experimental results with random sampling, no exact results

Partial results following the Tensor Track (survey c©Rivasseau)

To learn more: workshop Quantum gravity in Paris-Orsay in march.

Random quadrangulations and other random planar maps have
attracted a lot of attention in the last few years...
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In general, maps with genus g can be obtained as terms

in the topological expansion of log
∫
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∑
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−2gTg

1
ND

log
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f(D-tensor of dim N) ” = ”

∑
δ N
−δGδ

The term Gδ is a weighted sum over some generalized ribbon graphs
that encode some D-dimensional complexes of degree δ

The term Tg is a weighted sum over some ribbon graphs
that encode some quadrangulations or maps of genus g

”some” depends on f ... many models!

we concentrate on Regular colored bipartite graphs

(there are a few other examples)
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Definition: (D + 1)-regular edge colored bipartite graphs:

— k white vertices, k black vertices

— (D + 1)k edges, k of which have color c, for all 0 ≤ c ≤ D.

— each vertex is incident to one edge of each color
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As usual a graph is rooted if one edge is marked.



Regular colored graphs, why?

Definition: (D + 1)-regular edge colored bipartite graphs:

— k white vertices, k black vertices

— (D + 1)k edges, k of which have color c, for all 0 ≤ c ≤ D.

— each vertex is incident to one edge of each color

1
0

23 3

3

0

0

1
2

21

0
0

0

0

0

1

1

1

1

2

2 2

2

3
3

3 3

3

1

2

Examples:

Equivalently, a graph is open, if one edge is broken into two half edges.

G′ = op(G)
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As usual a graph is rooted if one edge is marked.
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Definition: a face of color (c, c′) is a bicolored simple cycle made of
edges of color c and c′.

Example:

two (1, 2)-faces
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Example:

two (1, 2)-faces

Let F c,c
′

p count faces of color {c, c′} and degree 2p; Fp =
∑
{c,c′} F

{c,c′}
p

and F =
∑
p≥1 Fp is the total number of faces.
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Definition: a face of color (c, c′) is a bicolored simple cycle made of
edges of color c and c′.

Example:

two (1, 2)-faces

Let F c,c
′

p count faces of color {c, c′} and degree 2p; Fp =
∑
{c,c′} F

{c,c′}
p

In the case D = 2, there are 3 colors, and the faces are the faces of a
canonical embedding of the graph as a map.
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Regular colored graphs, why?

Lemma.The reduced degree δ =
(
D
2

)
k +D − F is a non-negative integer.

Corollary. (D + 1)δ + 2F1 = D(D + 1) +
∑
p≥2

((D − 1)p−D − 1)Fp

Lemma. By double counting: D(D + 1)k = 2
∑
p≥1 pFp

For D = 2, coefficient of F2 negative
⇒ the Fi can be large even if δ and F1 are fixed.

For D ≥ 4, coefficient of F2 positive
⇒ finitely many graphs if δ and F1 are fixed.

Same hold for D = 3 but non trivial.

First observations:

Sketch of proof. Show that δ is the average genus among all possible
canonical embedding (jackets) obtained by fixing the cyclic arrangement of
colors around vertices.



Summary of the first episode

3-regular colored maps

Matrix integral expansions

degree is not a topological invariant of underlying D-manifold:
it depends on the colored complex used to triangulate it

Classification by degree:

More representative than simpler models: the barycentric sub-division of
any manifold complex is a regular colored graph.

D-regular colored graphs

D-tensor integral expansions

(colored triangulations) (D-dimensional pure colored complexes)

2g = k − F + 2 δ =
`D

2

´
k − F +D

k black vertices, F faces k black vertices, F ”faces”

Why this precise integral / family of graph?

There are richer models for D = 3, but this model works for any D.

but it governs the expansion of the integral



What’s next?

3-regular colored maps

Matrix integral expansions

D-regular colored graphs

D-tensor integral expansions

(colored triangulations) (D-dimensional pure colored complexes)

2g = k − F + 2 δ =
`D

2

´
k − F +D

k black vertices, F faces k black vertices, F ”faces”

g = 0 g > 0

Brownian
planar map

Higher genus
Brownian maps

δ = 0 δ > 0

today’s topictoday’s topic

Define a r.v. with uniform distribution on objects of size k, and
look for continuum limit of rescaled objects when k →∞

@curien
@chapuy
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The case δ = 0: Melonic graphs (Gurau, Rivasseau et al.)

Lemma. If G has degree 0 then it contains a non-root melon.

Melon=open subgraph
made of D-parallel edges.

Proof. In view of counting lemmas, there exists a face of length 2.

Since δ is average genus, all ”jackets” are planar.

If possible choose a jacket such that the 2-cycle
isolates a non-trivial part attached by 2 edges,
and iterate.

If this is not possible, we have a melon.
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The case δ = 0: Melonic graphs (Gurau, Rivasseau et al.)

Lemma. If G has degree 0 then it contains a non-root melon.

Melon=open subgraph
made of D-parallel edges.

Lemma. The removal of a melon does not change the degree.

but δ =
(
D
2

)
k+D−Fk → k − 1

F → F −
(
D
2

)
⇒ upon iterating, a tree-like structure

A melonic graph is a colored regular graphs that can be obtained by a
series of insertion of melons in

Thm[Gurau et al ] Colored regular graphs of degree 0 ⇔ melonic graphs.
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Inductive definition of rooted melonic graphs:

T = {rooted melonic graphs}

T ∗ = {rooted prime melonic graphs} T ∗(z) = zT (z)D

z marks a pair of black/white vertices.

Melonic graphs ”are” multitype Galton-Watson trees

where z0 = DD

(D+1)(D+1)
T (z) = a− b

p
1− z/z0 +O(1− z/z0)

The gf of rooted melonic graphs has a square root dominant singularity.

T (z) =
X
i≥0

(T ∗(z))i =
1

1− T ∗(z)

T (z) =
X
t∈T

z|t|

The number of melonic graphs of size k grows like cte · z−k0 k−3/2

Trees should be decomposed from the root, not from leaves...



The global picture

3-regular colored maps

Matrix integral expansions

D-regular colored graphs

D-tensor integral expansions

(colored triangulations) (D-dimensional pure colored complexes)

2g = k − F + 2 δ =
`D

2

´
k − F +D

k black vertices, F faces k black vertices, F ”faces”

g = 0 g > 0

Brownian
planar map

Higher genus
Brownian maps

δ = 0 δ > 0

Define a r.v. with uniform distribution on objects of size k, and
look for continuum limit of rescaled objects when k →∞

the CRT
(Gurau-Ryan’13)

?



The case δ > 0



Melons and the melon-free core

Plan: Study regular colored graphs via structural analysis of 2-edge-cuts
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Melons and the melon-free core

Plan: Study regular colored graphs via structural analysis of 2-edge-cuts
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Lemma. 2-edge-cuts form disjoint cut-cycles

Lemma.{e, e′} is 2-edge-cut iff any simple cycle visiting e visits e′.

where each cut-cycle is a maximal set of pairwise 2-cuts.

Decomposition along a cut-cycle:

e0

e1

e2

e3X0

X1
X2

X3 G3

G0

G1

G2

cl(G0)

cl(G1)

cl(G2)

cl(G3)



Melons and the melon-free core

Lemma. The union of two non-disjoint open melonic subgraphs of an
open regular colored graph is a melonic subgraph.

Proof: In view of the degree constraint, the boundary of an open melonic subgraph
consists of its two open edges.

Therefore the open edges of the two components belong to a same open cut-cycle of
the union, which is melonic by induction.



Melons and the melon-free core

Lemma. The union of two non-disjoint open melonic subgraphs of an
open regular colored graph is a melonic subgraph.

Corollary Maximal open melonic subgraphs are disjoint.



Melons and the melon-free core

The melon-free core is obtained
by replacing each maximal open
melonic subgraph by an edge.

Proposition. Core decomposition is a size preserving bijection between
— pairs (C; (M0, . . . ,M(D+1)p)) with C a rooted melon-free graphs

with (D + 1)p edges and M0, . . . ,M(D+1)p melonic graphs,
— and rooted regular colored graphs.
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with (D + 1)p edges, the gf of rooted regular
colored graphs with core C is

FC(z) = zpT (z)(D+1)p+1
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Proposition. For any rooted melon-free graph C
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Fδ(z) = T (z)
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Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between
— pairs (C; (M0, . . . ,M(D+1)p)) with C a rooted melon-free graphs

with (D + 1)p edges and M0, . . . ,M(D+1)p rooted melonic graphs,
— and rooted regular colored graphs.

Proposition. The degree of a graph equals
the degree of its core.

Problem. For each δ > 0, there exists an infinite number of melon-free graphs of
degree δ: the above expression is not very useful...

Proposition. For any rooted melon-free graph C
with (D + 1)p edges, the gf of rooted regular
colored graphs with core C is

FC(z) = zpT (z)(D+1)p+1

⇒ The gf of rooted regular colored graphs of degree δ can be written as

Fδ(z) = T (z)
X
C∈Cδ

(zT (z)(D+1))|C|.



Summary of the first two episodes

Colored regular graphs

⇔

Melon-free cores + Melons



The scheme

Problem. For each δ > 0, there exists an infinite number of
melon-free graphs of degree δ.

d1 d2 d2pd1 d2 d2p+1

Lemma. Maximal proper sub-chains are disjoints.

Some configurations can be repeated without increasing δ.
In particular, chains of (D − 1)-dipoles:

A chain is proper if it contains at least two (D − 1)-dipoles.

odd chain even chain(D − 1)-dipole



The scheme

Maximal chain replacement: chain-vertices
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But not all chains are equivalent for the cycle structure:
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parallel edges in chain have same labels
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Maximal chain replacement: chain-vertices
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ji
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But not all chains are equivalent for the cycle structure:

i

i j

j

i

i

i j 6= i

i j 6= i

i j

i

i

j i

i′

i′

k

k

parallel edges in chain have same labels

At most one type of cycle can traverse the whole chain:
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odd connected chains
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even connected chains



The scheme

Maximal chain replacement: chain-vertices

i

i j

j i j

ji

i j 6= i

i

c=

j 6= i

i j

i

i

j i

or or

The scheme of a melon-free graph: do all replacements.

melon-free graphs
without chain

b=, b 6= c 6=

By construction, 2 graphs with same scheme have the same degree.

⇒ this common degree is the degree of the scheme.



The scheme

Proposition. The scheme decomposition is a size and degree preserving
bijection between pairs (S; (C0, . . . , Cn)) where S is a scheme with n
chain-vertices and C0, . . . , Cn are chains, and melon-free graphs.



The scheme

Proposition. The scheme decomposition is a size and degree preserving
bijection between pairs (S; (C0, . . . , Cn)) where S is a scheme with n
chain-vertices and C0, . . . , Cn are chains, and melon-free graphs.

Proposition. Let S be a scheme with b6=, b=, c6=, c= chain-vertices of
each type. The gf of melon-free graphs with scheme S is

GS(u) =
upDb= (D − 1)bub=+c 6=+2b+2c

(1−Du)b(1− u2)b+c

b = b= + b6=
c = c= + c 6=



The scheme

Theorem. The number of schemes with degree δ is finite.

Lemma. The number of chain-vertices, (D − 1)-dipoles and, for D ≥ 4,
(D − 2)-dipoles in a scheme of degree δ is bounded by 5δ.

Lemma. For D = 3 the number of graphs with a fixed number of
2-dipoles is finite. For D ≥ 4, the number of graphs with fixed numbers
of (D − 1)-dipoles and (D − 2)-dipoles is finite.

Idea: The deletion of a dipole in a melon-free graph has in general the effect of
decreasing the genus or disconnecting the graph in parts that all have positive
genus. Actual proof is a bit technical.

Idea: For D = 3, ad-hoc argument.
For D ≥ 4, refine the counting argument of earlier slides.



Summary of the first three episodes

Colored regular graphs

⇔

Melon-free cores + Melons

⇔
Schemes + Chains + Melons



Exact formulas

Theorem. Let δ ≥ 1. The gf of rooted colored graphs of degree δ
w.r.t. black vertices is

Fδ(z) = T (z)
X
s∈Sδ

GS(zT (z)D+1) where Gs(u) =
upDb= (D − 1)bub=+c6=+2b+2c

(1−Du)b(1− u2)b+c

and T (z) = 1 + zT (z)D

Corollary (Kaminski, Oriti, Ryan). For δ = D − 2,

FD−2(z) =
(
D
2

) z2T (z)2D+3

1−z2T (z)2D+2
1

1−DzT (z)D+1

Explicit next term, for δ = D, is already a mess...



Asymptotic formulas and dominant terms

Theorem. Let δ ≥ 1. The gf of rooted colored graphs of degree δ w.r.t.
black vertices has the asymptotic development

f
c6=,c
p,b,D = D

3b/2−p−c 6=−1

2b/2(D−1)c(D+1)c+b/2

In this finite sum the dominant terms are the one that maximize b,
the number of broken chains in the scheme.

Fδ(z) =
X
s∈Sδ

f
c 6=,c
p,b,D(1− z/z0)−b/2 +O(1− z/z0)

where f
c 6=,c
p,b (D) is a simple rational fraction in D:



Asymptotic formulas and dominant terms

Proposition. The maximum number of broken chains in a scheme of
degree δ is the maximum of the following linear program:

bmax = max
“
2x+ 3y − 1 | (D − 2)x+Dy = δ; x, y ∈ N

”
Moreover the corresponding dominant schemes consists of:

— bmax broken chain-vertices (2x+ y − 1 spanning, 2y surplus).

— x connected chain-vertices each forming a loop at a (D − 2)-dipole,

— x+ y − 1 connecting (D − 2)-dipoles, and one root-melon.
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⇒ ”binary trees” with 2x− 1 chains, x+ 1 end-dipoles
(the root and x wheels), x− 1 inner dipoles .



Asymptotic formulas and dominant terms

Proposition. The maximum number of broken chains in a scheme of
degree δ is the maximum of the following linear program:

bmax = max
“
2x+ 3y − 1 | (D − 2)x+Dy = δ; x, y ∈ N

”
Moreover the corresponding dominant schemes consists of:

— bmax broken chain-vertices (2x+ y − 1 spanning, 2y surplus).

— x connected chain-vertices each forming a loop at a (D − 2)-dipole,

— x+ y − 1 connecting (D − 2)-dipoles, and one root-melon.

For 3 ≤ D ≤ 5. The maximum is obtained for y = 0: δ = (D − 2) · x.

⇒ ”binary trees” with 2x− 1 chains, x+ 1 end-dipoles
(the root and x wheels), x− 1 inner dipoles .

For D ≥ 7. The maximum is obtained for x = 0: δ = D · y
⇒ ”ternary graphs” with 3y − 1 chains, x inner dipoles,
one root melon.



Conclusions

= scheme ◦ chains ◦ melons

finite number
rational gf

algebraic gf
⇒ Exact counting

Fixed degree regular colored graphs
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Dominant schemes:

⇒ Exact counting

for 3 ≤ D ≤ 5: for δ = d · (D − 2), rooted binary trees with d leaves

for D ≥ 7: for δ = d ·D, rooted 3-regular graphs with 3d− 1 vertices

Fixed degree regular colored graphs

Similar results were obtained by Dartois, Gurau and Rivasseau
for a simpler model, they obtain the same rich asymptotic behavior.



Conclusions

Double scaling limits: compute
∑
δ N
−δdomin(Fδ(z))

Scaling limits: δ fixed, size n going to infinity

Melonic graphs rescaled by n−1/2 cv to CRT (Gurau-Ryan)

For δ ≥ 1, normalization is still n−1/2 and we expect something
similar to Addario-Berry, Broutin, Goldschmidt’s critical random
graphs (work in progress with Albenque)

Upon sending N →∞ with N(1− z/z0) = cte, limit exists for D ≤ 5

— for D ≥ 6, is it possible to say something about the divergent series?

— resum lower order terms and look for a triple scaling limit?

These computations should probabibly be done first for the simpler
model of Dartois, Gurau, Rivasseau.


	Regular colored graphs, why?


