Positive trees and equations

with one catalytic variable and one small unknown

Gilles Schaeffer

LIX, CNRS, Institut Polytechnique de Paris
based on joined work with Enrica Duchi, IRIF, Université de Paris

Pour les 40 ans de l'article Planar Maps are Well Labeled Trees
Robert Cori et Bernard Vauquelin, Canad. J. Math. 1981
11 octobre 2021, Bordeaux

Summary of the talk

Cori-Vauquelin's bijection, reloaded ${ }^{\text { }}$

A simple case study: Bicolored binary trees

Equations with one catalytic variable and one small unknown \& systematic algebraic decompositions

Examples and applications

Extrait 1: talk at Séminaire Hypathie 2001

distances in quadrangulations and local rules, applications to random maps

Extrait 2: talk in honor of Robert Cori, 2009
from Cori-Vauquelin's "éclatement" to the local rule

Extrait 3: talk at AofA 2014

local rules, Miermont's roundup rule and 'patrons'

These various reformulations aim at explaining why we get well labeled trees from maps
Currently the best explanation is given by the slice decompositions, as explained by Grégory.

Moreover the reformulation explain how one could deduce the local rules from the 'éclatement' not really how we could have found the éclatement without Bernard and Robert...

So, how could we have found the éclatement without Bernard and Robert... ?

Before that, Robert had obtained various encodings of rooted planar maps with words in differences of algebraic languages... even more mysterious to me...

Even before W.T. Tate had given recursive decompositions using catalytic parameters:

It is now well understood why Tutte's decomposition "easily" imply the final algebraic equations, thanks to Bousquet-Melou-Jehanne theorem (more later)

Could we have deduced the bijection with trees, or at least some direct algebraic decompositions from Tutte's equation?

A simple case study: Bicolored binary trees

Dyck-Łukasiewicz trees

$\mathcal{B}=\{$ Bicolored trees $\} \quad: \quad$ rooted binary trees with blue and red inner vertices.
$\mathcal{D}=\{$ Dyck-Łukasiewicz trees $\}$: one more red vertex than blue
and no more red vertices than blue in each strict subtree

(fun game if you are tired of listening: guess formula... you have 10 min before I give it)

Reformulation as edge-bicolored trees

$\mathcal{B}=\{$ blue $/$ red binary trees $\}$: planted binary tree with blue and red edges

$1,4,48,832,17408,408576,10362880,277954560,7777026048,224908017664$

A catalytic decomposition for positive bicolored trees

Let $F(u) \equiv F(u, t)=\sum_{T \in \mathcal{P}} u^{w(T)} t^{|T|}, \quad$ with $w(T)=\operatorname{blue}(T)-\operatorname{red}(T)+$
so that $f \equiv f(t)=\left[u^{0}\right] F(u)=\sum_{T \in \mathcal{D}} t^{|T|}$ is the gf of Dyck trees
and more generally $F_{m}=\left[u^{m}\right] F(u)$ is the gf of positive tree with root vertex weight m.

A catalytic decomposition for positive bicolored trees

Let $F(u) \equiv F(u, t)=\sum_{T \in \mathcal{P}} u^{w(T)} t^{|T|}, \quad$ with $w(T)=\operatorname{blue}(T)-\operatorname{red}(T)+$
so that $f \equiv f(t)=\left[u^{0}\right] F(u)=\sum_{T \in \mathcal{D}} t^{|T|}$ is the of of Deck trees
and more generally $F_{m}=\left[u^{m}\right] F(u)$ is the of of positive tree with root vertex weight m.

Then:

$F(u)=t X(u)^{2} \quad$ with $\quad X(u)=1+u \cdot F(u)+\frac{F(u)-f}{u}$

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system

$$
\begin{aligned}
& \frac{\partial}{\partial u} \text { applied to } \quad F(u)=t\left(1+u F(u)+\frac{F(u)-f}{u}\right)^{2} \\
& \text { yields } \quad \begin{aligned}
\frac{\partial}{\partial u} F(u) & =\frac{\partial}{\partial u} F(u) \cdot 2 t\left(u+\frac{1}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right) \\
& +2\left(F(u)-\frac{1}{u} \frac{F(u)-f}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right)
\end{aligned}
\end{aligned}
$$

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system
$\frac{\partial}{\partial u}$ applied to $F(u)=t\left(1+u F(u)+\frac{F(u)-f}{u}\right)^{2}$
yields

$$
\begin{aligned}
& \frac{\partial}{\partial u} F(u)=\frac{\partial}{\partial u} F(u) \cdot 2 t\left(u+\frac{1}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right) \\
&+2\left(F(u)-\frac{1}{u} \frac{F(u)-f}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right)
\end{aligned}
$$

Let $U \equiv U(t)$ be the unique fps s.t. $U=2 t\left(U^{2}+1\right)\left(1+U F(U)+\frac{F(U)-f}{U}\right)-$

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system
$\frac{\partial}{\partial u}$ applied to $F(u)=t\left(1+u F(u)+\frac{F(u)-f}{u}\right)^{2}$
yields

$$
\begin{gathered}
\frac{\partial}{\partial u} F(u)=\frac{\partial}{\partial u} F(u) \cdot 2 t\left(u+\frac{1}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right) \\
+2\left(F(u)-\frac{1}{u} \frac{F(u)-f}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right)
\end{gathered}
$$

Let $U \equiv U(t)$ be the unique fps s.t. $U=2 t\left(U^{2}+1\right)\left(1+U F(U)+\frac{F(U)-f}{U}\right)-$
U exists and has positive integer coeffs

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system

$$
\begin{aligned}
& \text { yields } \\
& \text { then the series } U, V=F(U) \text { and } W=\frac{F(U)-f}{U} \text { satisfy the system: } \\
& \left\{\begin{array}{l}
U=2 t\left(U^{2}+1\right)(1+U V+W) \\
0=U V-W \\
V=t(1+U V+W)^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial}{\partial u} F(u)=\frac{\partial}{\partial u} F(u) \cdot 2 t\left(u+\frac{1}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right) \\
+2\left(F(u)-\frac{1}{u} \frac{F(u)-f}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right)
\end{gathered}
$$

L Let $U \equiv U(t)$ be the unique fps s.t. $U=2 t\left(U^{2}+1\right)\left(1+U F(U)+\frac{F(U)-f}{U}\right)$ -
U exists and has positive integer coeffs

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\frac{\partial}{\partial u} \text { applied to } F(u)=t\left(1+u F(u)+\frac{F(u)-f}{u}\right)^{2} \\
\text { yields } \quad \frac{\partial}{\partial u} F(u)=\frac{\partial}{\partial u} F(u) \cdot 2 t\left(u+\frac{1}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right) \\
+2\left(F(u)-\frac{1}{u} \frac{F(u)-f}{u}\right)\left(1+u F(u)+\frac{F(u)-f}{u}\right)
\end{array}\right] \text { cancels }
\end{aligned}
$$

L Let $U \equiv U(t)$ be the unique fps s.t. $U=2 t\left(U^{2}+1\right)\left(1+U F(U)+\frac{F(U)-f}{U}\right)-$
U exists and has positive integer coeffs then the series $U, V=F(U)$ and $W=\frac{F(U)-f}{U}$ satisfy the system:

$$
\begin{aligned}
& \left\{\begin{array}{l}
U=2 t\left(U^{2}+1\right)(1+U V+W) \\
0=U V-W \\
V=t(1+U V+W)^{2} \\
\text { and } \quad f=V-U \cdot W, \quad \text { by definition of } U, V, W .
\end{array}\right. \\
&
\end{aligned}
$$

One variable / one function catalytic equations are easy

Bousquet-Mélou-Jehanne's trick gives an algebraic system

and $\quad f=V-U \cdot W, \quad$ by definition of U, V, W.

Equations for Dyck trees are particularly simple!

The system can be further simplified
$\left\{\begin{array}{l}U=2 t\left(U^{2}+1\right)(1+2 U V) \\ V=t(1+2 U V)^{2}\end{array}\right.$

Equations for Dyck trees are particularly simple!

The system can be further simplified

$$
\begin{aligned}
\left\{\begin{aligned}
U=2 t\left(U^{2}+1\right)(1+2 U V) \\
V=t(1+2 U V)^{2}
\end{aligned}\right. & \Rightarrow\left\{\begin{aligned}
U & =2 t U(1+2 U V) \cdot U+2 t(1+2 U V) \\
V & =2 t U(1+2 U V) \cdot V+t(1+2 U V)
\end{aligned}\right. \\
& \Rightarrow\left\{\begin{aligned}
U & =\frac{2 t(1+2 U V)}{1-2 t U(1+2 U V)} \Rightarrow U=2 V \\
V & =\frac{t(1+2 U V)}{1-2 t U(1+2 U V)} \Rightarrow \quad
\end{aligned}\right.
\end{aligned}
$$

Equations for Dyck trees are particularly simple!

The system can be further simplified

$$
\begin{aligned}
\left\{\begin{aligned}
U=2 t\left(U^{2}+1\right)(1+2 U V) \\
V=t(1+2 U V)^{2}
\end{aligned}\right. & \Rightarrow\left\{\begin{aligned}
U & =2 t U(1+2 U V) \cdot U+2 t(1+2 U V) \\
V & =2 t U(1+2 U V) \cdot V+t(1+2 U V)
\end{aligned}\right. \\
& \Rightarrow\left\{\begin{aligned}
U & =\frac{2 t(1+2 U V)}{1-2 t U(1+2 U V)} \Rightarrow U=2 V \\
V & =\frac{t(1+2 U V)}{1-2 t U(1+2 U V)} \Rightarrow
\end{aligned}\right.
\end{aligned}
$$

Theorem: The gf $f=f(t)$ of Dyck trees with n vertices satisfies:

$$
f=V-4 V^{3} \quad \text { where } \quad V=t\left(1+4 V^{2}\right)^{2}
$$

Equations for Dyck trees are particularly simple!

Theorem: The gf $f=f(t)$ of Dyck trees with n vertices satisfies:

$$
f=V-4 V^{3} \quad \text { where } \quad V=t\left(1+4 V^{2}\right)^{2}
$$

Equations for Dyck trees are particularly simple!

Theorem: The gf $f=f(t)$ of Dyck trees with n vertices satisfies:

$$
f=V-4 V^{3} \quad \text { where } \quad V=t\left(1+4 V^{2}\right)^{2}
$$

using Lagrange inversion theorem:

$$
\left[t^{n}\right] V=\frac{1}{n}\left[x^{n-1}\right]\left(1+4 x^{2}\right)^{2 n}=\left\{\begin{array}{cl}
\frac{4^{m}}{2 m+1}\binom{4 m+2}{m} & \text { if } n=2 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

Equations for Dyck trees are particularly simple!

Theorem: The gf $f=f(t)$ of Dyck trees with n vertices satisfies:

$$
f=V-4 V^{3} \quad \text { where } \quad V=t\left(1+4 V^{2}\right)^{2}
$$

using Lagrange inversion theorem:

$$
\left[t^{n}\right] V=\frac{1}{n}\left[x^{n-1}\right]\left(1+4 x^{2}\right)^{2 n}=\left\{\begin{array}{cl}
\frac{4^{m}}{2 m+1}\binom{4 m+2}{m} & \text { if } n=2 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\left[t^{n}\right] f=\frac{1}{n}\left[x^{n-1}\right]\left(x-4 x^{3}\right)^{\prime}\left(1+4 x^{2}\right)^{2 n}=\left\{\begin{array}{cl}
\frac{4^{m}}{(m+1)(2 m+1)}\binom{4 m+2}{m} & \text { if } n=2 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

Marking and identification of V

Theorem: The gf $f=f(t)$ of Dyck trees with n vertices satisfies:

$$
f=V-4 V^{3} \quad \text { where } \quad V=t\left(1+4 V^{2}\right)^{2}
$$

using Lagrange inversion theorem:

$$
\left[t^{n}\right] V=\frac{1}{n}\left[x^{n-1}\right]\left(1+4 x^{2}\right)^{2 n}=\left\{\begin{array}{cl}
\frac{4^{m}}{2 m+1}\binom{4 m+2}{m} & \text { if } n=2 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\left[t^{n}\right] f=\frac{1}{n}\left[x^{n-1}\right]\left(x-4 x^{3}\right)^{\prime}\left(1+4 x^{2}\right)^{2 n}=\left\{\begin{array}{cl}
\frac{4^{m}}{(m+1)(2 m+1)}\binom{4 m+2}{m} & \text { if } n=2 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

Observe that

$$
\left[t^{2 m+1}\right] V=(m+1)\left[t^{2 m+1}\right] f=\left[t^{2 m+1}\right] f^{\bullet}
$$

$\Rightarrow V$ is the gf of (rooted) Dyck trees with a marked red edge

Last passage decomposition and identification of U
The series V is the of of (rooted) Deck trees with a marked red edge
Consider a Łukasiewicz (or last passage) factorization of the weight sequence along the branch toward the root.

Now recall we defined $V=F(U)=\sum_{m \geq 0} U^{m}\left[u^{m}\right] F(u)$
so that

$$
U=T_{-1}^{0} \stackrel{\Delta}{\sigma^{\circ}} 0_{0}^{\prime} 0_{-x}^{\Delta}
$$

\Rightarrow our series U is the of of Deck trees with a marked leaf!

The core of a balanced tree and identification of W
The series V is the of of (rooted) Deck trees with a marked red edge The series U is the of of Deck trees with a marked leaf

$\Rightarrow W$ is the of of balanced positive trees with a marked blue edge in their internally positive core.

Decomposing marked Dyck-Łukasiewicz trees

Let's now restart from the combinatorial interpretations: let

- V denote the gf of (rooted) Dyck trees with a marked red edge

- U denote the gf of Dyck trees with a marked leaf

- W denote the $g f$ of balanced positive trees with a marked red edge in their internally positive core. W is also the gf of balanced positive trees with a marked blue edge in their internally positive core.

We would like a direct quaternary decomposition of these marked rooted trees to reprove directly that $V=t\left(1+4 V^{2}\right)^{2}$.

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=3 \cdots m^{\prime} \quad U=3-0 . \because 0_{0}^{\prime} \quad W=3
$$

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=\exists \cdots 0^{\prime} \quad U=\exists-0 \cdots 0^{\frac{-}{0}}
$$

Claim: There is a 2 -to- 1 correspondance between Dyck trees with a
 marked leaf and Dyck trees with a marked red edge with the same size

Immediate since a Dyck tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=\boldsymbol{\exists} \cdots \omega_{0}^{\prime} \quad U=\exists_{-1}-0 \cdots 0^{\frac{1}{0}}
$$

Claim: There is a 2 -to- 1 correspondance between Dyck trees with a marked leaf and Dyck trees with a marked red edge with the same size

$$
\Rightarrow U=2 \mathrm{~V}
$$

Immediate since a Dyck tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=\exists \cdots 0^{\prime} \quad U=\exists-0 \cdots 0^{\frac{-}{0}}
$$

Claim: There is a 2 -to- 1 correspondance between Dyck trees with a marked leaf and Dyck trees with a marked red edge with the same size

$$
\Rightarrow U=2 \mathrm{~V}
$$

Immediate since a Dyck tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

$$
W=\Delta=10
$$

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=3 \cdots \cdots O_{0}^{\prime} \quad U=3-0 \cdot \because 0_{0}^{\prime}
$$

Claim: There is a 2 -to- 1 correspondence between Deck trees with a marked leaf and Deck trees with a marked red edge with the same size

$$
\Rightarrow U=2 \mathrm{~V}
$$

Immediate since a Dock tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

$$
W=\Delta=10 \underbrace{\Delta}_{\Delta}=10 \cdots 0_{0}^{\Delta} \frac{\Delta}{1} \cdots \frac{\Delta m}{\Delta} \cdots 0_{m+1}^{\Delta}
$$

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=\boldsymbol{\exists} \cdots \omega_{0}^{\prime} \quad U=\Xi_{-1}-0 \cdots 0_{0}^{\prime}
$$

Claim: There is a 2-to- 1 correspondance between Deck trees with a marked leaf and Dyck trees with a marked red edge with the same size

$$
\Rightarrow U=2 \mathrm{~V}
$$

Immediate since a Deck tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

Combinatorial derivation of $U=2 V$ and $W=U V$

$$
V=3 \cdots \cdots O_{0}^{\prime} \quad U=3-0 \cdot \because 0_{0}^{\prime}
$$

Claim: There is a 2 -to- 1 correspondence between Deck trees with a marked leaf and Deck trees with a marked red edge with the same size

$$
\Rightarrow U=2 \mathrm{~V}
$$

Immediate since a Deck tree with $2 n+1$ vertices has $n+1$ red edges and $2 n+2$ leaves.

$$
\Rightarrow W=U V
$$

Finally, a quaternary decomposition of marked Deck trees
Theorem: The class of marked Dick trees admit the following decomposition:

$$
\begin{aligned}
& =\overbrace{-1}^{1-O \cdot O_{0-1}^{\Delta}} \\
& \text { where }
\end{aligned}
$$

Finally, a quaternary decomposition of marked Dyck trees
Theorem: The class of marked Deck trees admit the following decomposition:

Finally, a quaternary decomposition of marked Deck trees
Theorem: The class of marked Deck trees admit the following decomposition:

Finally, a quaternary decomposition of marked Deck trees
Theorem: The class of marked Deck trees admit the following decomposition:

Finally, a quaternary decomposition of marked Deck trees
Theorem: The class of marked Deck trees admit the following decomposition:

Generic equations with 1 catalytic variable and 1 small function.

The general case
$Q(v, w, u)=\sum_{i, j, k \geq 0} q_{i j k} v^{i} w^{j} u^{k}$ a formal power series
$F(u) \equiv F(u, a, b, t)$ the unique fps^{*} solution of

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

The general case
$Q(v, w, u)=\sum_{i, j, k \geq 0} q_{i j k} v^{i} w^{j} u^{k}$ a formal power series
$F(u) \equiv F(u, a, b, t)$ the unique fps^{*} solution of

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

Similar results hold for

$$
F(u)=Q\left(F(u), \frac{b}{u}(F(u)-f), a u, \epsilon\right)
$$

(assume $Q(v, v, 1)$ non linear and $Q(1,1, u)$ non constant)

The general case: Bousquet-Mélou-Jehanne's trick

$\frac{\partial}{\partial u}$ applied to $F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)$

$$
F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

Let $U \equiv U(t)$ be the unique fps s.t. $U=t U Q_{v}^{\prime}\left(F(U), b \frac{F(U)-f}{U}, a U\right)+t b Q_{w}^{\prime}\left(F(U), b \frac{F(U)-f}{U}, a U\right)$
Then $U, V=F(U), W=\frac{F(U)-f}{U}$ and f satisfy the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
0 & =-t \frac{b}{U} W Q_{w}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

The general case: Bousquet-Mélou-Jehanne's trick

$\frac{\partial}{\partial u}$ applied to $F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)$

$$
F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

Let $U \equiv U(t)$ be the unique fps s.t. $U=t U Q_{v}^{\prime}\left(F(U), b \frac{F(U)-f}{U}, a U\right)+t b Q_{w}^{\prime}\left(F(U), b \frac{F(U)-f}{U}, a U\right)$
Then $U, V=F(U), W=\frac{F(U)-f}{U}$ and f satisfy the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
0 & =-t \frac{b}{U} W Q_{w}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Used by Chapuy in his M1 to derive singular behavior of f when Q has positive coefficients and is linear in w : Drmota-Lalley-Woods give square root singular behavior for U, V, W and delicate computations show that there is a cancellation in $f=V-U W$ so that f systematically has $(1-t / \rho)^{3 / 2}$ as singular behavior for proper polynomial Q

The general case: Drmota, Noy, Yu's trick*

$U, V=F(U), W=\frac{F(U)-f}{U}$ and f satisfy the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
0 & =-t \frac{b}{U} W Q_{w}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Use Line 1 to replace Q_{w}^{\prime} by Q_{v}^{\prime} in Line 2:
Then $U, V=F(U), W=\frac{F(U)-f}{U}$ and f are the unique fps satisfying the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

The general case: Drmota, Noy, Yu's trick*

$U, V=F(U), W=\frac{F(U)-f}{U}$ and f satisfy the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
0 & =-t \frac{b}{U} W Q_{w}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Use Line 1 to replace Q_{w}^{\prime} by Q_{v}^{\prime} in Line 2:
Then $U, V=F(U), W=\frac{F(U)-f}{U}$ and f are the unique fps satisfying the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Used by DNY to generalize Chapuy's result on the singular behavior of f to arbitrary polynomial positive Q : $f=V-U W$ still requires delicate 2 nd order computations to check square root cancellation.

The general case: Drmota, Noy, Yu's trick*

$U, V=F(U), W=\frac{F(U)-f}{U}$ and f satisfy the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
0 & =-t \frac{b}{U} W Q_{w}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Use Line 1 to replace Q_{w}^{\prime} by Q_{v}^{\prime} in Line 2:
Then $U, V=F(U), W=\frac{F(U)-f}{U}$ and f are the unique fps satisfying the system

$$
\left\{\begin{aligned}
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
V & =t Q(V, b W, a U) \\
f & =V-U W
\end{aligned}\right.
$$

Used by DNY to generalize Chapuy's result on the singular behavior of f to arbitrary polynomial positive Q : $f=V-U W$ still requires delicate 2 nd order computations to check square root cancellation.

The system for U, V, W is \mathbb{N}-algebraic if Q has \mathbb{N} coeffs but a priori no clear combinatorial relation to F and f.

The general case: singular behavior via marking

$$
\begin{gathered}
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right) \\
\frac{\partial}{\partial u}: \quad F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
\end{gathered}
$$

The general case: singular behavior via marking

$$
\begin{gathered}
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right) \\
\frac{\partial}{\partial u}: \underbrace{\underbrace{\prime}_{u}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canaled } b_{y} \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
\end{gathered}
$$

The general case: singular behavior via marking

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canced by } \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

$$
\frac{\partial}{\partial t}: \quad F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots)
$$

The general case: singular behavior via marking

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canced by } \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

$$
\begin{aligned}
\frac{\partial}{\partial t}: \underbrace{F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\mu=U} & -t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots) \\
& \Rightarrow t f_{t}^{\prime}=\frac{U}{b} \frac{Q(\ldots)}{Q_{w}^{\prime}(\ldots)}
\end{aligned}
$$

The general case: singular behavior via marking

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {cancaled by } \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

$$
\begin{array}{cc}
\frac{\partial}{\partial t}: \underbrace{F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right.}_{\mu=U}-t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots) \\
& \Rightarrow t f_{t}^{\prime}=\frac{U}{b} \frac{Q(\ldots)}{Q_{w}^{\prime}(\ldots)}
\end{array}
$$

The general case: singular behavior via marking

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canaled by } \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

$$
\begin{aligned}
\frac{\partial}{\partial t}: \underbrace{F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right.}_{0}- & t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots) \\
& \Rightarrow t f_{t}^{\prime}=\frac{U}{b} \frac{Q(\ldots)}{Q_{w}^{\prime}(\ldots)} \\
& \Rightarrow t f_{t}^{\prime}=\frac{t Q(\ldots)}{1-t Q_{v}^{\prime}(\ldots)}=\frac{V}{1-t Q_{v}^{\prime}(V, b W, a U)}
\end{aligned}
$$

Immediately implies without computations that $t f_{f}^{\prime}$ has generic square root singularity, and thus that f_{t} has $(1-t / \rho)^{3 / 2}$ singularity.

The general case: further useful observations!

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canceled } b_{y} \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)$
$\frac{\partial}{\partial t}: \quad F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots)$
$\frac{\partial}{\partial b}: \quad F_{b}^{\prime}(u)=F_{b}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)+t\left(\frac{F(u)-f}{u}-\frac{b}{u} f_{b}^{\prime}\right) Q_{w}^{\prime}(\ldots)$

The general case: further useful observations!

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\frac{\partial}{\partial u}: \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canced by } \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots)
$$

$$
\frac{\partial}{\partial t}: \quad F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots)
$$

$$
\begin{aligned}
& \frac{\partial}{\partial b}: \underbrace{F_{b}^{\prime}(u)=F_{b}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{b}+t\left(\frac{F(u)-f}{u}-\frac{b}{u} f_{b}^{\prime}\right) Q_{w}^{\prime}(\ldots) \\
& \mu=U \quad \Rightarrow W U=b f_{b}^{\prime}=a f_{a}^{\prime} \quad \text { and } \quad V=U W+f=b(b f)_{b}^{\prime}
\end{aligned}
$$

The general case: further useful observations!

$$
F(u)=t Q\left(F(u), \frac{b}{u}(F(u)-f), a u\right)
$$

$$
\begin{aligned}
& \frac{\partial}{\partial u}: \\
& \underbrace{F_{u}^{\prime}(u)=F_{u}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)}_{\text {canaled } b_{y} \mu=U}-t \frac{b}{u} \frac{F(u)-f}{u} Q_{w}^{\prime}(\ldots)+t a Q_{u}^{\prime}(\ldots) \\
& \frac{\partial}{\partial t}: \\
& \frac{\partial}{\partial b}: \\
& \\
& F_{t}^{\prime}(u)=F_{t}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)-t \frac{b}{u} f_{t}^{\prime} Q_{w}^{\prime}(\ldots)+Q(\ldots) \\
& \underbrace{\prime}_{b}(u)=F_{b}^{\prime}(u) \cdot t\left(Q_{v}^{\prime}(\ldots)+\frac{b}{u} Q_{w}^{\prime}(\ldots)\right)
\end{aligned}+t\left(\frac{F(u)-f}{u}-\frac{b}{u} f_{b}^{\prime}\right) Q_{w}^{\prime}(\ldots) .
$$

The general case: combinatorial interpretation of V, U and W

$$
\left\{\begin{aligned}
V & =t Q(V, b W, a U)=b f_{b}^{\prime} \\
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right.
$$

$$
F_{m}=m=k+\left(m_{1}+\cdots+m_{i}\right)+\left(\left(p_{1}-1\right)+\cdots+\left(p_{i}-1\right)\right.
$$

The general case: combinatorial interpretation of V, U and W

$$
\left\{\begin{aligned}
V & =t Q(V, b W, a U)=b f^{\prime} \\
U & =t U Q_{v}^{\prime}(V, a W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & \left.=t W Q_{v}^{\prime} V, b W, a U\right)+t a Q_{u}^{\prime}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right.
$$

$V=\equiv\left|\cdots \rightarrow O_{-}^{\prime}\right|=$ of of Dyck Q-rees with a marked ned edge.

The general case: combinatorial interpretation of V, U and W

$$
m=k+\left(m_{1}+\ldots, m_{i}\right)+\left(p_{i}-1\right)+\cdots+\left(p_{i}-1\right)
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
V & =t Q(V, b W, a U)=b f_{b}^{\prime} \\
U & =t U Q_{v}^{\prime}(v, a W, a U)+b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right. \\
& F_{m}=(m) \\
& V=\equiv\left|\cdots \rightarrow O_{-}^{\prime}\right|=\text { af of Duck } Q \text { - es with a manned ned edge. }
\end{aligned}
$$

The general case: combinatorial interpretation of V, U and W

$$
\begin{aligned}
& \left\{\begin{aligned}
V & =t Q(V, b W, a U)=b f_{b}^{\prime} \\
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & \left.=t W Q_{v}^{\prime} V, b W, a U\right)+t a Q_{u}^{u}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right. \\
& F_{m}= \\
& V=\equiv\left|\cdots \rightarrow O_{-}^{\prime}\right|=\text { of of Duck Q-rees with a manned ned edge. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { but } V=\sum_{m \geqslant 0} U^{m} \cdot F_{m} \Rightarrow U=+-0.0 O_{-1} \text { : unused ned stor }
\end{aligned}
$$

The general case: combinatorial interpretation of V, U and W

$$
\left\{\begin{array}{rl}
V & =t Q(V, b W, a U)=b f_{b}^{\prime} \\
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & \left.=t W Q_{v}^{\prime}, V, a U\right)+t a Q_{u}^{\prime}(V, b W, a U)
\end{array} \quad F_{m}=t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V\right. \text { 竍 }
$$

$V=\equiv\left|\cdots \rightarrow O^{\prime}\right|=$ of of Dyck Q-rues with a marked ned edge.
bur $V=\sum_{m \geqslant 0} U^{m} \cdot F_{m} \Rightarrow U=+_{-1} 00.0 O_{0}$: unused ned slot

$=$ \&f of balanced Q-Tees with marked red/bue in core

The general case: combinatorial interpretation of V, U and W
Now we restart from the combinatorial description:

$$
Q(v, w, u)=\text { mode } g \cdot f:
$$

$V=\equiv_{-1}\left|\cdots \rightarrow O_{-}^{\prime}\right|$ DIck Q-rrees with a marked ned edge.
$U=+0.0$ O. Dick Q-rues with an unused ned slot

Balanced Q-rees with a marked rededege/bhe dot in the positive acre

The general case: combinatorial derivation of the algebraic equations

$$
\left\{\begin{aligned}
V & =t Q(V, b W, a U) \\
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right.
$$

The general case: combinatorial derivation of the algebraic equations

$$
\left\{\begin{aligned}
V & =t Q(V, b W, a U) \\
U & =t U Q_{v}^{\prime}(V, b W, a U)+t b Q_{w}^{\prime}(V, b W, a U) \\
W & =t W Q_{v}^{\prime}(V, b W, a U)+t a Q_{u}^{\prime}(V, b W, a U) \\
\left(t f_{t}^{\prime}\right) & =t\left(t f_{t}^{\prime}\right) Q_{v}^{\prime}(V, b W, a U)+V
\end{aligned}\right.
$$

The general case: combinatorial derivation of the algebraic equations

$$
\begin{aligned}
& m=k+(m,+\cdots m)+(m-d x+\cdots+(a-1)
\end{aligned}
$$

The general case: combinatorial derivation of the algebraic equations

$$
\begin{aligned}
& m=k+\left(m_{1}+\cdots m_{2}\right)+\left(m_{1}-1\right)+\cdots+\left(r_{-1}-1\right)
\end{aligned}
$$

The general case: combinatorial derivation of the algebraic equation

The general case: combinatorial derivation of the algebraic equation

$$
m=k+\left(m_{1}+\ldots+m_{i}\right)+\left(\left(p_{1}-1\right)+\ldots+\left(p_{j}-1\right)\right.
$$

The general case: combinatorial derivation of the algebraic equation

The general case: combinatorial derivation of the algebraic equation

Application of the general result

Random sampling:

\Rightarrow the system is an irreducible algebraic decomposition in the terminology of
[Drmota-Lalley-Woods] hence amenable to Sportiello's Bolzman sampling algorithm (linearity depends on the specific decomposition operations)

Special cases: this yields algebraic decompositions for

- Linxiao Chen's fully parked trees (2021)
- Duchi et al.'s fighting fish and variants (2016)
- Various families of permutations (West's two-stack sortable) (1990)
- Tutte's map decomposition (60's)

Works as well with exponential series: Dyck Cayley trees.
However in most of the cases combinatorial intuition is still needed to simplify the resulting decompositions, and express it in terms of the original structures.

Thanks you !

and long life to bijective combinatorics!

