Combinatorial entropy and succinct data structures

Gilles Schaeffer

based in part on joined works with
L. Castelli Aleardi, O. Devillers, E. Fusy and D. Poulalhon

Analysis of Algorithms, 2009

Onrs

Before we start... Geometric data ; meshes

Among data structures for geometric data, I pick meshes...

Surface recontruction from sampling

Geographic information systems

Surface modelling

Before we start... \exists very large geometric data

St. Matthew (Stanford's Digital Michelangelo Project, 2000)
186 millions vertices
6 Giga bytes (for storing on disk)
minutes for loading the model from disk

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons 32 Giga bytes (without compression)
No existing algorithm nor data structure for dealing with the entire model

Before we start... What we are aiming at

Mesh compression

Transmission
disk storage

Geometric data structures

Before we start... What we are aiming at
Mesh compression

Transmission
disk storage

Geometric data structures

MERGE INTO: Compact representations of geometric data structures

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

1110100010110100

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges

Starter: the encoding of plane trees

ordered tree with n edges
balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
Compare to the standard explicit represention:
$3 n$ pointers ≈ 96 bits
$3 n \log n$ in theory

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
enumeration: $\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}}$

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
enumeration: $\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}}$

$$
\log _{2}\left\|\mathcal{B}_{n}\right\|=2 n+O(\lg n) \mathrm{bpv}
$$

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
enumeration: $\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}}$

$$
\log _{2}\left\|\mathcal{B}_{n}\right\|=2 n+O(\lg n) \mathrm{bpv}
$$

This is an optimal encoding!
it matches asymptotically the information-theory lower bound

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
enumeration: $\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}} \quad$ exponential growth rate

$$
\log _{2}\left\|\mathcal{B}_{n}\right\|=2 n+O(\lg n) \mathrm{bpv}
$$

This is an optimal encoding!
it matches asymptotically the information-theory lower bound

Starter: the encoding of plane trees

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges
enumeration: $\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}} \quad$ exponential growth rate

$$
\log _{2}\left\|\mathcal{B}_{n}\right\|=2 n+O(\lg n) \mathrm{bpv}
$$

This is an optimal encoding!
it matches asymptotically the information-theory lower bound

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
1110100010110100
$$

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

1110100010110100

Navigation in the tree: handlers

Starter: linear space data structures for plane trees?
ordered tree with n edges
balanced parenthesis word of length $2 n$

1110100010110100

Navigation in the tree: handlers move the handler to first son move the handler to next brother move the handler to father

Starter: linear space data structures for plane trees?
ordered tree with n edges

balanced parenthesis word of length $2 n$

1110100010110100

Navigation in the tree: handlers move the handler to first son move the handler to next brother move the handler to father

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

Navigation in the tree: handlers handler = index of opening bracket move the handler to first son move the handler to next brother move the handler to father

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

Navigation in the tree: handlers handler = index of opening bracket move the handler to first son move the handler to next brother move the handler to father

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
11101000100110100
$$

Navigation in the tree: handlers move the handler to first son handler $=$ index of opening bracket index \rightarrow index +1 move the handler to next brother move the handler to father

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
11101000100110100
$$

Navigation in the tree: handlers move the handler to first son move the handler to next brother index \rightarrow matching(index) +1 move the handler to father

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
11101000100110100
$$

Navigation in the tree: handlers move the handler to first son move the handler to next brother move the handler to father
handler $=$ index of opening bracket index \rightarrow index +1 index \rightarrow matching(index) +1 index \rightarrow outer(index)

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees?

ordered tree with n edges

balanced parenthesis word of length $2 n$

$$
11101000100110100
$$

Navigation in the tree: handlers move the handler to first son move the handler to next brother move the handler to father
handler $=$ index of opening bracket index \rightarrow index +1 index \rightarrow matching(index) +1 index \rightarrow outer(index)

Constant time with standard (pointer) representation up to linear time! but the pointer based representation uses $\Theta(n \log n)$ bits

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$-1 pioneers (outermost between blocks) \Rightarrow space $m \log n$

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$-1 pioneers (outermost between blocks) \Rightarrow space $m \log n$

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ - 1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(3): 3,4,5, interblock, $r_{B}(3)=2, T(2)=9,9,8,7,6$.
matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$-1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(3): 3,4,5, interblock, $r_{B}(3)=2, T(2)=9,9,8,7,6$.
matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$-1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(3): 3,4,5, interblock, $r_{B}(3)=2, T(2)=9,9,8,7,6$.
matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m-1$ pioneers (outermost between blocks) \Rightarrow space $m \log n$
Taking $\varepsilon=\Theta(\log n)$: space $m \log n=O(n)$, queries in $O(\log n)$

Starter: linear space data structures for plane trees (Jacobson, Focs89)

Decompose into m small blocks of size ε

matching(3): 3,4,5, interblock, $r_{B}(3)=2, T(2)=9,9,8,7,6$.
matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m-1$ pioneers (outermost between blocks) \Rightarrow space $m \log n$
Taking $\varepsilon=\Theta(\log n)$: space $m \log n=O(n)$, queries in $O(\log n)$
succinct data structures: want space $2 n+o(n)$ and queries in $O(1)$

Combinatorial entropy and succinct data structures

\mathcal{A}_{n} : structures of size n, with $\log _{2}\left|\mathcal{A}_{n}\right|=\alpha n+O(n)$.
but large explicit representation (using $O(n)$ pointers of size $\log n$)
Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures

Combinatorial entropy and succinct data structures

\mathcal{A}_{n} : structures of size n, with $\log _{2}\left|\mathcal{A}_{n}\right|=\alpha n+O(n)$.
but large explicit representation (using $O(n)$ pointers of size $\log n$)
Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures
Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)

Combinatorial entropy and succinct data structures

\mathcal{A}_{n} : structures of size n, with $\log _{2}\left|\mathcal{A}_{n}\right|=\alpha n+O(n)$.
but large explicit representation (using $O(n)$ pointers of size $\log n$)
Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures
Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)

Aim 3 (dynamical s.d.s.): idem + update of the structure update the structure in logtime (amortized if not worst case)

Combinatorial entropy and succinct data structures

\mathcal{A}_{n} : structures of size n, with $\log _{2}\left|\mathcal{A}_{n}\right|=\alpha n+O(n)$.
but large explicit representation (using $O(n)$ pointers of size $\log n$)
Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures

Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)

Aim 3 (dynamical s.d.s.): idem + update of the structure update the structure in logtime (amortized if not worst case)

Aim 0: understand and deal with entropy reduction...

Entropy reduction and parametrized classes

ordered trees with n vertices

entropy 2bpv

Entropy reduction and parametrized classes

ordered trees with n vertices

$$
\text { entropy } 2 \mathrm{bpv}
$$

degree 2 and 0 only: complete binary trees
($2 n+1$ vertices: n nodes, $n+1$ leaves)
1bpv

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves)

$$
\text { entropy } 2 \mathrm{bpv}
$$

1bpv
$\frac{1}{3} \log _{2} \frac{27}{2} \approx 1.25 \mathrm{bpv}$

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves)
entropy 2 bpv

1bpv
$\frac{1}{3} \log _{2} \frac{27}{2} \approx 1.25 \mathrm{bpv}$
more generally, n_{i} vertices of degree i

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves)
entropy 2bpv

1bpv
$\frac{1}{3} \log _{2} \frac{27}{2} \approx 1.25 \mathrm{bpv}$
more generally, n_{i} vertices of degree i
Old Thm: $\left|\mathcal{T}\left(n_{0}, \ldots, n_{k}\right)\right|=\frac{1}{n}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}$

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves) more generally, n_{i} vertices of degree i
Old Thm: $\left|\mathcal{T}\left(n_{0}, \ldots, n_{k}\right)\right|=\frac{1}{n}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}$

$$
\text { if } n=\sum n_{i}=1+\sum i n_{i}
$$

entropy 2 bpv

1bpv $\frac{1}{3} \log _{2} \frac{27}{2} \approx 1.25 \mathrm{bpv}$

$$
\log _{2}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}^{\frac{1}{n}}
$$

$$
\begin{aligned}
& \log _{2} \prod_{i} \alpha_{i}^{-\alpha_{i}} \\
& \quad \text { if } n_{i}=\alpha_{i} n
\end{aligned}
$$

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves)
entropy 2bpv

1bpv
more generally, n_{i} vertices of degree i
Old Thm: $\left|\mathcal{T}\left(n_{0}, \ldots, n_{k}\right)\right|=\frac{1}{n}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}$

$$
\log _{2}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}^{\frac{1}{n}}
$$

$$
\text { if } n=\sum n_{i}=1+\sum i n_{i}
$$

$$
\log _{2} \prod_{i} \alpha_{i}^{-\alpha_{i}}
$$

encode tree by degree list in prefix order

$$
\text { if } n_{i}=\alpha_{i} n
$$

observe that: entropy(trees)=entropy of text compress optimally with arithmetic coder

Entropy reduction and parametrized classes

ordered trees with n vertices
degree 2 and 0 only: complete binary trees ($2 n+1$ vertices: n nodes, $n+1$ leaves)
degree 3 and 0 only: complete ternary ($3 n+1$ vertices: n nodes, $2 n+1$ leaves)

$$
\frac{1}{3} \log _{2} \frac{27}{2} \approx 1.25 \mathrm{bpv}
$$

more generally, n_{i} vertices of degree i
Old Thm: $\left|\mathcal{T}\left(n_{0}, \ldots, n_{k}\right)\right|=\frac{1}{n}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}} \quad \log _{2}\binom{n}{n_{0}, n_{1}, \ldots, n_{k}}^{\frac{1}{n}}$

$$
\text { if } n=\sum n_{i}=1+\sum i n_{i}
$$

$$
\log _{2} \prod_{i} \alpha_{i}^{-\alpha_{i}}
$$

encode tree by degree list in prefix order

$$
\text { if } n_{i}=\alpha_{i} n
$$

observe that: entropy(trees)=entropy of text compress optimally with arithmetic coder
Question: what is the maximum entropy, for which degrees?

Entropy quizz

ordered trees	4	yes	yes	yes

Entropy quizz

ordered trees	4	yes	yes	yes

given degree distribution

Entropy quizz

ordered trees	4	yes	yes	yes

given degree distribution $\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$

Entropy quizz

ordered trees	4	yes	yes	yes

given degree distribution $\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution $\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	(soda'07)	$?$		

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	$\underset{\substack{\text { (soda'07) }}}{\text { yes }}$	$?$	

bipartite:
p black, q white

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	yes	(soda'07)	$?$

bipartite:
p black, q white

$$
4 \text { if } p=\frac{n}{2}+O(\sqrt{n})
$$

Entropy quizz

ordered trees	4	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	yes	
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result	$?$
p black, q white			

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	$\underset{\text { (soda'07) }}{ }$	$?$	
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
p black, q white	otherwise $\binom{p+q}{p}^{\frac{2}{n}}$			

Entropy quizz

$\left.\begin{array}{lclll}\hline \text { ordered trees } & 4 & \text { yes } & \text { yes } & \text { yes } \\ \hline \text { given degree distribution } & \sum \alpha_{i} \log _{2} 1 / \alpha_{i} & \text { yes } & \text { yes } & \text { (soda'07) }\end{array}\right]$

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	yes	$?$	
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
p black, q white	otherwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	$?$

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	$\underset{\text { (soda'07) }}{ }$	$?$	
bipartite: p black, q white	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
	otherwise $\binom{p+q}{p}$	yes	probably	$?$
height h	known	$?$		

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	$\underset{\text { (soda'07) }}{ }$	$?$	
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
p black, q white	otherwise $\binom{p+q}{p}$	yes	probably	$?$
height h	known	$?$		

Entropy quizz

ordered trees	4 yes	yes yes
given degree distribution $\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes		$\underset{(\text { soda'07 })}{y^{2}} \quad ?$
bipartite: p black, q white otherwis	$\begin{aligned} & 4 \text { if } p=\frac{n}{2}+O(\sqrt{n}) \\ & \text { vise }\binom{p+q}{p}^{\frac{2}{n}} \quad \text { yes } \end{aligned}$	use basic result probably ?
height h	known ?	
positive natural embedding	mbedding 4 use ba	result

Entropy quizz

ordered trees	4 yes	yes yes
given degree distribution $\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes		$\underset{(\text { soda'07 })}{y^{2}} \quad ?$
bipartite: 4 if $p=\frac{n}{2}+O(\sqrt{n})$ p black, q white otherwise $\binom{p+q}{p}^{\frac{2}{n}}$ yes		use basic result probably ?
height h	known ?	
positive natural embedding 4 use basic result		
all leaves at same depth		

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$	yes	$\underset{\text { (soda'07) }}{ }$	$?$
bipartite: p black, q white	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
	otherwise $\binom{p+q}{p}$	yes	probably	$?$
height h	known	$?$		
positive natural embedding	4	use basic result		
all leaves at same depth	known?	$?$		

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$	yes	$\underset{\text { (soda'07) }}{ }$	$?$
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
p black, q white	otherwise $\binom{p+q}{p}$	yes	probably	$?$
height h	known	$?$		
positive natural embedding	4	use basic result		
all leaves at same depth	known?	$?$		

ordinary decomposable structures
(multitype ordered trees)

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$	yes	$\underset{\text { (soda'07) }}{ }$	$?$
bipartite:	4 if $p=\frac{n}{2}+O(\sqrt{n})$	use basic result		
p black, q white	otherwise $\binom{p+q}{p}$	yes	probably	$?$
height h	known	$?$		
positive natural embedding	4	use basic result		
all leaves at same depth	known?	$?$		

ordinary decomposable structures
(multitype ordered trees)
computable
? use frequecies ?
link with multivariable Lagrange inversion?

Entropy quizz

ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_{i} \log _{2} 1 / \alpha_{i}$ yes	$\underset{(\text { soda'07 })}{\text { yes }}$	$?$	

bipartite:
p black, q white

$$
4 \text { if } p=\frac{n}{2}+O(\sqrt{n}) \quad \text { use basic result }
$$

$$
\text { otherwise }\binom{p+q}{p}^{\frac{2}{n}} \quad \text { yes } \quad \text { probably ? }
$$

height h	known	?
positive natural embedding	4	use basic result
all leaves at same depth	known?	$?$

ordinary decomposable structures
(multitype ordered trees)
computable
? use frequecies ?
link with multivariable Lagrange inversion?
entropy measures diversity of local structure

Geometric information vs Combinatorial information

Geometry

vertex
coordinates
between 30 et 96 bits/vertex

Connectivity": the underlying triangulation

adjacency relations between triangles, vertices
vertex 1 reference to a triangle triangle 3 references to vertices 3 references to triangles
$13 n \log n$ or $416 n$ bits

Geometric information vs Combinatorial information

Geometry

vertex
coordinates
between 30 et 96 bits/vertex

Connectivity": the underlying triangulation

adjacency relations between triangles, vertices
vertex 1 reference to a triangle triangle 3 references to vertices 3 references to triangles
$13 n \log n$ or $416 n$ bits

Geometric information vs Combinatorial information

Geometry

vertex coordinates
between 30 et 96 bits/vertex

Connectivity": the underlying triangulation

adjacency relations between triangles, vertices
vertex 1 reference to a triangle triangle 3 references to vertices 3 references to triangles
$13 n \log n$ or $416 n$ bits

$$
\#\{\text { triangulations }\}=\frac{2(4 n+1)!}{(3 n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2 \pi}} n^{-5 / 2}\left(\frac{256}{27}\right)^{n}
$$

$$
\Rightarrow \quad \text { entropy }=\log _{2} \frac{256}{27} \approx 3.24 \mathrm{bpv} .
$$

Geometric information vs Combinatorial information

Geometry

vertex coordinates
between 30 et 96 bits/vertex

Connectivity": the underlying triangulation

adjacency relations between triangles, vertices
vertex 1 reference to a triangle triangle 3 references to vertices 3 references to triangles
$13 n \log n$ or $416 n$ bits
$\#\{$ triangulations $\}=\frac{2(4 n+1)!}{(3 n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2 \pi}} n^{-5 / 2}\left(\frac{256}{27}\right)^{n}$
$\Rightarrow \quad$ entropy $=\log _{2} \frac{256}{27} \approx 3.24 \mathrm{bpv}$. Room for improvement!

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

$C C C R C C R C C R E C R R E L C R E$

1101000110000010010000011001000000000

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

$C C C R C C R C C R E C R R E L C R E$

Leftmost tree in minimal canonical ordering Poulalhon, S. ('03)
? but efficient
$3.24 n$

1101000110000010010000011001000000000

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

$C C C R C C R C C R E C R R E L C R E$

Leftmost tree in minimal
canonical ordering
Poulalhon, S. ('03) "Optimal"

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)
The (non-optimal) degree encoder gives much better codes for low entropy triangulations!

Patch of triangular grids $\Rightarrow 6,6,6,6,6,6,5,6,6,6,6,5,6,6,6,7 \ldots$ Alliez Desbrun (Eurographics '01): could a degree encoder be optimal?

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)
The (non-optimal) degree encoder gives much better codes for low entropy triangulations!

Patch of triangular grids $\Rightarrow 6,6,6,6,6,6,5,6,6,6,6,5,6,6,6,7 \ldots$ Alliez Desbrun (Eurographics '01): could a degree encoder be optimal? Gotsman ('06): No. Under constraints $\sum p_{1}=1$ and $\sum i p_{i}=6$ on the proportion of vertices of degree p_{i}, the max entropy of degree sequence is 3.236 bpv <3.245 bpv!

1101000110000010010000011001000000000

Mesh compression

Computer graphics

Graph encoding

Graph theory / combinatorics

Succinct representations

Algorithms and DS

Edgebreaker Rossignac ('99) Lope et al. ('03) Lewiner et al. ('04) $\ldots \ldots$ (many many others)	Turan ('84) Keeler Westbrook ('95)	Jacobson (Focs89) Munro and Raman (Focs97) Chuang et al. (Icalp98)		
Valence (degree)	Chiang et al. (Soda01)			
Touma and Gotsman ('98) Alliez and Debrun Isenburg Khodakovsky (Wads05, CCCG05, SoCG06)				
Poulalhon S.(Icalp03)				
Fusy et al. (Soda05)	Barbay et al. (Isaac07)			
Castelli Aleardi, Fusy, Lewiner				
(SoCG08)			\quad	Nakano et al. (2008)
:---				

A more generic approach?

First idea (following Luca Castelli Aleardi)
Decomposition of quadrangulations...by the french artist Léon Gischia

2nd idea (following Luca Castelli Aleardi)

Literary digression (La leçon, Eugène lonesco, 1951)

During a private lesson, a very young student, preparing herself for the total doctorate, talks about arithmetics with her teacher
(the young student cannot understand how to subtract integers)
Teacher Listen to me, If you cannot deeply understand these principles, these arithmetic archetypes, you will never perform correctly a "polytechnicien" job... you will never obtain a teaching position at "Ecole Polytechnique". For example, what is 3.755 .918 .261 multiplied by 5.162 .303 .508 ?
Student (very quickly) the result is $193891900145 . .$.
Teacher (very astonished) yes ... the product is really... But, how have you computed it, if you do not know the principles of arithmetic reasoning?
Student: it is simple: I have learned by heart all possible results of all possible different multiplications.

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2

Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3

Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2
- global pointers of size $\log n$

Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2
- global pointers of size $\log n$

Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

1	\cdots
2	\cdots
3	\square
	\vdots

Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

Dictionnary space is $o(n)$ if C small enough.

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2
- global pointers of size $\log n$ space $O\left(\frac{n}{\log ^{2} n} \cdot \log n\right)=o(n)$
Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions
- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

1	\cdots
2	\cdots
3	\square
	\vdots

Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

Dictionnary space is $o(n)$ if C small enough.

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2
- global pointers of size $\log n$ space $O\left(\frac{n}{\log ^{2} n} \cdot \log n\right)=o(n)$
Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions
- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

1	\cdots
2	\cdots
3	\square
	\vdots

space $O\left(\frac{n}{\log n} \cdot \log \log n\right)=o(n)$
Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

Dictionnary space is $o(n)$ if C small enough.

A hierarchical approach, with a dictionary at bottom. Dominant term?

The dominant term is given by the sum of references to the dictionary references on objects of \mathcal{T}_{k} have size $\log _{2} \mathcal{T}_{k} \sim 2.175 k$ if $k \rightarrow \infty$

2.175 bpt is entropy of triangulations with a boundary

A hierarchical approach, with a dictionary at bottom.

Dominant term?

The dominant term is given by the sum of references to the dictionary references on objects of \mathcal{T}_{k} have size $\log _{2} \mathcal{T}_{k} \sim 2.175 k$ if $k \rightarrow \infty$

A hierarchical approach, with a dictionary at bottom.

Dominant term?

The dominant term is given by the sum of references to the dictionary references on objects of \mathcal{T}_{k} have size $\log _{2} \mathcal{T}_{k} \sim 2.175 k$ if $k \rightarrow \infty$

we should take all k s.t. $\frac{1}{12} \log n<k<\frac{1}{2} \log n$

$$
\sum_{j} 2.175 k_{j}=2.175 m \text { bits }
$$

2.175 bpt is entropy of triangulations with a boundary
larger than previous

$$
\frac{1}{2} \cdot 3.24 \mathrm{bpt}
$$

A hierarchical approach, with a dictionary at bottom.

Dominant term?

The dominant term is given by the sum of references to the dictionary references on objects of \mathcal{T}_{k} have size $\log _{2} \mathcal{T}_{k} \sim 2.175 k$ if $k \rightarrow \infty$

we should take all k s.t. $\frac{1}{12} \log n<k<\frac{1}{2} \log n$ Adaptative to "reasonable" entropy reduction
$\sum_{j} 2.175 k_{j}=2.175 m$ bits
2.175 bpt is entropy of triangulations with a boundary larger than previous $\frac{1}{2} \cdot 3.24 \mathrm{bpt}$

A word of conclusion

- A relatively generic method to get adaptative s.d.s:
triangulations with boundary, trees, polyhedral maps...
but complex hierarchical structure, unpractical subleading terms...
\Rightarrow develop " elegant" succinct data structures:
a non asymptotic $2 n+O(\log n)$ bits sds for plane trees with n vertices?
- Some examples of nice optimal encodings
but not so adaptative and no query support
\Rightarrow find an optimal adaptative encoder for triangulations with given degrees
\Rightarrow find other parameters of trees or maps that allow for simple adaptative compression or sds (depth?)

