Combinatorial entropy and succinct data structures

Gilles Schaeffer

based in part on joined works with L. Castelli Aleardi, O. Devillers, E. Fusy and D. Poulalhon

Analysis of Algorithms, 2009

Before we start... Geometric data ; meshes Among data structures for geometric data, I pick meshes...

Surface recontruction from sampling

Geographic information systems

Surface modelling

Before we start... \exists very large geometric data

St. Matthew (Stanford's Digital Michelangelo Project, 2000)

186 millions vertices6 Giga bytes (for storing on disk)minutes for loading the model from disk

David statue (Stanford's Digital Michelangelo Project, 2000) 2 billions polygons 32 Giga bytes (without compression) No existing algorithm nor data structure for dealing with the entire model

Before we start... What we are aiming at

Geometric data structures

Before we start... What we are aiming at

MERGE INTO: Compact representations of geometric data structures

 $\Rightarrow 2n$ bits for encoding an ordered tree with n edges

Compare to the standard explicit represention:

 $3n \text{ pointers} \approx 96 \text{ bits}$ $3n \log n \text{ in theory}$

 $\log_2 \|\mathcal{B}_n\| = 2n + O(\lg n) \text{ bpv}$

This is an optimal encoding!

it matches asymptotically the information-theory lower bound

Navigation in the tree: handlers

Navigation in the tree: handlers

Navigation in the tree: handlers handler = index of opening bracket move the handler to first son move the handler to next brother move the handler to father Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Navigation in the tree: handlers handler = index of opening bracket move the handler to first son move the handler to next brother move the handler to father Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Navigation in the tree: handlers h move the handler to first son move the handler to next brother move the handler to father

handler = index of opening bracket

 $\mathsf{index} \to \mathsf{index}{+}1$

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

Navigation in the tree: handlers h move the handler to first son move the handler to next brother move the handler to father

handler = index of opening bracket

index \rightarrow index+1

index \rightarrow matching(index)+1

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Navigation in the tree: handlers move the handler to first son move the handler to next brother index \rightarrow outer(index) move the handler to father

handler = index of opening bracket index \rightarrow index+1 index \rightarrow matching(index)+1

Constant time with standard (pointer) representation but the pointer based representation uses $\Theta(n \log n)$ bits

Navigation in the tree: handlershandler = index of opening bracketmove the handler to first sonindex \rightarrow index+1move the handler to next brotherindex \rightarrow matching(index)+1move the handler to fatherindex \rightarrow outer(index)Constant time with standard (pointer) representationup to linear time!but the pointer based representation uses $\Theta(n \log n)$ bits

Decompose into m small blocks of size ε

 b_4 b_5 b_1 b_2 b_3)())((())(((()))())()) 2n bits

Decompose into m small blocks of size ε

matching(index): go slowly inside block

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$

Decompose into m small blocks of size ε

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m-1$ pioneers (outermost between blocks) \Rightarrow space $m \log n$

Decompose into m small blocks of size ε

(1, 22)(2, 9)(3, 6)(10, 19)(15, 16)(20, 21)

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m-1$ pioneers (outermost between blocks) \Rightarrow space $m \log n$

Decompose into m small blocks of size ε

(1, 22)(2, 9)(3, 6)(10, 19)(15, 16)(20, 21)

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ -1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

matching(3): 3,4,5, interblock, $r_B(3) = 2$, T(2) = 9, 9,8,7,6.

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ -1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

matching(3): 3,4,5, interblock, $r_B(3) = 2$, T(2) = 9, 9,8,7,6.

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ -1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ the explicit representation must allow navigation...

matching(3): 3,4,5, interblock, $r_B(3) = 2$, T(2) = 9, 9,8,7,6.

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ -1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ Taking $\varepsilon = \Theta(\log n)$: space $m \log n = O(n)$, queries in $O(\log n)$

matching(3): 3,4,5, interblock, $r_B(3) = 2$, T(2) = 9, 9,8,7,6.

matching(index): go slowly inside block if border reached: interblock encode interblock explicitely: up to n edges \Rightarrow space $n \log n$ encode $\leq m$ -1 pioneers (outermost between blocks) \Rightarrow space $m \log n$ Taking $\varepsilon = \Theta(\log n)$: space $m \log n = O(n)$, queries in $O(\log n)$ succinct data structures: want space 2n + o(n) and queries in O(1)

- \mathcal{A}_n : structures of size n, with $\log_2 |\mathcal{A}_n| = \alpha n + O(n)$.
- but large explicit representation (using O(n) pointers of size $\log n$)
- Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures

 \mathcal{A}_n : structures of size n, with $\log_2 |\mathcal{A}_n| = \alpha n + O(n)$.

but large explicit representation (using O(n) pointers of size $\log n$)

- Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures
- Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)

- \mathcal{A}_n : structures of size n, with $\log_2 |\mathcal{A}_n| = \alpha n + O(n)$.
- but large explicit representation (using O(n) pointers of size $\log n$)
- Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures
- Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)
- Aim 3 (dynamical s.d.s.): idem + update of the structure update the structure in logtime (amortized if not worst case)

- \mathcal{A}_n : structures of size n, with $\log_2 |\mathcal{A}_n| = \alpha n + O(n)$.
- but large explicit representation (using O(n) pointers of size $\log n$)
- Aim 1 (compression): find an encoding with α bits per size unit with linear time encoding/decoding procedures
- Aim 2 (succinct data struc): idem + efficient query support answer natural queries in constant time (logtime if not constant)
- Aim 3 (dynamical s.d.s.): idem + update of the structure update the structure in logtime (amortized if not worst case)

Aim 0: understand and deal with entropy reduction...

ordered trees with n vertices

entropy 2bpv

ordered trees with n vertices

entropy 2bpv

degree 2 and 0 only: complete binary trees (2n+1 vertices: n nodes, n+1 leaves) 1bpv

ordered trees with n vertices

entropy 2bpv

degree 2 and 0 only: complete binary trees (2n + 1 vertices: n nodes, n + 1 leaves)

degree 3 and 0 only: complete ternary (3n + 1 vertices: n nodes, 2n + 1 leaves)

 $\frac{1}{3}\log_2\frac{27}{2}\approx 1.25$ bpv

1bpv

ordered trees with n vertices

degree 2 and 0 only: complete binary trees (2n+1 vertices: n nodes, n+1 leaves)

degree 3 and 0 only: complete ternary (3n + 1 vertices: n nodes, 2n + 1 leaves)

more generally, n_i vertices of degree i

 $\frac{1}{3}\log_2\frac{27}{2} \approx 1.25 \text{ bpv}$

1bpv

entropy 2bpv

ordered trees with n vertices

degree 2 and 0 only: complete binary trees (2n+1 vertices: n nodes, n+1 leaves)

degree 3 and 0 only: complete ternary (3n + 1 vertices: n nodes, 2n + 1 leaves)

more generally, n_i vertices of degree i

Old Thm:
$$|\mathcal{T}(n_0, ..., n_k)| = \frac{1}{n} {n \choose n_0, n_1, ..., n_k}$$

1bpv

entropy 2bpv

 $\frac{1}{3}\log_2\frac{27}{2}\approx 1.25$ bpv

ordered trees with n vertices entropy 2bpv degree 2 and 0 only: complete binary trees 1bpv (2n+1 vertices: n nodes, n+1 leaves)degree 3 and 0 only: complete ternary $\frac{1}{2}\log_2\frac{27}{2} \approx 1.25 \text{ bpv}$ (3n+1 vertices: n nodes, 2n+1 leaves)more generally, n_i vertices of degree i $\log_2 {\binom{n}{n_0, n_1, \dots, n_k}}^{\frac{1}{n}}$ **Old Thm**: $|\mathcal{T}(n_0, ..., n_k)| = \frac{1}{n} {n \choose n_0, n_1, ..., n_k}$ if $n = \sum n_i = 1 + \sum i n_i$ $\log_2 \prod_i \alpha_i^{-\alpha_i}$ if $n_i = \alpha_i n$

ordered trees with n vertices entropy 2bpv degree 2 and 0 only: complete binary trees 1bpv (2n+1 vertices: n nodes, n+1 leaves)degree 3 and 0 only: complete ternary $\frac{1}{2}\log_2\frac{27}{2} \approx 1.25 \text{ bpv}$ (3n+1 vertices: n nodes, 2n+1 leaves)more generally, n_i vertices of degree i $\log_2 {\binom{n}{n_0, n_1, \dots, n_k}}^{\frac{1}{n}}$ **Old Thm**: $|\mathcal{T}(n_0, ..., n_k)| = \frac{1}{n} \binom{n}{n_0, n_1, ..., n_k}$ if $n = \sum n_i = 1 + \sum i n_i$ $\log_2 \prod_i \alpha_i^{-\alpha_i}$ if $n_i = \alpha_i n$ encode tree by degree list in prefix order

observe that: entropy(trees)=entropy of text
 compress optimally with arithmetic coder

ordered trees with n vertices entropy 2bpv degree 2 and 0 only: complete binary trees 1bpv (2n+1 vertices: n nodes, n+1 leaves)degree 3 and 0 only: complete ternary $\frac{1}{2}\log_2\frac{27}{2} \approx 1.25 \text{ bpv}$ (3n+1 vertices: n nodes, 2n+1 leaves)more generally, n_i vertices of degree i $\log_2 \left(\begin{array}{c} n \\ n_0, n_1, \dots, n_k \end{array} \right)^{\frac{1}{n}}$ **Old Thm**: $|\mathcal{T}(n_0, ..., n_k)| = \frac{1}{n} \binom{n}{n_0, n_1, ..., n_k}$ if $n = \sum n_i = 1 + \sum i n_i$ $\log_2 \prod_i \alpha_i^{-\alpha_i}$ if $n_i = \alpha_i n$ encode tree by degree list in prefix order

observe that: entropy(trees)=entropy of text compress optimally with arithmetic coder **Question:** what is the maximum entropy, for which degrees?

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes

	entropy	compression	succinct d.s.	dynamic	
ordered trees	4	yes	yes	yes	
					-

given degree distribution

	entropy	compression	succinct d.s.	dynamic	
ordered trees	4	yes	yes	yes	
given degree distribution					

	entropy	compression	succinct d.s.	dynamic	
ordered trees	4	yes	yes	yes	
given degree distribution	$\sum \alpha_i \log_2 1$	$1/lpha_i$ yes			

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1/\epsilon$	$lpha_i$ yes	yes (soda'07	?) ?

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_i \log_2 1$	$/lpha_i$ yes	yes (soda'0	?
bipartite: p black, q white				

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_i \log_2 1$	$1/lpha_i$ yes	yes (soda'07	?) ?
bipartite: p black, q white	4 if $p = \frac{n}{2}$	$+O(\sqrt{n})$		

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum \alpha_i \log_2 1$	$/lpha_i$ yes	yes (soda'07	?) ?
bipartite: p black, q white	4 if $p = \frac{n}{2}$	$+O(\sqrt{n})$	use basic	result

	entropy	compression	succinct d.s.	dynamic	
ordered trees	4	yes	yes	yes	
given degree distributio	on $\sum \alpha_i \log_2 1$	$/lpha_i$ yes	yes (soda'07	?) ?	
bipartite: p black, q white	4 if $p = \frac{n}{2}$		use basic		
p black, q white otherwise $\binom{p+q}{p}^{\frac{2}{n}}$					

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribut	ion $\sum \alpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	7) ?
bipartite: p black, q white	4 if $p = \frac{n}{2} +$	$-O(\sqrt{n})$	use basic	
	therwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribut	tion $\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?) ?)
bipartite: p black, q white	4 if $p = \frac{n}{2}$ +	$-O(\sqrt{n})$	use basic	result
	otherwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h				

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	n $\sum lpha_i \log_2 1/\epsilon$	$lpha_i$ yes	yes (soda'07	?) ?
bipartite: p black, q white	4 if $p = \frac{n}{2} +$		use basic	
oth	erwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distributio	on $\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?) ?
bipartite: p black, q white	4 if $p = \frac{n}{2} +$		use basic	result
oth	nerwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
nocitivo natural ombo	dding			

positive natural embedding

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?) ?
bipartite:	4 if $p = \frac{n}{2} + $	$-O(\sqrt{n})$	use basic	result
p black, q white other	rwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
positive natural embedding 4 use basic result				

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?) ?)
bipartite: p black, q white	4 if $p = \frac{n}{2} +$		use basic	result
othe	erwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
positive natural embedding 4 use basic result				
all leaves at same dept	h			

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	7) ?
bipartite:	4 if $p = \frac{n}{2}$ +	$-O(\sqrt{n})$	use basic	result
p black, q white othe	rwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
positive natural embedding 4 use basic result				
all leaves at same dept	h known?	?		

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1_i$	$lpha_i$ yes	yes (soda'07	?) ?
bipartite:	4 if $p = \frac{n}{2}$	$+O(\sqrt{n})$	use basic	result
p black, q white other	rwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
positive natural embedding 4 use basic result				
all leaves at same depth	ו known?	?		
ordinary decomposable str (multitype ordered trees)	ructures			

	entropy	compression	succinct d.s.	dynamic
ordered trees	4	yes	yes	yes
given degree distribution	$\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?) ?
bipartite:	4 if $p = \frac{n}{2}$ +	$-O(\sqrt{n})$	use basic	result
p black, q white other	rwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?
height h	known	?		
positive natural embedding 4 use basic result				
all leaves at same depth	א known?	?		
ordinary decomposable structures				
(multitype ordered trees)	computable	e ? use	frequecies	?

link with multivariable Lagrange inversion?

	entropy	compression	succinct d.s.	dynamic	
ordered trees	4	yes	yes	yes	
given degree distribution	$\sum lpha_i \log_2 1/$	$lpha_i$ yes	yes (soda'07	?	
bipartite: p black, q white	4 if $p = \frac{n}{2} + \frac{n}{2}$	$-O(\sqrt{n})$	use basic	result	
other	rwise $\binom{p+q}{p}^{\frac{2}{n}}$	yes	probably	?	
height h	known	?			
positive natural embedding 4 use basic result					
all leaves at same depth	n known?	?			
ordinary decomposable structures					
(multitype ordered trees)	computable	e ? use	frequecies	?	
link with multivariable Lagrange inversion?					
entropy measures diversity of local structure					

Geometry

vertex coordinates

between 30 et 96 bits/vertex

"Connectivity": the underlying triangulation

adjacency relations between triangles, vertices

vertex 1 reference to a triangle

triangle 3 references to vertices 3 references to triangles

 $13n\log n$ or 416n bits

Geometry

vertex coordinates

between 30 et 96 bits/vertex

"Connectivity": the underlying triangulation

adjacency relations between triangles, vertices

vertex 1 reference to a triangle

triangle 3 references to vertices 3 references to triangles

 $13n\log n$ or 416n bits

 $\#\{\text{triangulations}\} = \frac{2(4n+1)!}{(3n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2\pi}} n^{-5/2} \left(\frac{256}{27}\right)^n$

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

CCCRCCRCCRECRRELCRE

 $V_5V_5V_6V_5V_4V_5V_8V_5V_5V_4S_4V_3V_4$

110100011000001001000001100100000000

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

CCCRCCRCCRECRRELCRE

 $V_5V_5V_6V_5V_4V_5V_8V_5V_5V_4S_4V_3V_4$

Leftmost tree in minimal canonical ordering Poulalhon, S. ('03) 3.24n 3.24n

110100011000001001000001100100000000

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05)

CCCRCCRCCRECRRELCRE

 $V_5 V_5 V_6 V_5 V_4 V_5 V_8 V_5 V_5 V_4 S_4 V_3 V_4$

Leftmost tree in minimal canonical ordering Poulalhon, S. ('03) 3.24n 3.24n

110100011000001001000001100100000000

Triangulation encodings: trees decompositions
Common visual framework (Isenburg Snoeyink'05)The (non-optimal) degree encoder gives much better codes
for low entropy triangulations!
Patch of triangular grids \Rightarrow 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7...Alliez Desbrun (Eurographics '01): could a degree encoder be optimal?

Triangulation encodings: trees decompositions Common visual framework (Isenburg Snoeyink'05) The (non-optimal) degree encoder gives much better codes for low entropy triangulations! Patch of triangular grids \Rightarrow 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7... Alliez Desbrun (Eurographics '01): could a degree encoder be optimal? Gotsman ('06): No. Under constraints $\sum p_1 = 1$ and $\sum i p_i = 6$ on the proportion of vertices of degree p_i , the max entropy of degree sequence is 3.236 bpv < 3.245 bpv!

Mesh compression

Graph encoding

Succinct representations

Computer graphics Algorithms and DS Graph theory / combinatorics Jacobson (Focs89) Turan ('84) Edgebreaker Rossignac ('99) Munro and Raman (Focs97) Keeler Westbrook ('95) Lope et al. ('03) He et al. ('99) Lewiner et al. ('04) Chuang et al. (Icalp98) Chiang et al. (Soda01) (many many others) Castelli Aleardi, Devillers and S. Valence (degree) (Wads05, CCCG05, SoCG06) Touma and Gotsman ('98) Poulalhon S.(Icalp03) Alliez and Debrun Isenburg Barbay et al. (Isaac07) **Khodakovsky** Nakano et al. (2008) (many others) Fusy et al. (Soda05) Castelli Aleardi, Fusy, Lewiner Cut - border machine(SoCG08)Blandford Blelloch (Soda03) Gumhold et al. (Siggraph '98) Gumhold (Soda '05)

A more generic approach?

First idea (following Luca Castelli Aleardi) Decomposition of quadrangulations...by the french artist Léon Gischia (1903-1991)

2nd idea (following Luca Castelli Aleardi) Literary digression (La leçon, Eugène Ionesco, 1951)

During a private lesson, a very young student, preparing herself for the total doctorate, talks about arithmetics with her teacher

(the young student cannot understand how to subtract integers)

Teacher Listen to me, If you cannot deeply understand these principles, these arithmetic archetypes, you will never perform correctly a "polytechnicien" job... you will never obtain a teaching position at "Ecole Polytechnique". For example, what is 3.755.918.261 multiplied by 5.162.303.508?

Student (very quickly) the result is 193891900145...

Teacher (very astonished) yes ... the product is really... But, how have you computed it, if you do not know the principles of arithmetic reasoning? **Student**: it is simple: I have learned by heart all possible results of all possible different multiplications.

Level 1:

• $\Theta(\frac{n}{\log^2 n})$ regions of size $\Theta(\log^2 n)$, represented by pointers to level 2

Level 2:
in each of the n/log² n regions
Θ(log n) regions of size C log n, represented by pointers to level 3

Level 3: exhaustive catalog of all different regions of size $i < C \log n$:

• complete explicit representation.

Level 1:

- $\Theta(\frac{n}{\log^2 n})$ regions of size $\Theta(\log^2 n)$, represented by pointers to level 2
- ullet global pointers of size $\log n$ $_$

Level 2:

in each of the $\frac{n}{\log^2 n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

Level 3: exhaustive catalog of all different regions of size $i < C \log n$:

• complete explicit representation.

Level 1:

- $\Theta(\frac{n}{\log^2 n})$ regions of size $\Theta(\log^2 n)$, represented by pointers to level 2
- ullet global pointers of size $\log n$ 🚄

Level 2:

in each of the $\frac{n}{\log^2 n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

Level 3: exhaustive catalog of all different regions of size $i < C \log n$:

• complete explicit representation.

Dictionnary space is o(n) if C small enough.

Level 1:

- $\Theta(\frac{n}{\log^2 n})$ regions of size $\Theta(\log^2 n)$, represented by pointers to level 2
- global pointers of size $\log n$ space $O(\frac{n}{\log^2 n} \cdot \log n) = o(n)$

Level 2:

in each of the $\frac{n}{\log^2 n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$

Level 3: exhaustive catalog of all different regions of size $i < C \log n$:

• complete explicit representation.

Dictionnary space is o(n) if C small enough.

 $\begin{array}{c}
1 \\
2 \\
3 \\
\vdots
\end{array}$

Level 1:

- $\Theta(\frac{n}{\log^2 n})$ regions of size $\Theta(\log^2 n)$, represented by pointers to level 2
- global pointers of size $\log n$ space $O(\frac{n}{\log^2 n} \cdot \log n) = o(n)$

Level 2:

in each of the $\frac{n}{\log^2 n}$ regions

- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n$ space $O(\frac{n}{\log n} \cdot \log \log n) = o(n)$

Level 3: exhaustive catalog of all different regions of size $i < C \log n$:

• complete explicit representation.

Dictionnary space is o(n) if C small enough.

A word of conclusion

• A relatively generic method to get adaptative s.d.s:

triangulations with boundary, trees, polyhedral maps...

but complex hierarchical structure, unpractical subleading terms...

⇒ develop "elegant" succinct data structures:

a non asymptotic $2n + O(\log n)$ bits sds for plane trees with n vertices?

• Some examples of nice optimal encodings

but not so adaptative and no query support

 \Rightarrow find an optimal adaptative encoder for triangulations with given degrees \Rightarrow find other parameters of trees or maps that allow for simple adaptative compression or sds (depth?)