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Abstract-Digital data on the Web are nowadays regarded 

significant sources of information for marketing and user 

profiling, etc. However, digital data are risky sources of privacy 

violation. To address privacy breaches, we can use differential 

privacy, which has become the de facto standard for privacy 

protection in statistical databases. However, problems need to be 

solved, including those related to noise parameter configuration, 

even before differential privacy can be applied into the real world. 

In this study, we introduce a linkage attack to identify a user with 

different nicknames for each subservice on a hue online portal 

service. In addition, we propose a configuration technique for the 

upper bound of noise parameter ε to prevent linkage attack. We 

demonstrate the linkage attack with experiments by using real-

world online portal service data. Finally, we validate the proposed 

configuration technique. 

Keywords—differential privacy, linkage attack, 

anonymization, online portal service 

I. INTRODUCTION 

Many individuals currently use Web services and 
voluntarily leave their digital footprints. These personal 
footprints are collected by companies for use in marketing or 
user profiling. However, the sharing of personal information 
may cause unintended privacy violation. To prevent privacy 
breach, k-anonymity and differential privacy have been 
proposed but anonymization techniques are limited because 
they cannot prevent background knowledge attack and 
differential privacy has difficulty in establishing an 
appropriate level of noise parameter ε value. 

In this study, we present a new user identification attack 
that can occur in huge online portal sites, such as Naver and 
Daum, which provide content in various categories, namely, 
news, movie reviews, blogs, etc. In addition, we propose an 
appropriate configuration technique for the upper bound of the 
noise parameter to prevent linkage attacks by applying 
differential privacy. The proposed technique guarantees the 
same level of privacy protection as k-anonymization when 
differential privacy is used. 

II. RELATED WORK 

Differential privacy is a concept that implies a certain level 
of privacy protection when noise is inserted into the data. The 
definition of differential privacy is as follows: 

Definition 1. Differential privacy [1] 

A randomized function M provides ε-differential privacy 
if, for all datasets D1 and D2 that differ by one element, all S 

⊆ Range(K), i.e., 

Pr[M(D1)∈S] ≤ exp(ε)∙Pr[M(D2)∈S]. 

Since the presentation of the concept of differential 
privacy, there has been an argument over the proper value of 
the noise parameter ε because no criteria can be used to 
determine the ε value. 

To solve the problem, many studies have been conducted 
to set the appropriate level of ε [2-6]. The work of [2] showed 
that the privacy protection level set by an arbitrary ε can be 
infringed by inferences on previously disclosed information; 
subsequently, a method for setting ε is proposed on the basis 
of posterior belief. The factors that need to be considered 
when setting ε are summarized by [3]. Studies that combine k-
anonymization or t-closeness with differential privacy have 
also been conducted. [4] showed that ε-differential privacy is 

satisfied if t-closeness is satisfied when t  =  𝑚𝑎𝑥𝐸
|𝐸|

𝑁
(1 +

𝑁−|𝐸|−1

|𝐸|
exp(𝜀)). Thus, t-closeness and differential privacy can 

be combined with one another. 

 

III. LINKAGE ATTACK OF HUGE ONLINE PORTAL 

SERVICE 

A. Character of huge online portal service 

As previously discussed, huge online portal services, such 
as Naver [7] or Daum [8], in Korea can set a unique ID for 
each user upon registration in the portal service. Then, the user 
can select different nicknames for each subservice, such as for 
certain reviews (e.g., News or Movie).  The user’s subservice 
nickname is presented with the user ID, as shown in Figure 1. 
However, if the complete ID is shown, then all of the posts 
written by the user under the different subservices can be 
linked. To prevent linkage attacks, the portal service provides 
a privacy policy that prevents accurate ID exposure by 
masking four “*” characters except the first four characters. 
Thus, the unique user ID is partially protected, thereby 
reducing the possibility of overexposing the service user to ID 
tracking. The ID masking process not only conceals the 
complete ID but also allows different user IDs to be 
represented as the same ID. For example, a user ID carmen74 
and a user ID carmechanic82 clearly have different IDs. 

Fig 1: Nickname and identifier of a movie rate service 
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However, when they undergo the masking process, both are 
represented by the same ID carm****. In other words, the 
masking process reduces the possibility that a specific user is 
identified because two or more users are provided the same 
user ID. This approach has the same effect as the privacy 
protection offered by the existing k-anonymization technique. 

B. Attacker model 

We assume that the administrator has complete 

knowledge of a user of the portal service, and the full 

information about the user can be integrated when the 

administrator generates the required data. All service contents 

on the portal service are available on the Web. Then, when 

data are released as mentioned above, an attacker can trace the 

links between subservice nicknames. 

For example, we suppose that there are subservices A and 

B (Figure 2). An attacker collects user data from service A and 

service B. The attacker is unable to determine the user who 

use nicknames Oliver in service A is the same user who use 

nickname Blackpanther or Kirk in service B. However, if the 

portal service administrator provides the total number of each 

user’s post, then the attacker can deduce that Oliver and 

Blackpanther may refer to the same user because of the 

presence of only one combination (e.g., five posts are 

uploaded by the user). The user does not expect to be 

identified, and hence, privacy violation is breached. 

In this study, we call an attack a “linkage attack” when user 

identity is deduced by linking nicknames from the different 

subservices. A linkage attack is defined as follows: 

Definition 1. Linkage attack 

Let user Ui take the nickname sets UNi = {Ni,1, ..., Ni,N} for 

subservice Sj (1 ≤ j ≤ N, N = number of subservice). We define 

the linkage attack by inferring to nicknames Nicki and Nickj 

with the same masking ID for the different subservices that 

belong to the same user Uk (Nicki∈ UNk, Nickj∈ UNk). 

Here, we further propose a configuration technique for the 

upper bound of the noise parameter. 

C. Noise parameter upper bound configuration with k-

anonymization 

C.1 Necessity of the noise configuration technique.  

An insertion of an appropriate amount of noise is 

necessary to prevent the linkage attack, and this approach is 

implemented by applying  differential privacy. If the ε value 

is set too low, then the linkage attack can be prevented but data 

utility degradation will likely be extensive. On the contrary, if 

the ε value is set too high, then the linkage attack cannot be 

prevented. We use the k-anonymity of the ID masking process 

to set the appropriate level of noise. For example, in Figure 2  

(Section 3.2), the total number of cases is six for an attacker 

who can deduce information by using only his or her collected 

data. 

In Figure 2, the linkage attack can be regarded successful 

because the attacker can specify three of the six cases by using 

public data. The given example also implies that that the 

attacker should be hindered from specifying any of the six 

cases to prevent the linkage attack. The implication of the 

sampled cases is the same as those that use the definition of k-

anonymization. Therefore, we propose a noise parameter 

upper bound configuration technique to satisfy k-anonymity. 

 

C.2 Noise parameter configuration with k-anonymity.  

When a portal service administrator applies differential 

privacy to the data, the attacker will infer the original data to 

the noised data. For example, if we assume that the portal 

service administrator released noised average number of posts 

is 9.9 and set the Laplace distribution scale parameter to 1, the 

probability of 9.9 with its possible combination and posterior 

belief values are shown in Table Ⅰ. 

The posterior belief equation is  

𝛽(𝑤𝑖) =
𝑃(𝐶𝑎𝑠𝑒𝑖=9.9)

∑ 𝑃(𝐶𝑎𝑠𝑒𝑗)=9.96
𝑗=1

. (1) 

As shown in Table Ⅰ, although noise is inserted by applying 

differential privacy, the attacker can infer from the query 

results that case 1 is highly probable. Thus, when arbitrarily 

determined, the noise parameter ε cannot prevent the linkage 

attack described in Section 3.2. We therefore select an 

appropriate level for noise parameter ε to prevent the linkage 

attack in the same manner as rendering k-anonymity. The 

equation for setting the upper bound of noise parameter ε to 

satisfy k-anonymity [2] is 

𝛽(𝑤𝑖) =
1

1+(𝑛−1)𝑒
−𝜀∆𝑣

∆𝑓

≤ 𝜌, (2) 

where Δf is sensitivity, ρ is the maximum threshold of 

probability in which a specific case will be inferred (i.e., 1/k 

based on k-anonymity), n is the total number of possible 

combinations, and Δv is the maximum value of the difference 

between the query results for the possible cases. 

∆v =  𝑚𝑎𝑥1≤𝑖,𝑗≤𝑛|𝑓(𝑐𝑎𝑠𝑒𝑖) − 𝑓(𝑐𝑎𝑠𝑒𝑗)| (3)  

TABLE Ⅰ: QUERY RESPONSE PROBABILITY AND POSTERIOR BELIEF 

 Query response 

probability 

Posterior belief 

Case 1 0.1232 0.8313 

Case 2 0.006 0.04 

Case 3 0.006 0.04 

Case 4 0.001 0.0067 

Case 5 0.006 0.04 

Case 6 0.006 0.04 

 

Fig 2: Example of linkage attack 
Fig 3: Example of number of cases 
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Equation (2) is rearranged with respect to ε as follows: 

𝜀 ≤
∆𝑓

∆𝑣
ln

(𝑛−1)𝜌

1−𝜌
  (4) 

With equation (4), we can set the upper bound of the noise 

parameter ε and prevent linkage attack with 1/k probability. 

IV.  EXPERIMENTAL RESULTS 

We collected 49,809,574 comments on News service and 

3,164,724 user ratings on Movie review service in Naver, an 

online portal site of South Korea. The coverage of the 

experiment is from May 2016 to April 2017. The total number 

of users for the News service is 1,935,332 while that of for the 

Movie review service is 1,145,154.  

Table Ⅱ presents the distribution of users recognized as 

having the same IDs by the masking process. Table Ⅲ shows 

the number of masking ID according to the number of possible 

combinations with commonly masked IDs for the News 

service and the Movie review service. Comparison of 

arbitrary ε and proposed ε for accuracy and privacy 

protection 

A comparative evaluation is conducted for the proposed 

ε and the arbitrary ε in terms of accuracy and privacy 

protection. We perform an averaging of the number of post 

queries and repeat the calculation ten times. Then, the 

proposed ε is compared with ε = 0.1 and ε = 2. In this 

experiment, we set the posterior belief threshold to less than 

0.5. Thus, the privacy protection level can be evaluated as the 

number of masking ID groups with posterior probability 

greater than 1/2. 

A total of 11,349 masking ID groups violate the threshold 

of the original data whereas 3,346 masking ID groups violate 

the threshold when ε = 2 (Table Ⅳ). When ε = 0.1, there will 

be no violation, but data utility for privacy protection is 

significantly reduced. In the proposed ε value, only 1,467 

masking ID groups violate the threshold; thus, it is better than 

the original or ε = 2 cases. 

Table Ⅴ shows the RMSE values for the proposed ε, ε = 0.1, 

and ε = 2. Previously, in Table Ⅳ, ε = 0.1 provided the perfect 

privacy protection, but it will significantly deteriorate data 

utility. The RMSE value is less than 1 when ε = 2, but this case 

implies a breach in privacy protection. 

The experimental result shows that the configuration 

technique proposed by the present work succeeds in setting 

the appropriate ε value and thus can realize both accuracy and 

privacy protection.  

V.  CONCLUSION AND FUTURE WORK 

In this study, we proposed a novel linkage attack problem 

in which a user with different nicknames for each subservice 

can be identified by linking. We presented a configuration 

technique for the upper bound of the noise parameter to 

provide k-anonymity levels of identification protection. We 

verified that the proposed configuration technique can be used 

to set the appropriate upper bound of the noise parameter.  
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Fig 4: Posterior belief graph according to ε value 

TABLE Ⅱ NUMBER OF USERS WITH THE SAME MASKING ID 

 k = 1 k = 2 k = 3 k = 4 4<k 

News 156,623 99,626 78,036 61,776 1,538,871 
Movie 112,585 76,712 54,075 42,136 859,646 

TABLE Ⅲ NUMBER OF MASKING ID ACCORDING TO NUMBER OF POSSIBLE 

COMBINATIONS 

 n = 3 n = 4 n = 5 n = 6 6<n 

News and 

Movie 
13,080 7,598 4,041 9,987 37,776 

TABLE Ⅳ NUMBER OF THRESHOLD VIOLATIONS AND MASKING ID 

GROUPS 

Original Proposed ε ε = 0.1 ε = 2 

11,349 1,467 3 3,346 

TABLE Ⅴ RMSE ACCORDING TO Ε VALUE 

 Proposed ε ε = 0.1 ε = 2 

RMSE 175.58 990.33 51.75 
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