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1 Introduction

Automatic configuration of algorithmic parameters is an area of active research
[15, 26], going back to the foundational work [31], published in 1976. The Algorithm
Configuration Problem (ACP) focuses on configurable algorithms, deployed to solve
instances of a given decision or optimization problem. It concerns the issue of
how to identify the setup of algorithmic parameters delivering the best algorithmic
performance, when the algorithm is run on its input.

Formally, we let A be a parametrized target algorithm. Its input consists of an
instance of the problem being solved and an array of parameters. We call the latter
“algorithmic configuration”.

The inputs of the ACP are:

• Π: the decision/optimization problem to be solved by A, consisting of a (poten-
tially) infinite set of instances. Each instance is an input string for the problem;
among the many encodings available for instance data, the most common one is
a vector of discrete/continuous values, containing the most important attributes
of the instance. In the following, we assume that several encodings can be trans-
formed into each other efficiently (i.e., without too much loss of information)
and we refer to Π as the set of encoded instances;

• CA : the set of parameter configurations of A, i.e., an array of data of different
types (boolean, numeric, categorical), usually encoded by vectors of 𝑞 continu-
ous and/or discrete/categorical values. Not all possible parameter values may be
admissible, due to logical conditions concerning multiple parameters. Thus, for
simplicity, we assume that CA only contains feasible algorithmic configurations;

• 𝑝A : the performance function of A

LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France,
e-mail: {dambrosio,giommazz,liberti}@lix.polytechnique.fr · Dipartimento di Infor-
matica, Università di Pisa, Pisa, Italy, e-mail: frangio@di.unipi.it

1

{dambrosio,giommazz,liberti}@lix.polytechnique.fr
frangio@di.unipi.it


2 Gabriele Iommazzo, Claudia D’Ambrosio, Antonio Frangioni, and Leo Liberti

𝑝A : Π × CA −→ R (1)

mapping a pair (𝜋, 𝑐) (instance, parameter configuration) to the outcome of
running A, configured by 𝑐, to solve an instance 𝜋. The encoding of 𝑝A is
a single continuous or discrete value. The performance 𝑝A related to running
A could be a cost measure (e.g., CPU time, number of iterations performed,
etc.) or a quality measure (e.g., the accuracy achieved by a Machine Learning
(ML) predictor at a certain iteration of the training process, the integrality gap
reported by an optimization solver within a certain time limit, etc.). Depending
on the case at hand, one aims at appropriately minimizing or maximizing it.

With the specifications given above, the ACP is formally defined as follows:

Definition 1 (ACP) Given a tuple (A, �̄�, 𝑝A), �̄� ∈ Π, find the algorithmic configu-
ration 𝑐∗�̄� ∈ CA providing the optimal performance 𝑝A of A on �̄�.

A variant of the ACP is the Algorithm Selection Problem (ASP), where one
seeks to pick, from a given set of configured algorithms, the best one for solving
a specific instance. However, one can see the choice of which algorithm to pick as
the one single parameter of a meta-algorithm for solving Π, and therefore the ASP
is a special case of the ACP. The ACP is generally very hard both in theory and in
practice, especially when, as it often happens, algorithms have a large number of
configurable parameters. Yet, it has a large number of very relevant applications,
such as the configuration of constraint programming or mathematical optimization
solvers, the hyperparameter tuning of ML pipelines, the administration of ad-hoc
medical treatments, and many others; the interested reader is referred, e.g.,to [14, 26]
and the references therein for a more detailed treatment of the subject.

In this article, we supply a comprehensive framework for describing any approach
to the ACP: we identify the core building components for designing an ACP solution
strategy, and discuss their possible use patterns and implementation.

In Tab. 1, we recall the abbreviations used throughout the article:

extended name shorthand
Algorithm Configuration Problem ACP

Machine Learning ML
Knowledge-encoding Process K-EP

Per-Problem PP
Per-Instance PI

Table 1: Recurring abbreviations
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2 Definitions

Research efforts on the ACP have focused on developing methodologies to solve
it efficiently in an automated fashion. Although this has been implemented in sev-
eral different ways, all approaches share the same goal, i.e., the construction of a
recommender:

Definition 2 (recommender) The recommender is a function

ΨM : Π → CA (2)

which, given an instance 𝜋 ∈ Π, is capable of selecting a configuration 𝑐∗𝜋 ∈ CAfor
solving 𝜋 more efficiently than with other configurations of A.

Thus, 𝑐∗𝜋 is, hopefully, a good approximation of the optimal configuration for 𝜋,
with respect to the performance function 𝑝A . In other words, a recommender is a
heuristic for the ACP. The fundamental constraint is that the recommender should
be able to produce its output in a “short” time, so as not to offset the advantages due
to choosing a better configuration.

Our notation underlines the fact that the structure of ΨM is usually determined
by a model M encoding some knowledge about 𝑝A . In fact, an important phase of
all ACP methodologies is devoted to the building of M. It is in general difficult (if
at all possible) to construct accurate enough analytical models of the performances
of complex algorithms. Thus, most practical M are “data-driven”, in the sense that
they are constructed from experiments. For the recommender to be able to choose
the right 𝑐∗𝜋 for a given 𝜋, it should be able to assess 𝑝A anywhere on the set Π×CA .
However, an exhaustive evaluation of 𝑝A over Π × CA is almost always impossible
in practice. In fact, Π is an infinite set, and CA usually grows exponentially in the
number of parameters, which can be large. Furthermore, since 𝑝A itself is typically
a black-box function (i.e., it has no analytic form), the only way to evaluate it is to
directly run A, which can be extremely costly. Therefore, a significant component
of ACP approaches is how the set Π × CA is explored.

Given the difficulty of assessing algorithmic performance onΠ×CA exhaustively,
the construction of ΨM in Eq. (2) always involves the selection of sets Π′ ⊂ Π

and C′
A ⊆ CA . Of these, Π′ is meant to be “representative” of Π, usually in the

sense that it preserves the characteristics and information of Π. Sometimes, this can
instead be taken as the fact that Π′ contains the most “difficult” instances for A,
in that all others are solved efficiently and do not require a dedicated algorithmic
configuration. Since there is no automatic way of choosingΠ′, most ACP approaches
take it as given and rely on existing libraries, hand-picked by problem experts.
Therefore, we assume that Π′ is always available, or can be easily generated, for
deploying an ACP methodology. Further, we assume that Π′ is specified before the
construction of M, and never updated. Moreover, the algorithmic performance of
different configurations is typically unknown before launching an ACP approach,
otherwise, there would be no need to even construct a recommender ΨM . This
means that C′

A is often selected during the construction of ΨM , instead of being



4 Gabriele Iommazzo, Claudia D’Ambrosio, Antonio Frangioni, and Leo Liberti

picked a priori, as in the case of Π′; we remark that the (partly constructed) model
M can also be useful in this context.

In all approaches in the literature, solving the ACP fits into the same two-stage
framework (see Fig. 1), encompassing the ordered execution of:

a) a Knowledge-encoding Process (for brevity, K-EP). The K-EP builds M and the
accompanying ΨM . A critical step in the computation of M is the sampling
of the performance function, i.e., the evaluation of 𝑝A over pairs (𝜋, 𝑐) ∈
Π′ × CA . Since CA may be quite large, in most cases computing 𝑝A on all the
configurations is too expensive. Thus, in all ACP approaches, the selection of
an appropriate subset of CA in the K-EP is a crucial task, which may require the
use of M or additional models. Instead, when CA is small, all the 𝑐 ∈ CA can
be considered;

b) a Recommendation Phase. The recommendation phase deploys ΨM , in order
to produce a suitable configuration for a given instance. Thus, ΨM supplies a
solution of the ACP for that instance.

Since, as we noted above, most M are data-driven, the K-EP can demand con-
siderable computational resources. The recommendation phase can also be compu-
tationally expensive, in that exploiting M to produce the output configuration may
involve, e.g., the solution of a nontrivial optimization problem in itself.

Knowledge-encoding Process
∀𝑡 ∈ {0, 1, 2, . . . }, execute:
sample𝑡 , evaluate𝑡 , update𝑡

A Π′ CA

M Recommendation
Phase �̄�

ΨM ( �̄�) = 𝑐∗�̄�

Fig. 1: Algorithmic schema of an ACP approach

The K-EP is an iterative procedure. It cycles through three phases at each iteration
𝑡 ∈ {0, . . . , 𝑇}, until an allotted computational budget (quantified, e.g., in terms of
allowed target algorithm runs, CPU/GPU time and power, memory usage, number
of K-EP iterations) is used up, or M has attained a desired accuracy:

1. sample𝑡 : picks a set

S𝑡 ⊂ Π′ × CA 𝑠.𝑡. S𝑡 ∩
⋃
ℎ<𝑡

Sℎ = ∅ , (3)
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i.e., S𝑡 only contains previously unsampled couples. This selection is nontrivial,
as it requires addressing the trade-off between uniformly exploring Π′ × CA , so
that no promising area is left unexplored (diversification), and concentrating on
the areas containing the most promising candidates, so as to find better solutions
(intensification);

2. evaluate𝑡 : executes (possibly, in parallel) the target algorithm A on all the points
picked by sample𝑡 , to compute 𝑝A at those points and build the set

S𝑡 =
{ (

𝜋, 𝑐, 𝑝A (𝜋, 𝑐)
)
| (𝜋, 𝑐) ∈ S𝑡

}
; (4)

3. update𝑡 : updates the models employed in the K-EP, i.e., the model M of ΨM
and, potentially, other models used for sampling purposes. For instance, it may
entail training or re-training an ML model. This phase exploits the set

⋃
ℎ≤𝑡 Sℎ,

the performance values computed at the points of that set and, sometimes, some
other information collected in the evaluate𝑡 phase.

The data generated by the recommendation phase may be employed in an adaptive
“meta-sampling” loop whereby: a) when a new instance �̄� ∈ Π ∖Π′ is given (either
by the user of the recommender, or by a dedicated process aimed at improving its
quality), one computes ΨM (�̄�); b) the recommended configuration and/or �̄� are fed
into the K-EP, which can be performed again to improve M. One example of this
approach is presented in [22].

The implementation of the K-EP and the recommendation phase depends on the
choice of the following components:

• a model M and the associated recommender ΨM ;
• whether ΨM actually depends on a specific instance or always provides the same

answer for a set of instances: we call Per-Instance (PI) ACP approaches of the
former type, and Per-Problem (PP) approaches of the second type;

• whether one commits to buildingM before actually solving an unknown instance
by A (offline ACP methodologies) or M is constructed during an algorithm run
(online methodologies).

3 Formulations

3.1 The construction of M

In the literature, the model M built in the K-EP is one of the following:

(a) a function
ZA : Π −→ CA , (5)

mapping an instance encoding to the configuration recommended for that
instance. The function in Eq. (5) is usually constructed by ML techniques
[8, 7, 10, 21];
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(b) a function
𝑝A : Π × CA −→ R , (6)

computing an approximation of the performance function 𝑝A defined by Eq. (1),
also generally built by ML techniques [6, 9, 16, 20]. Sometimes [11], 𝑝A is
aggregated (e.g., averaged) over the instances in Π′, which yields an estimate

𝜒A : CA −→ R (7)

of the performance of single configurations over Π. The functions 𝑝A or 𝜒A
are then used as a proxy to recommend a configuration for the new instance,
typically, by solving an optimization problem having them in the objective;

(c) a partition
PA = {Π′

𝑖 ⊆ Π′}𝑖∈𝐶 (8)

of Π′ into 𝐶 disjoint subsets (or “clusters”) Π′
𝑖
, whereby each Π′

𝑖
is specified by

choosing the corresponding recommended configuration 𝑐∗
𝑖

and, for instance, a
representative instance 𝜋𝑖 . When a new instance �̄� ∈ Π has to be solved, the
cluster to which it belongs is determined (e.g., by finding the closest represen-
tative 𝜋𝑖 , under some appropriate distance metric) and the corresponding 𝑐∗

𝑖
is

retrieved.
We remark that there are two “extreme” cases of Eq. (8):

• one in which 𝐶 = |Π′ |, i.e., each Π′
𝑖

contains exactly one instance, [5, 30].
We refer to this case as “PA, |Π′ |”;

• one whereby Π′
0 = Π′ and 𝐶 = 1, i.e., the partition is trivial and a single

configuration 𝑐∗0 will be recommended regardless of the input �̄�. This is
customary in PP approaches [1, 2, 3, 4, 13, 11, 17, 18, 29, 28]. We refer to
this case as “PA,1”.

Moreover, we refer to intermediate case, whereby 1 < 𝐶 < |Π′ |, as “PA,𝐶”.
It should be noted that this choice of M is typically strongly coupled with the
sample𝑡 phase in the K-EP, in the sense that it is often the direct result of the
algorithmic decisions there.
The strategy implemented to construct PA is that of solving the problem

𝑐∗𝑖 = arg min{ agg𝜋∈Π𝑖
𝑝A (𝜋, 𝑐) | 𝑐 ∈ CA } , (9)

where agg is some aggregation function (say, the average). The issue here is to
find the configuration providing the best aggregated performance with respect
to the subset Π′

𝑖
at hand. Since CA is often very large and 𝑝A is “black-box”,

the problem in Eq. (9) is typically treated by heuristic search algorithms, such
as local searches, evolutionary algorithms or other metaheuristics, providing
a local solution. Further, such heuristic algorithms can themselves naturally
identify clusters on the fly, even in the extreme cases; for instance, evolutionary
algorithms produce a population of the fittest individuals, each of which can be
used to define a cluster representative 𝜋𝑖 .
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We remark that the strategy of building PA by solving Eq. (9), usually adopted
by offline ACP methodologies, quite naturally extends to the online setting. In
the online ACP, further evaluations of 𝑝A are often triggered by the arrival of a
new 𝜋, that restarts the optimization process.

Some ACP methodologies combine more than one model; the possible combinations
are shown in Tab. 2.

3.2 Computing 𝚿M

Given an instance �̄� ∈ Π, the implementation of ΨM (�̄�) depends on the model M
built during the K-EP:

(a) If M is the one in Eq. (5), then ΨM (�̄�) := Z (�̄�);
(b) if M is the one in Eq. (6), then

ΨM (�̄�) := arg min{ 𝑝A (�̄�, 𝑐) | 𝑐 ∈ CA } . (10)

The problem in Eq. (10) may be a hard one, calling for heuristic solution algo-
rithms akin to those possibly employed in the K-EP, i.e., treating the approxi-
mation 𝑝A as a “black box” (e.g., [6, 16, 32, 33, 11, 27]). However, exploiting
the mathematical structure of 𝑝A is also possible, allowing the use of exact
approaches [20];

(c) if M is specified by a set of clusters Π′
𝑖
⊆ Π′ as in Eq. (8), then ΨM (�̄�) is

implemented by first solving

ℎ(�̄�) = argmin𝑖 dist(Π′
𝑖
, �̄�) , (11)

for some appropriate distance function dist(·, ·), and then returning 𝑐∗
ℎ ( �̄�) . If the

clusters are specified via a representative instance, say, 𝜋𝑖 for cluster Π𝑖 , then

dist(Π′
𝑖 , �̄�) = ∥�̄� − 𝜋𝑖 ∥ ,

for some appropriate norm ∥ · ∥. When the number of clusters is low, as it usually
happens, Eq. (11) can be quickly solved by direct enumeration. In the extreme
case with only one cluster, instead, the problem is trivial.

3.3 Classifying algorithm configuration approaches

PP approaches search for the configuration with the best overall performance over
a problem set; they are usually based on one of the models M described at point
(c) of Sec. 3.1. The main risk of PP approaches is that they produce suboptimal
ACP solutions when the performance of the target algorithm varies considerably
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between instances of a problem. This is to be expected for large problem classes,
e.g. MILP, where instances can represent very different problems that are hard for
very different reasons (say, having very few feasible solutions, so that finding even
one is challenging, or very many feasible solutions with very close objective, so that
finding the optimal one is challenging).

When the risk of selecting suboptimal configurations, PI methodologies, which
assume that the ACP-optimal algorithmic configuration depends on the instance at
hand, are likely to achieve better results.

An ACP methodology is offline if it commits to buildingM before the recommen-
dation phase, during which, therefore, M is fixed. Instead, an online methodology
performs the entire K-EP during the execution of A. In this case, recommendation
phase and K-EP coincide, and the information retrieved by running A is dynami-
cally exploited, on-the-fly, to build M. Online methods can only be employed when
the target algorithm is launched to solve a sequence of instances, or is tasked with
making a series of decisions during its run.

An online procedure can be used as a component of a larger offline/online ap-
proach. One way to accomplish this would be to construct, online, M through
experiments on Π′, and, then, deploy it as a recommender for instances similar to
those in Π′. A very straightforward implementation of this approach would be to,
say, run an optimization solver on a sequence of instances Π′, within a prescribed
time limit, trying different parameter configurations on each of them. This would
allow the selection and storage of a set of parameter values ensuring high solver
performance (as in model PA in Eq. (8)); they could be reused to configure the
solver, and to run it on different instances in Π. For example, the CPLEX Tuning
Tool [19, Ch. 10], of the IBM ILOG CPLEX solver, implements this procedure.

Another way to reuse an online M could be to employ it in the update0 phase of
a subsequent K-EP, to initialize the construction of a new model. Yet another option
may be to use the points (instance, configuration, related performance), sampled to
construct M online (by the sample𝑡 and the evaluate𝑡 phases), in the sample0 phase
of a following K-EP.

Since the purpose of online approaches is to solve the ACP on-the-run, they
are usually based on simple algorithms, which allow for rapid decision-making.
However, these approaches are often impractical to scale to large configuration sets.
For this reason, they are ordinarily used for solving the ASP, rather than the ACP.

In Tab. 2, we give an overview of the main ACP approaches in the literature.
From the rightmost column of the table, we gather that all PP methodologies are
based on the model PA described by Eq. (8), notably, on its PA,1 variant. Instead,
the PA,𝐶 and PA, |Π′ | variants are always used in the PI setting. Further, most
PI approaches rely on the ML-derived models 𝑝A of Eq. (6) and ZA of Eq. (5).
In fact, PI methodologies are required to capture/encode the complicated, possibly
nonlinear relationships between 𝑝A , CA and Π, and several ML paradigms are
capable of producing extremely accurate approximation. In some cases, ML-based
models and variants of PA are combined, in order to implement PI procedures: see,
e.g., the approaches on the second to last line of the table, which rely on both PA,1
and 𝑝A for online and offline algorithm configuration.
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PI PP
M offline online offline

ZA (Eq. (5)) [8]∗, [7, 10], [21]
�̄�A (Eq. (6)) [6, 9, 16], [20]

PA,𝐶 (Eq. (8)) [12, 22]∗, [23]

PA,1 (Eq. (8)) [5]
[1, 2, 3, 4, 13]
[18, 29, 28]

PA, |Π′ | + 𝜒A (Eq. (8) + (7)) [30]
PA,1 + �̄�A (Eq. (8) + (6)) [27, 32, 33] [27] [17]
PA,1 + 𝜒A (Eq. (8) + (7)) [11]

Table 2: A schematic summary the ACP literature; ∗ indicates ASP approaches.

4 Conclusions

We introduced an algorithmic schema, common to all ACP methodologies, for
constructing and deploying a recommender, i.e., a function capable of suggesting
the optimal configuration of a given algorithm A for solving an instance of a given
decision/optimization problem Π.

Despite all the research efforts in the field of algorithm configuration, the problem
still remains extremely difficult to solve. In fact, it is usually impossible to know
the algorithmic performance 𝑝A over all of the many parameter configurations in
CA , which can be up to the hundreds or thousands (especially in general-purpose
optimization solvers, equipped with a diverse set of algorithmic components to
solve famously NP-hard problems [24, 25]). Furthermore, while the ACP can be
somewhat approached if we consider a single instance or a small subset of Π′, it
becomes intractable when we look at the whole set Π′, which is normally of infinite
size.

To overcome this complication, ACP methodologies are all based on multiple
forms of approximation of: a) the algorithmic performance function, or of the pa-
rameter configuration allowing to achieve specific algorithmic performances, via
some computable ML approximation; b) Π, via the manual selection of a subset of
representative instances and corresponding representative configurations.
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