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CYCLE-BASED FORMULATIONS IN DISTANCE GEOMETRY

LEO LIBERTI, GABRIELE IOMMAZZO, CARLILE LAVOR, & NELSON MACULAN
Abstract. The distance geometry problem asks to find a realization of a given simple edge-
weighted graph in a Euclidean space of given dimension K, where the edges are realized as
straight segments of lengths equal (or as close as possible) to the edge weights. The problem
is often modelled as a mathematical programming formulation involving decision variables
that determine the position of the vertices in the given Euclidean space. Solution algorithms
are generally constructed using local or global nonlinear optimization techniques. We present
a new modelling technique for this problem where, instead of deciding vertex positions, the
formulations decide the length of the segments representing the edges in each cycle in the
graph, projected in every dimension. We propose an exact formulation and a relaxation based
on a Eulerian cycle. We then compare computational results from protein conformation
instances obtained with stochastic global optimization techniques on the new cycle-based
formulation and on the existing edge-based formulation. While edge-based formulations
take less time to reach termination, cycle-based formulations are generally better on solution
quality measures.

1. Introduction

We consider the fundamental problem in Distance Geometry (DG):
Distance Geometry Problem (DGP). Given a positive integer K and
a simple undirected graph G = (V, E) with an edge weight function
d : E → R≥0, establish whether there exists a realization x : V →
RK of the vertices such that Eq. (1) below is satisfied:
∀{i, j} ∈ E ∥xi − xj∥ = dij , (1)
where xi ∈ RK for each i ∈ V and dij is the weight on edge {i, j} ∈
E.

Although the DGP is given above in the canonical decision form, we consider the
corresponding search problem, where one has to actually find the realization x. The
DGP is also known as the graph realization problem in geometric rigidity [28, 6, 17].
It belongs to a more general class of metric completion and embedding problems
[7, 23, 50].

In its most general form, the DGP might be parametrized over any norm [11].
In practice, the ℓ2 norm is the most usual choice [39], and will also be employed in
this paper. The DGP with the ℓ2 norm is sometimes called the Euclidean DGP
(EDGP). For the EDGP, Eq. (1) is often reformulated to:

∀{i, j} ∈ E ∥xi − xj∥2
2 = d2

ij , (2)
which is a system of quadratic polynomial equations with no linear terms [35, §2.4].

The EDGP is motivated by many scientific and technological applications. The
clock synchronization problem, for example, aims at establishing the absolute time
of a set of clocks when only the time difference between subsets of clocks can
be exchanged [52]. The sensor network localization problem aims at finding the
positions of moving wireless sensor on a 2D manifold given an estimation of some of
the pairwise Euclidean distances [17, 2, 15]. The Molecular DGP (MDGP) aims
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at finding the positions of atoms in a protein, given some of the pairwise Euclidean
distances [39, 35]. The position of autonomous underwater vehicles cannot be
determined via GPS (since the GPS signal does not reach under water), but must
rely on distances estimated using sonars: a DGP can then be solved in order to
localize the fleet [3]. Applications of the DGP to data science are described in [33];
see [32] for an application to natural language processing. In general, the DGP is
an inverse problem which occurs every time one can measure some of the pairwise
distances in a set of entities, and needs to establish their position.

The DGP is weakly NP-hard even when restricted to simple cycle graphs (by
reduction from Partition) and strongly NP-hard even when restricted to integer
edge weights in {1, 2} in general graphs (by reduction from 3sat) [49]. It is in NP
if K = 1 but not known to be in NP if K > 1 for general graphs [4], which is an
interesting open question [36].

There are many approaches to solving the DGP. Generally speaking, application-
specific solution algorithms exploit some of the graph structure, whenever it is in-
duced by the application. For example, a condition often asked when reconstructing
the positions of sensor networks is that the realization should be unique (as one
would not know how to choose between multiple realizations), a condition called
global rigidity [10]. This condition can, at least generically, be ensured by a specific
graph rigidity structure of the unweighted input graph, as shown in [20]. For pro-
tein structures, on the other hand, which are found in nature in several isomers, one
is sometimes interested in finding all (incongruent) realizations of the given protein
graph [30, 47, 37]. Since such graphs are rigid, one can devise an algorithm (called
Branch-and-Prune) which, following a given vertex order, branches on reflections
of the position of the next vertex, which is computed using trilateration [35]. It
is also possible that DGP problems arise in their full generality, i.e. independently
of any further knowledge on their structure or properties: for such cases, one can
resort to Mathematical Programming (MP) formulations and corresponding solvers
[40, 12, 14].

The MP formulation which is most often used reformulates Eq. (2) to the mini-
mization of the sum of squared error terms:

min
x

∑
{i,j}∈E

(∥xi − xj∥2
2 − d2

ij)2. (3)

This formulation describes an unconstrained polynomial minimization problem.
The polynomial in question has degree 4, is always nonnegative, and generally
nonconvex and multimodal. The decision variables are represented by a n × K
rectangular matrix x such that xik is the k-th component of the vector xi, which
gives the position in RK of vertex i ∈ V . Each solution x∗ ∈ RnK having global
minimum value equal to zero is a realization of the given graph. Solutions with
small objective function value represent approximate solutions. Because of the
nonconvexity of the formulation and the hardness of the problem, Eq. (3) is not
usually solved to guaranteed ε-optimality (e.g. using a spatial Branch-and-Bound
approach [5]); rather, heuristic approaches, such as MultiStart (MS) [29], Variable
Neighbourhood Search (VNS) [38], or relaxation-based heuristics [14, 42] may be
used.

As far as we know, all existing MP formulations for the EDGP are edge-based,
such as the one in Eq. (3). In this paper we discuss a new MP formulation for the
EDGP based on the incidence of cycles and edges instead, a relaxation based on
Eulerian cycles, and a computational comparison with Eq. (3).
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2. Some existing MP formulations

In this short section we give a minimal list of typical variants of Eq. (3) in order
to motivate the claim that the cycle-based formulation of the DGP discussed in
this paper is new. Of course, only a complete enumeration of DGP formulations in
the literature could substantiate this claim. But even this short list shows that the
typical modelling approach for the DGP is direct: namely, decision variables encode
the realization of each vertex as a vector in RK . Many more formulations of the
DGP and its variants, all corresponding to this criterion, are given in [29, 40, 12].

The closest variant of Eq. (3) simply adds a constraint ensuring that the centroid
of all of the points in the realization is at the origin. This removes the degrees of
freedom given by translations:

min
x

∑
{i,j}∈E

(∥xi − xj∥2
2 − d2

ij)2

∀k ≤ K
∑

i∈V

xik = 0.

 (4)

This formulation describes a linearly constrained polynomial minimization problem.
Like Eq. (3), the polynomial in Eq. (4) has degree 4, is always nonnegative, and is
generally nonconvex and multimodal.

Another small variant of Eq. (4) is achieved by adding range bounds to the
the realization variables x; generally valid (but slack) bound values can be set to
± 1

2
∑

{i,j}∈E duv. This corresponds to the worst case of a single path being arranged
in a straight line with unknown orientation.

Another possible formulation, derived again from Eq. (3), is obtained by replac-
ing the squared error with absolute value errors (whose positive and negative parts
are encoded by s+, s−). This yields the following formulation:

min
s,x

∑
{i,j}∈E

(s+
ij + s−

ij)

∀{i, j} ∈ E ∥xi − xj∥2
2 = d2

ij + s+
ij − s−

ij

∀{i, j} ∈ E s+
ij , s−

ij ≥ 0.

 (5)

Note that, again, each solution s∗, x∗ with zero optimal objective value makes x∗

an encoding of a realization of the given graph. Thus, global optima are preserved
by this reformulation, while local optima may differ.

Yet another reformulation derived from replacing squared errors with absolute
values consists in observing that the “plus” and “minus” parts of each absolute
value term correspond to a convex and concave function. This yields a formulation
called push-and-pull, since the objective pulls adjacent vertices apart, while the
constraint push them back together:

max
x

∑
{i,j}∈E

∥xi − xj∥2
2

∀{i, j} ∈ E ∥xi − xj∥2
2 ≤ d2

ij .

}
(6)

Eq. (6) is a Quadratically Constrained Quadratic Program with concave objective
and convex constraints. It was used within a Multiplicative Weights Update algo-
rithm for the DGP in [12], as well as a basis for Semidefinite Programming and
Diagonally Dominant Programming relaxations [14, 42]. It can be shown that all
constraints are active at global optima, which therefore correspond to realizations
of the given graph [46].

3. A new formulation based on cycles

In this section we propose a new formulation for the EDGP, based on the fact
that the quantities xik − xjk sum up to zero over all edges of any cycle in the
given graph for each dimensional index k ≤ K. This idea was used in [49] for
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proving weak NP-hardness of the DGP on cycle graphs. For a subgraph H of a
graph G = (V, E), we use V (H) and E(H) to denote vertex and edge set of H
explicitly; given a set F of edges we use V (F ) to denote the set of incident vertices.
Let m = |E| and n = |V |. For a mapping x : V → RK we denote by x[U ] the
restriction of x to a subset U ⊆ V . Furthermore, we let a closed trail be a sequence
of vertices and of the edges joining them, which begins and ends at the same vertex,
and is such that no edge is repeated.

Lemma 3.1. Given an integer K > 0, a simple undirected weighted graph G =
(V, E, d) and a mapping x : V → RK , then for each cycle C in G, each orientation
of the edges in C given by a closed trail W (C) in the cycle, and each k ≤ K we
have: ∑

(i,j)∈W (C)

(xik − xjk) = 0. (7)

Proof. We renumber the vertices in V (C) to 1, 2, . . . , γ = |V (C)| following the walk
order in W (C). Then Eq. (7) can be explicitly written as:

(x1k − x2k) + (x2k − x3k) + · · · + (xγk − x1k) =
= x1k − (x2k − x2k) − · · · − (xγk − xγk) − x1k = 0,

as claimed. □

We introduce new decision variables yijk replacing the terms xik − xjk for each
{i, j} ∈ E and k ≤ K. Eq. (2) then becomes:

∀{i, j} ∈ E
∑
k≤K

y2
ijk = d2

ij . (8)

We remark that for the DGP with other norms this constraint changes. For the ℓ1
or ℓ∞ norms, for example, we would have:

∀{i, j} ∈ E
∑
k≤K

|yijk| = dij or max
k≤K

|yijk| = dij . (9)

Next, we adjoin the constraints on cycles:

∀k ≤ K, C ⊂ G

(
C is a cycle ⇒

∑
{i,j}∈E(C)

yijk = 0
)

. (10)

We also note that the feasible value of a yijk variable is the (oriented) length of
the segment representing the edge {i, j} projected on the k-th coordinate. We can
therefore infer bounds for y as follows:

∀k ≤ K, {i, j} ∈ E − dij ≤ yijk ≤ dij . (11)

Although Eq. (11) are not necessary to solve the cycle formulation, they may im-
prove performance of spatial Branch-and-Bound (sBB) algorithms [53, 5] and of
various “matheuristics” [41] which need explicit bounds on all variables, as well as
allow an exact linearization of variable products, should a y variable occur in a
product with a binary variable in some DGP variant.

We now state our main result, i.e. that Eq. (8) and (10) are a valid MP formu-
lation for the EDGP.

Theorem 3.2. There exists a vector y∗ ∈ RKm which satisfies Eq. (8) and (10),
parametrized on K, G, if and only if (K, G) is a YES instance of the EDGP.

The proof argues by recursion on a graph decomposition of G that a certain
linear system related to the cycles of G (see Eq. (12) below) has a solution in the
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x variables if and only if the given EDGP instance is YES, as certified by the y
variables1.

We shall construct our proof by steps. The first step defines a graph decomposi-
tion based on the removal of a single vertex. Given a graph G = (V, E) and a subset
U ⊂ V , the subgraph G[U ] induced by U is the graph (U, {{u, v} ∈ E | u, v ∈ U}).
With a slight abuse of notation we denote the vertices of a graph G′ by V (G′) and
its edges by E(G′). We let γ(G) be the number of connected components of G. A
vertex v of G with the property that γ(G[V ∖ {v}]) > γ(G) is called a cut vertex.
A graph G is biconnected if, for any pair u, v of distinct vertices of G, there is a
simple cycle in G incident to u and v. It is not hard to show that biconnectedness
is equivalent to connectedness and the absence of cut vertices. To see this, we
first introduce the novel concept of “1-decomposition”, and then give proof of some
statements related to it.

Definition 3.3. A 1-decomposition of a graph G = (V, E) is a set of subgraphs
G1, . . . , Gr (where r ∈ N with r ≥ 1) of G such that:
(a) Gi is either biconnected or a tree for all i ≤ r;
(b)

⋃
i≤r E(Gi) = E;

(c) for any i < j ≤ r the intersection V (Gi) ∩ V (Gj) is either empty or it consists
of a single cut vertex of G.

A 1-decomposition of G is nontrivial if r > 1. A graph G is 1-decomposable if it
has a nontrivial 1-decomposition.

Although formally different, our 1-decomposition is similar to the block-cutpoint-
tree of a graph [22, p. 36]. We note that a connected graph G = (V, E) is 1-
decomposable if and only if it has a cut vertex.

Lemma 3.4. Let G be 1-decomposable, with decomposition G = {G1, . . . , Gr}, and
C be a cycle in G. Then there is an index i ≤ r s.t. C is a subgraph of Gi.

Proof. Consider there were two subgraphs Gi, Gj in G both incident to the edges
of C. Then there is a nontrivial path p in C, with at least two edges, joining a
vertex u in Gi to a vertex v in Gj . Therefore there must be a cut vertex of G on p,
which implies that there is a cut vertex in C, which is impossible, since cycles are
biconnected. □

We note that no biconnected graph G is 1-decomposable. On the other hand, a
tree with n vertices can always be 1-decomposed into n subgraphs.

Proposition 3.5. Any connected component G = (V, E) of a simple graph has
a (possibly, trivial) 1-decomposition consisting of biconnected subgraphs and tree
subgraphs.

Proof. We prove this result by induction on the number β of biconnected subgraphs
in a 1-decomposition C = {G1, . . . , Gr} of G for some r ∈ N. We first deal with
the base case, where β = 0. We claim that G must be a tree: supposing G has
a cycle G′, as well as biconnectedness of cycles and part (c) of Defn. 3.3, G′ must
be one of the G1, . . . , Gr. But then β ≥ 1 against the assumption. Therefore,
the trivial 1-decomposition C = {G} is a valid 1-decomposition of G. We now
tackle the induction step. Consider the largest biconnected subgraph B of G: then

1This is not the only way to construct x from y: three colleagues, in three separate occasions,
have suggested that path lengths (as measured by sums of y variables) can yield valid values for
the x variables in each dimension: then, the cycle condition would prove consistency of x and y.
This is easy enough to explain informally. When we set about formalizing this suggestion, so that
it would be clear in all its parts, we realized that the proof would likely be as long as the one we
present here.
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G̃ = G[V ∖V (B)] has one fewer biconnected components than G, so, by induction,
G̃ has a 1-decomposition D′ = {G′

1, . . . , G′
t−1} for some t ∈ N with t > 1. We prove

that D = D′ ∪ {B} is a valid 1-decomposition of G. Condition (a) is verified since
D′ is a valid 1-decomposition by induction, and B is biconnected; condition (b) is
verified since the union of the graph in D is G by construction; for condition (c),
suppose there is i < t s.t. |V (Gi) ∩ V (B)| ≥ 2: this means there are two distinct
vertices u, v in both V (Gi) and V (B). Since Gi is connected, there must be a path
p from u to v in Gi, hence G[B ∪ V (p)] is a biconnected graph larger than B. But
B was assumed to be largest, so this is not possible, and (c) holds, which concludes
the proof. □

The second step proves the easier (⇐) direction of Thm. 3.2.
Proposition 3.6. For any YES instance (K, G) of the EDGP there is a vector
y∗ ∈ RKm which satisfies Eq. (8) and (10).
Proof. Assume that (K, G) is a YES instance of the EDGP. Then G has a realization
x∗ ∈ RnK in RK . We define y∗

ijk = x∗
ik − x∗

jk for all {i, j} ∈ E and k ≤ K. Since x∗

is a realization of G, by definition it satisfies Eq. (2), and, by substitution, Eq. (8).
Moreover, any realization of G satisfies Eq. (7) over each cycle by Lemma 3.1.
Hence, by replacement, it also satisfies Eq. (10). □

In the third step, we lay the groundwork towards the more difficult (⇒) direction
of Thm. 3.2. We proceed by contradiction: we assume that (K, G) is a NO instance
of the EDGP, and suppose that Eq. (8) and (10) have a non-empty feasible set Y .
For every y ∈ Y we consider the K linear systems

∀{i, j} ∈ E xik − xjk = yijk, (12)
for each k ≤ K, each with n variables and m equations. We square both sides then
sum over k ≤ K to obtain

∀{i, j} ∈ E
∑
k≤K

(xik − xjk)2 =
∑
k≤K

y2
ijk. (13)

By Eq. (8) we have∑
k≤K

y2
ijk = d2

ij , (14)

whence follows Eq. (2), contradicting the assumption that the EDGP is NO. So we
only need to show that there is a solution x to Eq. (12) for any given y ∈ Y . To this
effect, we shall exploit the 1-decomposition of G into biconnected graphs and trees
derived in Prop. 3.5. First, though, we have to show that Eq. (12) has a solution
if Y ̸= ∅ in the “base cases” of the 1-decomposition, namely trees and biconnected
graphs.
Lemma 3.7. Let G = (V, E) be a tree, and Y ̸= ∅. Then Eq. (12) has a solution
for every k ≤ K.
Proof. Let Mk be the matrix of each system Eq. (12), for k ≤ K; we aim at proving
that Mk and (Mk, yk) have the same rank, where yk = (yuvk | {u, v} ∈ E), and that
this rank is full. We proceed by induction on the size |E| of the tree. The base case,
where |E| = 1 and G consists of a single edge {u, v}, yields Mk = (1, −1) with rank
1 for each k ≤ K. By inspection, (Mk, yuvk) also has rank 1 for any yuvk. Consider
a tree G′ with one fewer edge (say, {u, v}) than G, such that V ∖V (G′) = {v}. Let
the corresponding system Eq. (12) M̃k = ỹk satisfy rank(M̃k) = rank(M̃k, ỹk), for
all k ≤ K. Then the shape of Mk is:

Mk =
(

M̃k 0
eu −1

)
,
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where eu = (0, . . . , 0, 1u, 0, . . . , 0). This shows that rank(Mk) = rank(M̃k) + 1, that
this rank is full, and hence also that rank(Mk) = rank((Mk, yk)), as claimed. □

Lemma 3.8. Let G = (V, E) be biconnected, and Y ̸= ∅ satisfying Eq. (8) and
(10). Then Eq. (12) has a solution for every k ≤ K.

Proof. We proceed by induction on the simple cycles of G. For the base case, we
consider G to be a graph consisting of a single cycle, with corresponding y satisfying
Eq. (8) and (10). Since G is a cycle, it has the same number of vertices and edges,
say q. This implies that, for any fixed k ≤ K, Eq. (12) is a linear system Mkx = yk

(where yk = (yuvk | {u, v} ∈ E) with a q × q matrix:

Mk =



1 −1
1 −1

1
. . .
. . . −1

−1 1

 . (15)

By Eq. (7) and by inspection of Eq. (15) it is clear that rank(Mk) = q − 1: then
Eq. (10) ensures that rank((Mk, yk)) = rank(Mk), and therefore that Eq. (12) has
a solution.

We now tackle the induction step. The incidence vectors in E of the cycles of any
graph are a vector space of dimension m−n+1 over the finite field F2 = {0, 1} [51].
We consider a fundamental cycle basis B of G (see Sect. 4). We assume that (a) G′

is a union of fundamental cycles in B′ ⊊ B, for which Eq. (12) has a solution x′ by
the induction hypothesis, and (b) that C is another fundamental cycle in B ∖ B′,
with a solution xC of Eq. (12) which exists by the base case. We aim at proving
that Eq. (12) has a solution for G′ ∪ C. Since G is biconnected, the induction can
proceed by ear decomposition [44], which means that G′ is also biconnected, and
that C is such that E(G′) ∩ E(C) = F is a non-empty path in G′.

By Eq. (10) applied to C, we have

∀k ≤ K
∑

{i,j}∈C

yijk = 0. (16)

Since x′ satisfies Eq. (12) by the induction hypothesis,

∀k ≤ K, {i, j} ∈ F x′
ik − x′

jk = yijk. (17)

We replace Eq. (17) in Eq. (16), obtaining

∀k ≤ K
∑

{i,j}∈F

(x′
ik − x′

jk) = −
∑

{i,j}∈E(C)∖F

yijk. (18)

Moreover, xC also satisfies Eq. (12) over C, hence we can replace the right hand
side of Eq. (18) with the corresponding terms in xC

ik − xC
jk to get:

∀k ≤ K
∑

{i,j}∈F

(x′
ik − x′

jk) +
∑

{i,j}∈E(C)∖F

(xC
ik − xC

jk) = 0. (19)

We now fix x′, and aim at modifying xC so that: (a) xC matches x′ on V (F ),
(b) the modified xC is still a solution of Eq. (12) on C. We set xC

ik to x′
ik for

each i ∈ V (F ), and consider the resulting linear system Eq. (12) given by Mk,
as in Eq. (15), for each k ≤ K, where we assume without loss of generality that
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V (F ) = {1, . . . , r} and V (C) = {r + 1, . . . , s}:
x′

1k − x′
2k = y12k (1)

x′
2k − x′

3k = y23k (2)
. . . . . .

...
...

...
x′

rk − xC
r+1,k = yr,r+1,k (r)

xC
r+1,k − xC

r+2,k = yr+1,r+2,k (r+1)
. . . . . .

...
...

...
xC

s−1,k − xC
sk = ys−1,s,k (s−1)

− x′
1k xC

sk = y1sk. (s)


(20)

The equations from (1) to (r−1) in Eq. (20) are satisfied by the induction hypothesis
since they only depend on x′, so we can remove them from the system and assume
x′ to be constant. We are left with:

− xC
r+1,k = yr,r+1,k − x′

rk (r)
xC

r+1,k − xC
r+2,k = yr+1,r+2,k (r+1)

. . . . . .
...

...
...

xC
s−1,k − xC

sk = ys−1,s,k (s−1)
xC

sk = y1sk + x′
1k. (s)


(21)

Summing up the left hand sides of Eq. (21), we obtain:
−xC

r+1,k + (xC
r+1,k − xC

r+2,k) + · · · + (xC
s−1,k − xC

sk) + xC
sk

= (−xC
r+1,k + xC

r+1,k) + · · · + (−xC
sk + xC

sk) = 0

for all k ≤ K, so the (s − r + 1) × (s − r + 1) matrix M̄k of the k-th linear system
Eq. (21) has rank ≤ s−r. On the other hand, eliminating the first or last row makes
it clear by inspection that the rest of the rows are linearly independent; therefore
the rank of M̄k is exactly s − r. Summing up the components of the right hand
side vector ȳk of Eq. (21), we obtain:

χ = −x′
rk + yr,r+1,k + yr+1,r+2,k + · · · + ys−1,s,k + y1sk + x′

1k

= (x′
1k − x′

rk) +
∑

{i,j}∈E(C)∖F

yijk.

We remark that
x′

1k − x′
rk = (x′

1k − x′
2k) + (x′

2k − x′
3k) + · · · + (x′

r−1,k + x′
rk)

=
∑

{i,j}∈F

(x′
ik − x′

jk) =
∑

{i,j}∈F

yijk

since x′ satisfies Eq. (12) by the induction hypothesis. Therefore

χ =
∑

{i,j}∈F

yijk +
∑

{i,j}∈E(C)∖F

yijk =
∑

{i,j}∈E(C)

yijk,

whence χ = 0 by Eq. (16). This implies that rank((M̄k, ȳk)) = rank(M̄k) = s − r.
Therefore, Eq. (21) has a solution, which yields the modified xC with properties
(a) and (b) given above. This concludes the induction step and the proof. □

We can finally give the proof of Thm. 3.2.
Proof of Thm. 3.2. The (⇐) part follows by Prop. 3.6. For the (⇒) part, we exploit
a 1-decomposition of G into trees and biconnected subgraphs, derive solutions to
Eq. (12) for each subgraph, and show that the solutions can be easily combined to
yield a solution to Eq. (12) for the whole graph G.

We assume without loss of generality that G is connected (otherwise each con-
nected component can be treated separately), and consider a 1-decomposition



Leo Liberti, Gabriele Iommazzo, Carlile Lavor & Nelson Maculan 9

D = {G1, . . . , Gr} of G. By Lemmata 3.7 and 3.8, there exist solutions x1, . . . , xr

to Eq. (12) applied to G1, . . . , Gr respectively. Consider the graph

D = (D, {{i, j} | 1 ≤ i ̸= j ≤ r ∧ |V (Gi) ∩ V (Gj)| = 1}).

By Lemma 3.4, D is a tree: otherwise, a cycle in D would be a contraction of a
cycle in G not included in a single Gi, against Lemma 3.4. This allows us to reorder
D so that, for each j > 1, there is a unique i < j such that {i, j} ∈ E(D).

We remark that, for each i ≤ r, xi is a realization of Gi in RK by Eq. (12)-(14).
More precisely, xi is a |V (Gi)| × K matrix xi = (xi

ℓk) so that xi
ℓ = (xi

ℓ1, . . . , xi
ℓK)

is the position of vertex ℓ ∈ V (Gi) in RK . Note that the realizations x1, . . . , xr

can be modified by translations without changing the values of y (by inspection of
Eq. (12)).

We now construct a solution x̄ of Eq. (12) for G by induction on D ordered as
described above. For the base case i = 1, we fix x1 in any way (e.g. by taking the
centroid of the rows of x1 to be the origin), and initialize the first |V (G1)| rows of
x̄ with those of x1. For any i > 1, we identify the unique predecessor j of i in the
order on D. The induction hypothesis ensures the existence of a solution x̄ of the
union of G1, . . . , Gj . Consider the cut vertex v in V (Gj) ∩ V (Gi) guaranteed by
definition of the order on D, and let x̄v ∈ RK be its position. Then the translation
x̃i = xi − 1(xi

v − x̄v)⊤ yields another valid solution of Eq. (12) applied to Gi by
translation invariance, and this solution is such that x̃i

v = x̄v. Therefore, using
the rows of x̃i, x̄ can be extended to a solution of Eq. (12) applied to the union of
G1, . . . , Gj and Gi, as claimed.

Thm. 3.2 can also be interpreted as a polynomial reduction of the EDGP to the
problem of finding a solution of Eq. (8) and (10).

Corollary 3.9. Deciding feasibility of Eq. (8) and (10) is NP-hard.

Proof. By reduction from EDGP using Thm. 3.2. □

A remarkable consequence of Thm. 3.2 is that it allows a decomposition of the
computation of the realization x into two stages: first, solve Eq. (8)-(10) to find a
feasible y∗; then solve

∀k ≤ K, {i, j} ∈ E xik − xjk = y∗
ijk (22)

to find a realization x∗. We note that Eq. (22) is just a restatement of Eq. (12)
universally quantified over k.

Corollary 3.10. Given a solution y∗ solving Eq. (8) and Eq. (10), any solution x∗

of Eq. (22) is a valid realization of the EDGP instance (K, G).

Proof. The feasibility of Eq. (22) with the right hand side replaced by a solution
y∗ of Eq. (8) and (10) follows directly from Thm. 3.2, since if such a y∗ exists then
the EDGP is feasible. □

The first stage is NP-hard by Cor. 3.9, while the second stage is tractable, since
solving linear systems can be done in polynomial time.

Remark 3.11. Note that Eq. (22) has Km equations, but its rank may be lower,
since there are only Kn variables: in particular, Eq. (22) may be an overdetermined
linear system. The feasibility of this system is guaranteed by Cor. 3.10; in partic-
ular, the steps of the proof of Thm. 3.2 imply that Eq. (22) loses rank w.r.t. Km
according to the incidence of the edges in the cycles of G. In other words, any
solution y′ to Eq. (10) provides a right hand side to Eq. (22) that makes the system
feasible.
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The issue with Thm. (3.2) is that it relies on the exponentially large family of
constraints Eq. (10). While this is sometimes addressed by algorithmic techniques
such as row generation, we shall see in the following that it suffices to consider a
polynomial set of cycles (which, moreover, can be found in polynomial time) in the
quantifier of Eq. (10).

4. The cycle vector space and its bases

We recall that incidence vectors of cycles (in a Euclidean space having |E| di-
mensions) form a vector space over a field F, which means that every cycle can be
expressed as a weighted sum of cycles in a basis. In this interpretation, a cycle in
G is simply a subgraph of G where each vertex has even degree: we denote their
set by C. This means that Eq. (10) is actually quantified over a subset of C, namely
the simple connected cycles. Every basis has cardinality m − n + a, where a is
the number of connected components of G. If G is connected, cycle bases have
cardinality m − n + 1 [51].

Our interest in introducing cycle bases is that we would like to quantify Eq. (10)
polynomially rather than exponentially in the size of G. Our goal is to replace “C
is any simple connected cycle in C” by “C is a cycle in a cycle basis of G”. In
order to show that this limited quantification is enough to imply every constraint
in Eq. (10), we have to show that, for each simple connected cycle C ∈ C, the cor-
responding constraint in Eq. (10) can be obtained as a weighted sum of constraints
corresponding to the basis elements.

Another feature of Eq. (10) to keep in mind is that edges are implicitly given
a direction: for each cycle, the term for the undirected edge {i, j} in Eq. (10) is
(xik − xjk). Note that while {i, j} is exactly the same vertex set as {j, i}, the
corresponding term is either positive or not, depending on the direction (i, j) or
(j, i). We deal with this issue by arbitrarily directing the edges in E to obtain a set
A of arcs, and considering directed cycles in the directed graph Ḡ = (V, A). In this
interpretation, the incidence vector of a directed cycle C of Ḡ is a vector cC ∈ Rm

satisfying [27, §2, p. 201]:

∀j ∈ V (C)
∑

(i,j)∈A

cC
ij =

∑
(j,ℓ)∈A

cC
jℓ. (23)

A directed circuit D of Ḡ is obtained by applying the edge directions from Ḡ
to a connected subgraph of G where each vertex has degree exactly 2 (note that a
directed circuit need not be strongly connected, although its undirected version is
connected). Its incidence vector cD ∈ {−1, 0, 1}m is defined as follows:

∀(i, j) ∈ A cD
ij ≜

 1 if (i, j) ∈ A(D)
−1 if (j, i) ∈ A(D)

0 otherwise

where we have used A(D) to mean the arcs in the subgraph D. In other words,
whenever we walk over an arc (i, j) in the natural direction i → j we let the (i, j)-th
component of cD be 1; if we walk over (i, j) in the direction j → i we assign a −1,
and otherwise a zero.

4.1. Constraints over cycle bases. The properties of undirected and directed
cycle bases have been investigated in a sequence of papers by many authors, culmi-
nating with [27]. We now prove that it suffices to quantify Eq. (10) over a directed
cycle basis.
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Proposition 4.1. Let B be a directed cycle basis of Ḡ over Q. Then Eq. (10) holds
if and only if:

∀k ≤ K, B ∈ B
∑

(i,j)∈A(B)

cB
ijyijk = 0. (24)

Proof. Necessity (10) ⇒ (24) follows because Eq. (10) is quantified over all cycles:
in particular, it follows for any undirected cycle in any undirected cycle basis.
Moreover, the signs of all terms in the sum of Eq. (24) are consistent, by definition,
with the arbitrary edge direction chosen for Ḡ.
Next, we claim sufficiency (24) ⇒ (10). Let C ∈ C be a simple cycle, and C̄ be its
directed version with the directions inherited from Ḡ. Since B is a cycle basis, we
know that there is a coefficient vector (γB | B ∈ B) ∈ R|B| such that:

cC̄ =
∑
B∈B

γBcB . (25)

We now consider the expression:

∀k ≤ K
∑
B∈B

γB

∑
(i,j)∈A(B)

cB
ijyijk. (26)

On the one hand, by Eq. (25), Eq. (26) is identically equal to
∑

(i,j)∈A(C̄) cC̄
ijyijk

for each k ≤ K; on the other hand, each inner sum in Eq. (26) is equal to zero by
Eq. (24). This implies

∑
(i,j)∈A(C̄) cC̄

ijyijk = 0 for each k ≤ K. Since C is simple
and connected, C̄ is a directed circuit. This implies that cC̄ ∈ {−1, 0, 1}. Now it
suffices to replace −yijk with yjik to obtain

∀k ≤ K
∑

{i,j}∈E(C)

yijk = 0,

where the edges on C are indexed in such a way as to ensure they appear in order
of consecutive adjacency. □

Obviously, if B has minimum (or just small) cardinality, Eq. (24) will be sparsest
(or just sparse), which is often a desirable property of linear constraints occurring
in MP formulations. Hence we should attempt to find short cycle bases B.

In summary, given a basis B of the directed cycle space of Ḡ where cB is the
incidence vector of a cycle B ∈ B, the following:

min
s≥0,y

∑
{i,j}∈E

(s+
ij + s−

ij)

∀(i, j) ∈ A(Ḡ)
∑

k≤K

y2
ijk − d2

ij = s+
ij − s−

ij

∀k ≤ K, B ∈ B
∑

(i,j)∈A(B)
cB

ijyijk = 0

 (27)

is a valid formulation for the EDGP. The solution of Eq. (27) yields a feasible vector
y∗. As pointed out in Cor. 3.10, we must then solve Eq. (22) to obtain a realization
x∗ for G.

4.2. How to find directed cycle bases. We require directed cycle bases over Q.
By [27, Thm. 2.4], each undirected cycle basis gives rise to a directed cycle basis (so
it suffices to find a cycle basis of G and then direct the cycles using the directions in
Ḡ). Horton’s algorithm [24] and its variants [19, 43] find a minimum cost cycle basis
in polynomial time. The most efficient deterministic variant is O(m3n) [43], and
the most efficient randomized variant has the complexity of matrix multiplication.
Existing approximation algorithms have marginally better complexity.
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It is not clear, however, that the provably sparsest constraint system will make
the DGP actually easier to solve. We therefore consider a much simpler algorithm:
starting from a spanning tree, we pick the m−n+1 circuits that each chord (i.e., non-
tree) edge defines with the rest of the tree. This algorithm [48] yields a fundamental
cycle basis (FCB). Finding the minimum FCB is known to be NP-hard [13], but
heuristics based on spanning trees prove to be very easy to implement and work
reasonably well [13] (optionally, their cost can be improved by an edge-swapping
phase [1, 31]).

5. The Eulerian cycle relaxation

In this section we construct a relaxation of Eq. (27). This is accomplished by
substituting the |B| cycle base constraints in Eq. (24) — occuring as the last line
in Eq. (27) — with a single constraint, obtained by considering a Eulerian circuit
in the given graph.

We follow a standard construction in order to find a Eulerian circuit, see e.g. [26].
We let G′ be the multigraph obtained from G by adding sufficiently many parallel
edges to G, so that the degree of each vertex in G′ is even. This can always be
done by [16], which implies that G′ is Eulerian, i.e. it has a cycle incident with
every edge in G′ exactly once. We let E be a Eulerian cycle in G′, and let Ē be
either of the two orientations of E obtained by walking over the cycle. We let Ḡ′

be the digraph induced by the Eulerian circuit Ē . For each {i, j} ∈ E let Hij be
the number of parallel edges between i, j in G′.

We note that Ḡ′ might have parallel and antiparallel arcs. Consider the family of
arc subset Hij = {(i′, j′, h) | h ≤ Hij ∧ {i′, j′} = {i, j}} of A(Ḡ′). We replace each
arc (i′, j′, h) ∈ Hij having h > 1 by an oriented 2-path pi′j′h = {(i′, vijh), (vijh, j′)}
involving a new added vertex vijh. Call G̃ the digraph obtained from Ḡ′ with this
replacement. We remark that G̃ is simple (it has no parallel/antiparallel arcs) by
construction. Moreover, G̃ is a Eulerian digraph: take the Eulerian circuit Ē in Ḡ′,
and, every time it traverses a parallel/antiparallel arc (i′, j′, h) ∈ Hij with h > 1, let
it traverse the oriented 2-path replacement pi′j′h instead: this is clearly a Eulerian
circuit in G̃, which we call C .

Next we consider the simple graph Ĝ obtained by replacing each arc in G̃ with
an edge. Let V̂ = {vijh | {i, j} ∈ E ∧ h > 1}, and Ê be the subset of edges of E(Ĝ)
obtained from losing the orientation of the arcs in the union⋃

(i′,j′,h)∈Hij
{i,j}∈E∧h>1

pi′j′h

of all the arcs from the 2-path replacements. We note that, by construction,

V̂ = V (Ĝ) ∖ V ∧ Ê = E(Ĝ) ∖ E. (28)

Let cC
ij ∈ {1, −1} be the orientation of (i, j) in C w.r.t. G̃; let Ĉ be the simple

Eulerian cycle in Ĝ corresponding to C .
We can now prove the main result of this section.

Proposition 5.1. The formulation
min

s≥0,y

∑
{i,j}∈E

(s+
ij + s−

ij)

∀(i, j) ∈ A(G̃)
∑

k≤K

y2
ijk − d2

ij = s+
ij − s−

ij

∀k ≤ K
∑

(i,j)∈C

cC
ijyijk = 0 (†)

 (29)

is a relaxation of Eq. (27).
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Proof. We first consider a variant of the cycle formulation in Eq. (27) applied to Ĝ,
where, from the constraints corresponding to Eq. (8) (second line of Eq. (27)), we
omit those indexed by Ê. We call this variant (⋆). We claim that (⋆) is an exact
reformulation of Eq. (27) applied to G. The claim holds because E(Ĝ)∖ Ê = E by
Eq. (28), and because the signs of the y variables are irrelevant in Eq. (8) since they
are squared. Now, since Ĉ is a Eulerian cycle in Ĝ, Eq. (†) is an aggregation of the
constraints in Eq. (24), which occur within the reformulation (⋆). So Eq. (29) is a
relaxation of (⋆). The proposition follows because of the claim. □

Note that Eq. (29) provides a solution ȳ which may not satisfy Eq. (24), which
also guarantee feasibility in Eq. (10) by Prop. 4.1. By Remark 3.11, this implies
that Cor. 3.10 is no longer applicable. In other words, the realization x of G cannot
in general be retrieved from ȳ using the linear system in Eq. (22), since ȳ might
well make Eq. (22) infeasibile. Eq. (22), however, can instead be integrated into
Eq. (29) as additional constraints. This invalidates the decomposition property of
Cor. 3.10, but allows the relaxation to yield a valid realization.

We therefore define the Eulerian cycle-based relaxation formulation, related to
Eq. (27), as follows:

min
s≥0,x,y

∑
{i,j}∈E

(s+
ij + s−

ij)

∀(i, j) ∈ A(G̃)
∑

k≤K

y2
ijk − d2

ij = s+
ij − s−

ij

∀k ≤ K
∑

(i,j)∈A(C )
cC

ijyijk = 0

∀{i, j} ∈ A(G̃) xik − xjk = yijk

∀k ≤ K
∑

i∈V

xik = 0.


(30)

For a formulation P , we denote by val(P ) its optimal objective function value.
Since Eq. (30) has additional constraints w.r.t. Eq. (29), we naturally have val(30) ≥
val(29). Moreover, for every instance for which a solution ȳ of Eq. (29) yields an
infeasible system Eq. (22), by inspection ȳ must be infeasible in Eq. (30), which
implies that there are cases where Eq. (30) is a strictly tighter relaxation than
Eq. (29). The very last constraint in Eq. (30) fixes the centroid of the points at the
origin, as in Eq. (4).

We can also see Eq. (30) from a different point of view, i.e. as a reformulation of
the EDGP (e.g, a reformulation of Eq. (4) or (5)) with (†) added on as a redundant
constraint — which would not be redundant in a convex relaxation of the nonconvex
constraints. More precisely, ∀i < j ≤ n ∥xi − xj∥2

2 = d2
ij is equivalent to

min
s≥0,x,y

∑
{i,j}∈E

(s+
ij + s−

ij)

∀(i, j) ∈ A(Ḡ)
∑

k≤K

y2
ijk − d2

ij = s+
ij − s−

ij

∀{i, j} ∈ A(Ḡ) xik − xjk = yijk

 (31)

by the optimization direction and replacement of yijk by xik − xjk. Then, because
we know that the sum of xik − xjk over cycles is zero [49], Eq. (29(†)) holds when
x, y are feasible in Eq. (31). Since the zero centroid constraint is always feasible
w.r.t. EDGP formulations, Eq. (30) is an exact reformulation of the EDGP. In this
sense, Eq. (29(†)) is redundant in Eq. (30). But if Eq. (30) is solved using sBB
techniques, the convex relaxation of Eq. (30) will be at least as tight as that of
Eq. (31).
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6. Computational experiments

The aim of this section is to compare the computational performance of the
following EDGP formulations:

(i) the cycle-based formulation in Eq. (27), where the realization is retrieved as
a post-processing stage using (22) according to Cor. 3.10;

(ii) the Eulerian cycle-based relaxation in Eq. (30);
(iii) the classic edge-based formulation in Eq. (4).
All of these formulations are nonconvex Nonlinear Programs (NLP), which are
generally NP-hard to solve. More specifically, all of these formulations are as hard
to solve as the EDGP, which is NP-hard.

As a solution algorithm, we used a very simple MultiStart (MS) heuristic based
on calling a local NLP solver from a random initial starting point at each iteration,
and updating the best solution found so far as needed: although there are bet-
ter heuristics around [38, 12, 46], MS is the best trade-off between implementation
simplicity and efficiency. Moreover, more efficient heuristics often change the formu-
lation during their execution, which may hinder the meaning of this computational
comparison between formulations.

We evaluate the quality of a realization x of a graph G according to mean (MDE)
and largest distance error (LDE), defined this way:

mde(x, G) = 1
|E|

∑
{i,j}∈E

∣∣∥xi − xj∥2 − dij

∣∣
lde(x, G) = max

{i,j}∈E

∣∣∥xi − xj∥2 − dij

∣∣.
The CPU time taken to find the solution may also be important, depending

on the application. In the control of underwater vehicles [3], for example, DGP
instances might need to be solved in real time. In other applications, such as
finding protein structure from distance data [8, 45] (our application of choice), the
CPU time is not so important.

Our tests were carried out on a single CPU of a 2.1GHz 4-CPU 8-core-per-CPU
machine with 64GB RAM running Linux. The local NLP solver used within the
MS heuristic was the IPOpt solver [9]. We remarked in some preliminary tests that
IPOpt was considerably slowed down by variants of Eq. (3) such as Eq. (5), which
essentially move a nonconvexity on the objective to one in the constraints. The
same holds for the cycle-based formulation in Eq. (27). We therefore reformulated
Eq. (27) as follows:

min
y

∑
{i,j}∈A(Ḡ)

(
∑

k≤K

y2
ijk − d2

ij)2

∀k ≤ K, B ∈ B
∑

(i,j)∈A(B)
cB

ijyijk = 0,

 (32)

and Eq. (30) similarly.
Our implementation consists of a mixture of Python 3 [54] and AMPL [18] inter-

faced through amplpy. Cycle bases and Eulerian cycles are found using networkX
[21]. Solutions to the feasible but possibly overdetermined linear systems in Eq. (22)
are obtained using an ℓ1 error minimization approach reformulated as a Linear Pro-
gramming problem solved with CPLEX [25].

6.1. Results. A benchmark on a diverse collection of randomly generated weighted
graphs of small size and many different types, with a very similar set-up to the one
discussed here, is presented in [34]. It was found that the cycle formulation finds
better MDE values, while the edge formulation generally finds better LDE values
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and is faster. Some results on proteins, obtained with only 3 MS iterations, were
also presented in [34].

The benchmark we consider here contains medium to large scale protein graph
instances realized in R3, all of which contain cycles. W.r.t. the protein results
presented in [34], we integrated one more instance, 1tii, which, at 69800 edges
and 5684 vertices, is considerably larger than all the others.

The results are given in Table 1. We report instance name, instance sizes m and
n, then performance measures MDE, LDE and CPU for cycle, Eulerian and edge-
based formulations. In the last three lines we report average, standard deviation,
and number of instances where the formulation performed best, for all performance
measures. In all tested cases, finding the cycle basis, the Eulerian cycles, and
solving Eq. (22) took a small fraction of the total solution time. The missing result
for instance 100d on the Eulerian cycle reformulation is due to a failure occurred
in the networkX module because the graph of 100d is not connected.

MDE LDE CPU
Instance m n cycle Eul edge cycle Eul edge cycle Eul edge
1guu 955 150 0.086 0.069 0.053 1.234 1.068 1.037 7.90 553.76 290.21
1guu-1 959 150 0.080 0.082 0.059 1.013 1.069 0.980 9.67 23.03 1.72
1guu-4000 968 150 0.112 0.106 0.092 1.073 1.431 0.936 8.68 10.77 1.56
pept 999 107 0.144 0.239 0.179 2.862 1.847 1.943 5.52 4.72 1.4
2kxa 2711 177 0.051 0.119 0.172 3.705 2.826 3.813 21.53 25.54 7.35
res_2kxa 2627 177 0.055 0.237 0.156 2.949 3.570 3.054 20.84 21.20 12.44
C0030pkl 3247 198 0.000 0.145 0.211 0.000 3.537 3.829 29.50 26.69 7.36
cassioli 4871 281 0.146 0.113 0.057 3.914 3.616 3.185 47.23 48.44 14.51
100d 5741 488 0.201 - 0.251 3.038 - 3.987 387.32 - 29.42
hlx_amb 6265 392 0.105 0.214 0.119 3.836 3.888 3.485 120.25 80.27 20.54
water 11939 648 0.146 0.490 0.243 3.579 4.196 4.281 1346.69 399.42 224.66
3al1 17417 678 0.062 0.126 0.216 3.451 3.175 4.059 835.10 433.69 123.45
1hpv 18512 1629 0.385 0.402 0.416 3.847 3.831 4.015 10138.00 2387.29 442.70
il2 45251 2084 0.385 0.049 0.107 4.422 4.204 4.583 18141.22 9904.81 5255.76
1tii 69800 5684 0.620 0.436 0.434 6.755 4.492 3.854 18846.37 38230.21 9039.28
avg 0.172 0.202 0.184 3.045 3.054 3.136 3331.05 3724.99 1031.49
stdev 0.167 0.144 0.118 1.673 1.204 1.272 6672.49 10272.3 2587.33
|best| 9 1 5 4 5 6 1 0 14

Table 1. Cycle formulation vs. edge formulation performance on
protein graphs (realizations in K = 3 dimensions).

It appears that, on average, there is relatively little difference between the qual-
ity performances of these three EDGP formulations on protein graphs of medium
and large sizes. CPU-time wise, of course, the edge formulation is best. Cycle
formulations, taken together, are definitely better than the edge formulation on
quality measures. The cycle-based formulation Eq. (27) is slightly better than the
other formulations for both MDE and LDE. The number of instances on which
Eq. (27) is best on quality measures is 13, against 11 for the edge-based formu-
lation. Eq. (27) was the only formulation by which a global optimum was found
(that of C0030pkl). All in all, we believe that our results show that cycle formula-
tions are credible competitors w.r.t. the well established edge-based formulations,
especially when the CPU time is not an important performance measure (which is
generally the case in the protein conformation application).
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