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Abstract. We propose a methodology, based on machine learning and
optimization, for selecting a solver configuration for a given instance.
First, we employ a set of solved instances and configurations in order
to learn a performance function of the solver. Secondly, we formulate a
mixed-integer nonlinear program where the objective/constraints explic-
itly encode the learnt information, and which we solve, upon the arrival
of an unknown instance, to find the best solver configuration for that
instance, based on the performance function. The main novelty of our
approach lies in the fact that the configuration set search problem is for-
mulated as a mathematical program, which allows us to a) enforce hard
dependence and compatibility constraints on the configurations, and b)
solve it efficiently with off-the-shelf optimization tools.
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1 Introduction

We address the problem of finding instance-wise optimal configurations for gen-
eral Mathematical Programming (MP) solvers. We are particularly motivated
by state-of-the-art general-purpose solvers, which combine a large set of diverse
algorithmic components (relaxations, heuristics, cutting planes, branching, . . . )
and therefore have a long list of user-configurable parameters; tweaking them can
have a significant impact on the quality of the obtained solution and/or on the
efficiency of the solution process (see, e.g., [14]). Good solvers have effective de-
fault parameter configurations, carefully selected to provide good performances
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in most cases. Furthermore, tuning tools may be available (e.g., [18, Ch. 10])
which run the solver, with different configurations, on one or more instances
within a given time limit, and record the best parameter values encountered.
Despite all this, the produced parameter configurations may still be highly sub-
optimal with specific instances. Hence, a manual search for the best parameter
values may be required. This is a highly nontrivial and time-consuming task,
due to the large amount of available parameters (see, e.g., [19]), which requires
a profound knowledge of the application at hand and an extensive experience in
solver usage. Therefore, it is of significant interest to develop general approaches,
capable of performing it efficiently and effectively in an automatic way.

This setting is an instance of the Algorithm Configuration Problem (ACP)
[27], which is defined as follows: given a target algorithm, its set of parameters,
a set of instances of a problem class and a measure of the performance of the
target algorithm on a pair (instance, algorithmic configuration), find the param-
eter configuration providing optimal algorithmic performance according to the
given measure, on a specific instance or instance set. Several domains can benefit
from automating this task. Some possible applications, beyond MP solvers (see,
e.g., [12] and references therein), are: solver configuration for the propositional
satisfiability problem, hyperparameter tuning of ML models or pipelines, algo-
rithm selection, administering ad-hoc medical treatment, etc. Our approach for
addressing the ACP on MP solvers is based on a two-fold process:

(i) in the Performance Map Learning Phase (PMLP), supervised Machine Learn-
ing (ML) techniques [25] are used to learn a performance function, which
maps some features of the instance being solved, and the parameter config-
uration, into some measure of solver efficiency and effectiveness;

(ii) the formal model underlying the ML methodology used in the PMLP is trans-
lated into MP terms; the resulting formulation, together with constraints
encoding the compatibility of the configuration parameter values, yields the
Configuration Set Search Problem (CSSP), a Mixed-Integer Nonlinear Pro-
gram (MINLP) which, for a given instance, finds the configuration providing
optimal performance with respect to the performance function.

The main novelty of our approach lies in the fact that we explicitly model and
optimize the CSSP using the mathematical description of the PMLP technique.
This is in contrast to most of the existing ACP approaches, which instead em-
ploy heuristics such as local searches [2, 16], genetic algorithms [3], evolutionary
strategies [8] and other methods [24]. Basically, most approaches consider the
performance function as a black box, even when it is estimated by means of some
ML technique and, therefore, they cannot reasonably hope to find a global mini-
mum when the number of parameters grows. Rather, one of the strengths of our
methodology is that it exploits the mathematical structure of the CSSP, solving
it with sophisticated, off-the-shelf MP solvers. Moreover, formulating the CSSP
by MP is advantageous as it allows the seamless integration of the compatibility
constraints on the configuration parameters, which is something that other ACP
methods may struggle with. The idea of using a ML predictor to define the un-
known components (constraints, objective) of a MP has been already explored in
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data-driven optimization. In general, it is possible to represent the ML model of
a mapping/relation as a MP (or, equivalently, a Constraint Programming model)
and optimize upon this [23]; however, while this is in principle possible, the set
of successful applications in practice is limited. Indeed, using this approach in
the ACP context is, to the best of our knowledge, new; it also comes with some
specific twists. We tested this idea with the following components: we configured
nine parameters of the IBM ILOG CPLEX solver [18], which we employed to
solve instances of the Hydro Unit Commitment (HUC) problem [7], we chose
Support Vector Regression (SVR) [28] as the PMLP learning methodology, and
we used the off-the-shelf MINLP solver Bonmin [5] to solve the CSSP.

The paper is structured as follows: in Sec. 2 we will review existing work
on algorithm configuration; in Sec. 3 we will detail our approach and provide
the explicit formulation of the CSSP with SVR; in Sec. 4 we will discuss some
computational results.

2 The algorithm configuration problem

Most algorithms have a very high number of configurable parameters of various
types (boolean, categorical, integer, continuous), which usually makes the ACP
very hard to solve in practice. Notably, this issue significantly affects MP solvers:
they are highly complex pieces of software, embedding several computational
components that tackle the different phases of the solution process; the many
available algorithmic choices are exposed to the user as a long list of tunable
parameters (for example, more than 150 in CPLEX [19]).

Approaches to the ACP can be compared based on how they fit into the
following two categories: Per-Set (PS) or Per-Instance (PI); offline or online. In
PS approaches, the optimal configuration is defined as the one with the best
overall performance over a set of instances belonging to the same problem class.
Therefore, PS approaches first find the optimal configuration for a problem class
and then use it for any instance pertaining to that class. The exploration of
the configuration set is generally conducted by means of heuristics, such as var-
ious local search procedures [2, 16], racing methods [24], genetic algorithms [3]
or other evolutionary algorithms [26]. In this context, an exception is, e.g., the
approached described in [15], which predicts the performance of the target al-
gorithm by random forest regression and then uses it to guide the sampling
in an iterative local search. PS approaches, however, struggle when the target
algorithm performance varies considerably among instances belonging to the
same problem class. In these cases, PI methodologies, which assume that the
optimal algorithmic configuration depends on the instance at hand, are likely
to produce better configurations. However, while PS approaches are generally
problem-agnostic, PI ones require prior knowledge of the problem at hand, to
efficiently encode each instance by a set of features. PI approaches typically fo-
cus on learning a good surrogate map of the performance function, generally
by performing regression: this approximation is used to direct the search in the
configuration set. In [17], for example, linear basis function regression is used to
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approximate the target algorithm runtime, which is defined as a map of both
features and configurations; then, for a new instance with known features, the
learnt map is evaluated at all configuration points in an exhaustive search, to
find the estimated best one. However, other approaches may be used: in [8],
for example, a map from instance features to optimal configuration is learnt by
a neural network; in [6] the ACP is restricted to a single binary parameter of
CPLEX, and a classifier is then trained to predict it. In [21], instead, CPLEX is
run on a given instance for a certain amount of computational resources, then
a ranking ML model is trained, on-the-fly, to learn the ordering of branch and
bound variables, and it is then used to predict the best branching variable, at
each node, for the rest of the execution. Another approach, presented in [20],
first performs clustering on a set of instances, then uses the PS methodology
described in [3] to find one good algorithmic configuration for each cluster. In
[31], instead, instances are automatically clustered in the leaves of a trained de-
cision tree, which also learns the best configuration for each leaf; at test time,
a new instance is assigned to a leaf based on its features, and it receives the
corresponding configuration. The purpose of an ACP approach is to provide a
good algorithmic configuration upon the arrival of an unseen instance. We call
a methodology offline if the learning happens before that moment, which is the
case for all the approaches cited above. Otherwise, we call an ACP methodology
online; these approaches normally use reinforcement learning techniques (see,
e.g., [10]) or other heuristics [4].

In our approach, we define the performance of the target algorithm as a func-
tion of both features and controls, in order to account for the fact that the best
configuration of a solver may vary among instances belonging to the same class
of problems; this makes our approach PI. Moreover, we perform the PMLP only
once, offline, which allows us to solve the resulting CSSP for any new instances in
a matter of seconds. What makes our approach stand out from other methodolo-
gies is that the learning phase is treated as white-box: the prediction problem of
the PMLP is formulated as a MP, which conveniently allows the explicit embed-
ding of a mathematical encoding of the estimated performance into the CSSP,
as its objective/constraints. This is opposed to treating the learned predictor as
a black-box, and therefore using it as an oracle in brute-force searches or similar
heuristics, that typically do not scale as well as optimization techniques.

3 The PMLP and the CSSP

Let A be the target algorithm, and:

– CA be the set of feasible configurations of A. We assume that each configu-
ration c ∈ CA can be encoded into a vector of binary and/or discrete values
representing categorical and numerical parameters, and CA can be described
by means of linear constraints;

– Π be the problem to be solved, consisting of an infinite set of instances, and
Π ′ ⊂ Π be the (finite) set of instances used for the PMLP;
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– FΠ be the set of feature vectors used to describe instances, encoded by
vectors of continuous or discrete/categorical values (in the latter case they
are labelled by reals);

– pA : FΠ × CA −→ R be the performance function which maps a pair (f, c)
(instance feature vector, configuration) to the outcome of an execution of A
(say in terms of the integrality gap reported by the solver after a time limit,
but other measures are possible).

With the above definitions, the PMLP and the CSSP are detailed as follows.

3.1 Performance Map Learning Phase

In the PMLP we use a supervised ML predictor, e.g., SVR, to learn the coefficient
vector θ∗ providing the parameters of a prediction model p̄A(·, ·, θ) : FΠ ×CA →
R of the performance function pA(·, ·). The training set for the PMLP is

S =
{

(fi, ci, pA(fi, ci)) | i ∈ {1 . . . s}
}
⊆ FΠ′ × CA × R, (1)

where s = |S| and the training set labels pA(fi, ci) are computed on the training
vectors (fi, ci). The vector θ∗ is chosen as to hopefully provide a good estimate of
pA on points that do not belong to S, with the details depending on the selected
ML technology.

3.2 Configuration Space Search Problem

For a given instance f and parameter vector θ, CSSP(f, θ) is the problem of
finding the configuration with best estimated performance p̄A(f, c, θ):

CSSP(f, θ) ≡ min
c∈CA

p̄A(f, c, θ) . (2)

The actual implementation of CSSP(f, θ) depends on the MP formulation se-
lected to encode p̄A, which may require auxiliary variables and constraints to
define the properties of the ML predictor. If p̄A yields an accurate estimate of
pA, we expect the optimum c∗cssp of CSSP(f, θ) to be a good approximation of
the true optimal configuration c∗ for solving f . However, we remark that a)
CSSP(f, θ) can be hard to solve, and b) it needs to be solved quickly (otherwise
one might as well solve the instance f directly). Hence, incurring the additional
computational overhead for solving the CSSP may be advantageous only when
the instance at hand is “hard”. Achieving a balance between PMLP accuracy
and CSSP cost is one of the challenges of this research.

4 Experimental results

We tested our approach on 250 instances of the HUC problem and on 9 parame-
ters of CPLEX, version 12.7. The PMLP and CSSP experiments were conducted
on an Intel Xeon CPU E5-2620 v4 @ 2.10GHz architecture, while CPLEX was
run on an Intel Xeon Gold 5118 CPU @ 2.30GHz. The pipeline was implemented
in Python 3.6.8 [29] and AMPL Version 20200110 [13]. In the following, we detail
the algorithmic set-up that we employed.



6 Gabriele Iommazzo et al.

4.1 Building the dataset

1. Features. The HUC is the problem of finding the optimal scheduling of a
pump-storage hydro power station, where the commitment and the power
generation of the plant must be decided in a short term period, in which
inflows and electricity prices are previously forecast. The goal is to maximize
the revenue given by power selling (see, e.g., [1]). The time horizon is fixed to
24h and the underlying hydro system is also fixed, so that all the instances
have the same size. Thus, only 54 elements that vary from day to day are
features: the date, 24 hourly prices, 24 hourly inflows, initial and target water
volumes, upper and lower bound admitted on the water volumes. We encode
them in a vector f of 54 continuous/discrete components. All the instances
have been randomly generated with an existing generator that accurately
reproduces realistic settings.

2. Configuration parameters. Thanks to preliminary tests, we select a subset
of 9 discrete CPLEX parameters (fpheur, dive, probe, heuristicfreq,
startalgorithm and subalgorithm from mip.strategy; crossover from
barrier; mircuts and flowcovers, from mip.cuts), for each of which we
consider between 2 and 4 different values. We then combine them so as
to obtain 2304 parameter configurations. A configuration is encoded by a
vector c ∈ { 0 , 1 }23, where each categorical parameter is represented by its
incidence vector.

3. Performance measure. We use the integrality gap to define pA(f, c). It has
been shown that MIP solvers can be affected by performance variability
issues (see, e.g., [22]), due to executing the solver on different computing
platforms, permuting rows/columns of a model, adding valid but redundant
constraints, performing apparently neutral changes to the solution process,
etc. In order to tackle this issue, first we sample three different random
seeds. For each instance feature vector f and each configuration c, we then
carry out the following procedure: (i) we run CPLEX (using the Python
API) 3 times on the instance, using the different random seeds, for 60 sec-
onds; (ii) we record the middle out of the three obtained performance val-
ues, to be assigned to the pair (f, c). At this point, our dataset contains
250× 2304 = 576000 records. The performance measure thus obtained from
CPLEX output, which we call pcpx(f, c), usually contains some extremely
large floating point values (e.g., whenever the CPLEX gap has a value close
to zero in the denominator), which unduly bias the learning process. We deal
with this issue as follows: we compute the maximum p̄cpx, over all values of
(the range of) pcpx, lower than a given threshold (set to 1e+5 in our experi-
ments), re-set all values of pcpx larger than the threshold to p̄cpx + 100, then
rescale pcpx so that it lies within the interval [ 0 , 1 ]. The resulting perfor-
mance measure, which in the following we call pml(f, c), is also the chosen
PMLP label. Moreover, we solve each HUC instance and we record the value
of its optimum; then, ∀(f, c), we compute the primal gap %prim and the dual
gap %dual, i.e.: the distance between the optimal value of f and the value
of the feasible solution found, and the distance between the value of the
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tightest relaxation found and the optimal value (both over the optimum).
We save pcpx, pml, %prim and %dual in our dataset. We remark that setting
the time-limit, imposed on CPLEX runs, to 60 seconds provides the solver
enough time to move past the preliminary processing and to begin working
on closing the gap, even for very hard instances (i.e., the ones with long pre-
processing times); this allows us to measure the actual impact that different
parameter configurations have on the chosen performance measure.

4. Feature engineering. We process the date in order to extract the season, the
week-day, the year-day, two flags called isHoliday and isWeekend, and we
perform several sine/cosine encodings, that are customarily used to treat
cyclical features. Moreover, we craft new features by computing statistics on
the remaining 54 features. This task takes around 12 minutes to complete
for the whole data set.

5. Splitting the dataset. We randomly divide the instances into 187 In-Sample
(IS) and 63 Out-of-Sample (OS), and split the dataset rows accordingly
(430848 IS and 145152 OS). We use the IS data to perform Feature Selection
(FS) and to train the SVR predictor; then, we assess the performance of
the PMLP-CSSP pipeline both on OS instances, to test its generalization
capabilities to unseen input, and on IS instances, to evaluate its performance
on the data that we learn from, as detailed below.

6. Feature selection. We use Python’s Pandas DataFrame’s corr function to
perform Pearson’s Linear Correlation and sklearn

RandomForestRegressor’s feature importances attribute to perform de-
cision trees’ Feature Importance, in order to get insights on which features
contribute the most to yield accurate predictions. A detailed explanation of
the employed FS techniques falls outside of the scope of this document. In
the following, we use the shorthand “variables” to refer to the whole list of
columns of the learning dataset. In order to perform FS, we use a dedicated
subset of the IS dataset, composed of 19388 records and only employed for
this task; performing the selected FS techniques on this dataset takes around
8 minutes, and reduces f to 22 components. For the configuration vectors we
consider three FS scenarios: noFS, kindFS and aggFS, yielding c vectors with,
respectively, 23, 14 and 10 components. We then filter the PMLP dataset ac-
cording to the FS scenario at hand. However, after this filtering, the dataset
may contain points with the same (f, c) but different labels pml(f, c). Thus,
for each instance: a) we delete the dataset columns that FS left out; b) we
perform Pandas’s group by on the 22 columns chosen by FS, then c) com-
pute the average pml of each group and use this as the new label (at this
point, rows with the same (f, c) have the same label); d) we remove the du-
plicate rows of the dataset by Pandas drop duplicates, keeping only one
row. Lastly, we select ∼11200 points for the PMLP.

4.2 PMLP experimental setup

The PMLP methodology of choice in this paper is SVR. Its advantages are:
(a) the PMLP for training an SVR can be formulated as a convex Quadratic
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Program (QP), which can be solved efficiently; (b) even complicated and possi-
bly nonlinear performance functions can be learned by using the “kernel trick”
[28]; (c) the solution of the PMLP for SVR provides a closed-form algebraic
expression of the performance map p̄A, which yields an easier formulation of
CSSP(f, θ). We use a Gaussian kernel during SVR training, which is the default
choice in absence of any other meaningful prior [9]. We assess the prediction
error of the predictor by Nested Cross Validation (NCV) [30]; furthermore, our
training includes a phase for determining and saving the hyperparameters and
the model coefficients of the SVR. These two tasks take approximately 4h in the
aggFS and in the kindFS scenarios, and 5h in the noFS one. We use Python’s
sklearn.model selection.RandomizedSearchCV for the inner loop of the NCV
and a customized implementation for the outer loop, and sklearn.svm.SVR as
the implementation of choice for the ML model.

A common issue in data-driven optimization is that using customary ML
error metrics may not lead to good solutions of the optimization problem (see,
for example, [11]). We tackled this issue by comparing the following metrics for
the CV-based hyperparameter tuning phase, both computed on pml: the classical
Mean Absolute Error MAE =

∑
i∈S |pi − p̄i|, where pi = pml(fi, ci) and p̄i =

p̄A(fi, ci); the custom metric cMAEδ =
∑
i≤s Lδ(pi, p̄i), δ ∈ {0.2, 0.3, 0.4}, where

Lδ(pi, p̄i) =


(p̄i − pi) · (1 + 1

1+exp(pi−p̄i) ) if pi ≤ δ and p̄i > pi
(pi − p̄i) · (1 + 1

1+exp(p̄i−pi) ) if pi ≥ 1− δ and p̄i < pi
(pi − p̄i) if δ ≤ pi ≤ 1− δ
0 otherwise.

4.3 CSSP experimental setup

The choice of a Gaussian kernel in the SVR formulation makes the CSSP a
MINLP with a nonconvex objective function p̄A. More precisely, for a given
instance with features f̄ , our CSSP is:

min
c∈CA

∑s
i=1 αi exp

(
−γ‖(fi, ci)− (f̄ , c)‖22

)
(3)

where, for all i ≤ s, (fi, ci) belong to the training set, αi are the dual solu-
tions of the SVR, γ is the scaling parameter of the Gaussian kernel, and CA
is defined by mixed-integer linear programming constraints encoding the de-
pendences/compatibility of the configurations. We use AMPL to formulate the
CSSP, and the nonlinear solver Bonmin [5], manually configured (with settings
heuristic dive fractional yes, algorithm B-Hyb, heuristic feasibility

pump yes) and with a time limit of 60 seconds, to solve it; then we retrieve,
for each instance f , the Bonmin solution c∗bm. Since we have enumerated all
possible configurations, we can also compute the “true” global optimum c∗cssp
= arg min{p̄A(f, c), c ∈ CA} for sake of comparison. In Table 1, we report the
percentage of cases where c∗bm = c∗cssp (“%glob. mins”) and, for all the instances
where this is not true, the average distance between p̄A(c∗bm) and p̄A(c∗cssp), over
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set FS %glob. mins avg loc. mins CSSP time

IS

noFS 83.69 2.013e−02 15.36
kindFS 87.70 2.758e−02 10.73
aggFS 84.49 3.122e−02 5.95

OS
noFS 85.32 1.594e−02 13.44
kindFS 90.48 2.014e−02 12.23
aggFS 93.25 1.957e−02 6.15

Table 1. Quality of Bonmin’s solutions, w.r.t. p̄

all the instances of the considered set (“avg loc. mins”); we also report the av-
erage CSSP solution time (“CSSP time”). The kindFS and the aggFS scenarios
achieve better results, in terms of “%glob mins”, than the noFS one. Further-
more, the local optima found by Bonmin are quite good ones: they are never
larger than 3.2% (see “avg loc. mins”) of c∗cssp. The time that Bonmin takes to
solve the CSSP is reduced from the noFS scenario to the aggFS one. This is due
to the fact that the kindFS and the aggFS CSSP formulations have less variables
than the noFS one, and so they are easier to solve. Bonmin needs, on average, less
than 16 seconds to solve any CSSP; however, devising more efficient techniques
to solve the CSSP (say, reformulations, decomposition, . . . ) might be necessary
if our approach is scaled to considerably more algorithmic parameters.

4.4 Results

In order to assess the performance of the approach, we retrieve pcpx(c
∗
bm), pcpx(ccpx)

(CPLEX default configuration), the primal and dual gap of c∗bm and ccpx from the
filtered dataset, for every IS and OS instance. Tab. 2 shows: the wins “%w” and

set FS %w %w+d %wnond avg d avg w avg l

IS

noFS 47.06 96.12 92.39 0 3.400e+14 6.493e+19
kindFS 48.91 98.02 96.12 0 3.415e+14 8.895e+19
aggFS 48.98 97.79 95.70 0 3.438e+14 8.530e+19

OS

noFS 33.73 83.73 67.50 0 3.148e+14 7.042e+19
kindFS 36.64 82.61 68.06 0 3.051e+14 5.385e+19
aggFS 33.86 77.05 59.78 0 3.335e+14 4.486e+19

Table 2. Pipeline quality w.r.t. pcpx(c
∗
bm), by FS scenario and IS/OS set

the non-worsenings “%w+d”, i.e., the percentage of instances such that pcpx(c
∗
bm)

is < or ≤ than pcpx(ccpx), by the first sixteen decimal digits of pcpx, in scientific
notation; the wins-over-nondraws “%wnond”, i.e., the percent wins over the in-
stances such that pcpx(c

∗
bm) 6= pcpx(ccpx); the average |pcpx(ccpx)− pcpx(c∗bm)|, over

all the instances which score a win (“avg w”) or a loss (“avg l”); the average
|pcpx(c∗bm) − p

cpx
| over all the other instances, where p

cpx
= minc∈CA pcpx(f, c)

for a given f (“avg d”). The “%w”, “%w+d” and “%wnond” are higher on IS
instances than on the OS ones. The IS instances are used as the training set, so
it is not surprising that p̄A is less accurate at OS instances; this results in worse
CSSP solutions for OS instances. The fact that “avg d” is always 0 implies that,
whenever CPLEX — configured by ccpx — can close the gap, our c∗bm proves
to be just as efficient. In the nondraws, our approach shows consistent gains
with respect to ccpx, both on IS and OS instances. From this we gather that
p̄A provides an accurate approximation of pcpx’s global minima, even at points
outside the training set. The noFS scenario presents the worst results. The aggFS
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scenario achieves the highest percent wins on IS instances; it also provides the
largest average wins and the smallest average loss, overall. However, the kindFS

scenario presents the best performance, by the highest “%w” on OS instances
and by the best overall “%wnond”. In Tab. 3, we report the percentage of IS

set FS metric %feas c∗bm %feas ccpx %bmprim %cpxprim %bmdual %cpxdual

IS

noFS

cMAE.2 96.79

100

1.504e−01

5.812e−01

9.708e−02

1.018e−01

cMAE.3 95.72 1.193e−01 8.104e−02
cMAE.4 98.40 1.143e−01 7.253e−02
MAE 98.93 1.058e−01 4.698e−02

kindFS

cMAE.2 98.75 6.975e−02 3.792e−02
cMAE.3 99.38 8.271e−02 4.245e−02
cMAE.4 98.48 7.085e−02 5.015e−02
MAE 96.43 7.183e−02 4.159e−02

aggFS

cMAE.2 98.04 7.850e−02 5.179e−02
cMAE.3 97.86 7.669e−02 5.111e−02
cMAE.4 97.59 9.267e−02 6.680e−02
MAE 97.59 7.747e−02 4.998e−02

OS

noFS

cMAE.2 87.30

100

6.968e−02

4.633e−01

7.931e−02

8.121e−02

cMAE.3 92.06 1.231e−01 8.500e−02
cMAE.4 88.89 1.305e−01 9.687e−02
MAE 93.65 1.371e−01 6.611e−02

kindFS

cMAE.2 89.68 1.471e−01 6.471e−02
cMAE.3 87.83 1.261e−01 1.189e−01
cMAE.4 91.01 1.541e−01 1.283e−01
MAE 92.86 1.486e−01 1.078e−01

aggFS

cMAE.2 89.42 2.054e−01 9.062e−02
cMAE.3 88.89 2.061e−01 9.395e−02
cMAE.4 88.10 2.075e−01 9.874e−02
MAE 88.62 1.792e−01 7.733e−02

Table 3. Quality of the solutions attained by CPLEX, configured by c∗bm and ccpx,
solving HUC instances, aggregated by IS/OS set, FS scenario and PMLP metric

and OS instances such that CPLEX, configured by c∗bm and ccpx, manages to
find a feasible solution (“%feas c∗bm” and “%feas ccpx”); for those instances, the
columns “%bmprim”, “%cpxprim”, “%bmdual” and “%cpxdual” report the average primal and dual
gap achieved by the solver. CPLEX’s default configuration always allows the
solver to obtain a feasible solution within the time-limit. Our approach presents
similar results on IS instances (“%feas c∗bm” is approximately 98%), but it has
slightly worse performances on the OS ones (“%feas c∗bm” is around 90%). How-
ever, the primal/dual gaps provided by our methodology are always better than
those achieved by using CPLEX’s default setting; actually, they are up to an
order of magnitude smaller, in IS instances. The cMAE.4 and the MAE met-
rics provide the highest “%feas c∗bm”, respectively, on IS instances (above 98%)
and OS instances (around 92%). On average, the MAE also provides the best
primal/dual gaps for IS instances, while the cMAE.4 is the best choice for OS
instances. Lastly, while the kindFS scenario prevails on IS instances, the noFS

one dominates on the OS ones.

5 Conclusions

The methodology presented in this paper conflates ML and MP techniques to
solve the ACP. All in all, the results show that the approach is promising, in that
the configurations that it provides typically have better primal/dual gaps than
CPLEX’s. The fact that, in a small fraction of the cases, no feasible solution is
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found depends on how infeasibility is encoded by pml; an easy fix to this issue
would be to use a performance measure promoting feasibility. Notably, it is
interesting that, in some cases, the custom cMAE error metric outperforms the
classical MAE. We also observed that using FS techniques is conducive to much
easier CSSP formulations, without overly affecting the quality of the solutions.
Overall, since choices taken at any point in the pipeline affect its final outcome,
a number of details have to be carefully considered for the approach to work.
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