GADTs meet Subtyping

Gabriel Scherer, Didier Rémy

Gallium - INRIA

2014

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of the following simple type:
type expr =
| Int of int
| Bool of bool

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of the following simple type:
type expr =
| Int of int
| Bool of bool

It can be turned into the more finely typed:
type α expr =
| Int of int with $\alpha=$ int
| Bool of bool with $\alpha=$ bool
type α expr =
| Int : int -> int expr
| Bool : bool -> bool expr

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of the following simple type:
type expr =
| Int of int
| Bool of bool
It can be turned into the more finely typed:
type α expr =
| Int of int with $\alpha=$ int
| Bool of bool with $\alpha=$ bool
type α expr =
| Int : int -> int expr
| Bool : bool -> bool expr

We can now write the following:

$$
\begin{aligned}
& \text { let eval : } \forall \alpha . \alpha \text { expr } \rightarrow \alpha=\text { function } \\
& \text { | Int } \mathrm{n} \rightarrow \mathrm{n} \\
& \text { | Bool b } \rightarrow \mathrm{b} \\
& (* \alpha=\text { int } *) \\
& (* \alpha=\text { bool } *)
\end{aligned}
$$

Motivating variance

Subtyping: $\sigma \leq \tau$ means "all values of σ are also values of τ ". Checked by set of decidable and incomplete inference rules.

$$
\frac{\sigma_{1} \geq \sigma_{1}^{\prime} \quad \sigma_{2} \leq \sigma_{2}^{\prime}}{\left(\sigma_{1} \rightarrow \sigma_{2}\right) \leq\left(\sigma_{1}^{\prime} \rightarrow \sigma_{2}^{\prime}\right)}
$$

Variance annotations lift subtyping to type parameters.

$$
\begin{aligned}
& \text { type }(-\alpha,=\beta,+\gamma) \mathrm{t}=(\alpha * \beta) \rightarrow(\beta * \gamma) \\
& \qquad \frac{\alpha \geq \alpha^{\prime} \quad \beta=\beta^{\prime} \quad \gamma \leq \gamma^{\prime}}{(\alpha, \beta, \gamma) \mathrm{t} \leq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) \mathrm{t}}
\end{aligned}
$$

For simple types, this is easy to check.

Variance for GADT: harder than it seems

 Ok?$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \operatorname{expr} \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

Variance for GADT: harder than it seems

Ok?

```
type \(+\alpha\) expr =
    | Val : \(\forall \alpha . \alpha \rightarrow \alpha\) expr
    | Prod : \(\forall \beta \gamma \cdot \beta\) expr \(* \gamma \operatorname{expr} \rightarrow(\beta * \gamma)\) expr
```

And this one?

```
type file_descr = private int (* file_descr \leq int *)
val stdin : file_descr
type +\alpha t =
    | File : file_descr -> file_descr t
let o = File stdin in
let o' = (o : file_descr t :> int t)
```


Variance for GADT: harder than it seems

Ok?

```
type \(+\alpha\) expr =
    | Val : \(\forall \alpha . \alpha \rightarrow \alpha\) expr
    | Prod : \(\forall \beta \gamma \cdot \beta\) expr \(* \gamma \operatorname{expr} \rightarrow(\beta * \gamma)\) expr
```

And this one?

```
type file_descr = private int (* file_descr \leq int *)
val stdin : file_descr
type +\alpha t =
    | File : file_descr -> file_descr t
let o = File stdin in
let o' = (o : file_descr t :> int t)
```

Breaks abstraction!
let project : $\forall \alpha . \alpha \mathrm{t} \rightarrow(\alpha \rightarrow$ file_descr $)=$ function
| File _ -> (fun x -> x)
project o' : int $->$ file_descr

Proving an example correct

type $+\alpha$ expr $=$
| Val : $\forall \alpha . \alpha \rightarrow \alpha$ expr
$\mid \operatorname{Prod}: \forall \beta \gamma . \beta$ expr $* \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}$
When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr.
Because I could almost write that conversion myself.

Proving an example correct

type $+\alpha$ expr $=$
| Val : $\forall \alpha . \alpha \rightarrow \alpha$ expr
$\mid \operatorname{Prod}: \forall \beta \gamma . \beta$ expr $* \gamma \operatorname{expr} \rightarrow(\beta * \gamma)$ expr
When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr.
Because I could almost write that conversion myself.
let coerce $\left(\alpha \leq \alpha^{\prime}\right): \alpha$ expr $\leq \alpha^{\prime} \operatorname{expr}=$ function
| Val (v : α) -> Val (v :> α^{\prime})
| Prod $\beta \gamma((\mathrm{b}, \mathrm{c}): \beta$ expr $* \gamma$ expr) ->
(* $\alpha=(\beta * \gamma), \quad \alpha \leq \alpha^{\prime}$; Prod? *)

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr.
Because I could almost write that conversion myself.
let coerce $\left(\alpha \leq \alpha^{\prime}\right): \alpha$ expr $\leq \alpha^{\prime}$ expr $=$ function
| Val (v : α) -> Val (v :> α^{\prime})
| Prod $\beta \gamma((\mathrm{b}, \mathrm{c}): \beta$ expr $* \gamma$ expr) ->
(* $\alpha=(\beta * \gamma), \quad \alpha \leq \alpha^{\prime}$; Prod? $*$)
(* if $\beta * \gamma \leq \alpha^{\prime}$, then α^{\prime} is of the form
$\beta^{\prime} * \gamma^{\prime}$ with $\beta \leq \beta^{\prime}$ and $\left.\gamma \leq \gamma^{\prime} *\right)$
Prod $\beta^{\prime} \gamma^{\prime}\left(\left(\mathrm{b}:>\beta^{\prime}\right.\right.$ expr), (c :> γ^{\prime} expr))

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr.
Because I could almost write that conversion myself.
let coerce $\left(\alpha \leq \alpha^{\prime}\right): \alpha$ expr $\leq \alpha^{\prime} \operatorname{expr}=$ function
| Val (v : α) -> Val (v :> α^{\prime})
| Prod $\beta \gamma((\mathrm{b}, \mathrm{c}): \beta$ expr $* \gamma$ expr) ->
(* $\alpha=(\beta * \gamma), \quad \alpha \leq \alpha^{\prime}$; Prod? *)
(* if $\beta * \gamma \leq \alpha^{\prime}$, then α^{\prime} is of the form $\beta^{\prime} * \gamma^{\prime}$ with $\beta \leq \beta^{\prime}$ and $\left.\gamma \leq \gamma^{\prime} *\right)$
Prod $\beta^{\prime} \gamma^{\prime}$ ((b :> β^{\prime} expr), ($\left.\mathrm{c}:>\gamma^{\prime} \operatorname{expr}\right)$)
Upward closure for $\tau[\bar{\alpha}]$:
If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then τ^{\prime} is also of the form $\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
Holds for $\alpha * \beta$, but fails for file_descr = private int.

In the general case

Consider a GADT $\alpha \mathrm{t}$ with a constructor of the form

$$
\text { | K of } \exists \bar{\beta}[\alpha=T[\bar{\beta}]] . \tau[\bar{\beta}]
$$

Imagine I have a value v of type $\sigma \mathrm{t}$, and I know $\sigma \leq \sigma^{\prime}$. Can I convert this σ t into a $\sigma^{\prime} \mathrm{t}$? Let's write the coercion code again:

```
match v:\sigma t with
```

| K arg \rightarrow ($\arg : \tau[\bar{\rho}]:>\tau[?])$

We can type-check this coercion term when $\sigma \leq \sigma^{\prime}$ if and only if

$$
\forall \bar{\rho}, \quad \sigma=T[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad \sigma^{\prime}=T\left[\bar{\rho}^{\prime}\right] \wedge \tau[\bar{\rho}] \leq \tau\left[\bar{\rho}^{\prime}\right]
$$

This extends both upward-closure and the usual variance check on τ.

The semantic criterion

A GADT declaration for $\overline{v \alpha} \mathrm{t}$ is correct if, for each constructor K of type $\exists \bar{\beta}[D[\bar{\alpha}, \bar{\beta}]] . \tau[\bar{\beta}]$, we have

$$
\forall \bar{\sigma} \sigma^{\prime} \bar{\rho}, \quad \bar{\sigma} \mathrm{t} \leq \bar{\sigma}^{\prime} \mathrm{t} \wedge D[\bar{\sigma}, \bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad D\left[\bar{\sigma}^{\prime}, \bar{\rho}^{\prime}\right] \wedge \tau[\bar{\rho}] \leq \tau\left[\bar{\rho}^{\prime}\right]
$$

How can we check this?
What does it even mean?

Our job: get something syntactic out of this semantic criterion, that compilers and humans can understand and use.

The plan

We will first explain how to check variance of type variables by a judgment $\Gamma \vdash \tau: v$.
Resembles previous work with a twist.

We will then extend it to a judgment $\Gamma \vdash \tau: v \Rightarrow v^{\prime}$ to check closure properties.

From there it's not too hard (but not too easy either) to derive the final syntactic formulation of the correctness criterion.

Variances

- + : only positive occurences
- = : both positive and negative
- - : only negative occurences

$\sigma \prec_{+} \tau$	$:=$	$\sigma \leq \tau$
$\sigma \prec-\tau$	$:=$	$\sigma \geq \tau$
$\sigma \prec=\tau$	$:=$	$\sigma=\tau$

Variances

- + : only positive occurences
- - : only negative occurences

- = : both positive and negative
- \downarrow : no occurence at all

$\sigma \prec_{+} \tau$	$:=$	$\sigma \leq \tau$
$\sigma \prec_{-} \tau$	$:=$	$\sigma \geq \tau$
$\sigma \prec_{=\tau}$	$:=$	$\sigma=\tau$
$\sigma \prec_{\bowtie} \tau$	$:=$	true

Variances

- + : only positive occurences
- - : only negative occurences

- = : both positive and negative
- \ltimes : no occurence at all

$\sigma \prec_{+} \tau$	$:=$	$\sigma \leq \tau$
$\sigma \prec_{-} \tau$	$:=$	$\sigma \geq \tau$
$\sigma \prec_{=} \tau$	$:=$	$\sigma=\tau$
$\sigma \prec_{\Perp} \tau$	$:=$	true

If α has variance v in ($\alpha \mathrm{t}$), and β variance w in $(\beta \mathrm{u})$, what is the variance of α in $((\alpha \mathrm{t}) \mathrm{u})$?

V.W	$=$	$+$	-	\bowtie
$=$	$=$	$=$	$=$	\bowtie
$+$	$=$	+	-	\bowtie
-	=	-	+	\bowtie
\bowtie	\bowtie	\bowtie	\bowtie	\bowtie

$\Gamma \vdash \tau: v$
We manipulate contexts Γ of variables with variances: $(-\alpha,=\beta,+\gamma)$. $\Gamma \vdash \tau: v$ means that "if the variables vary according to their variance, τ varies along $v^{\prime \prime}$.

$$
\begin{aligned}
& -\alpha,=\beta,+\gamma \vdash(\alpha * \beta) \rightarrow(\beta * \gamma):(+) \\
& =\alpha,=\beta,=\gamma \vdash(\alpha * \beta) \rightarrow(\beta * \gamma):(=)
\end{aligned}
$$

$\Gamma \vdash \tau: v$
We manipulate contexts Γ of variables with variances: $(-\alpha,=\beta,+\gamma)$. $\Gamma \vdash \tau: v$ means that "if the variables vary according to their variance, τ varies along $v^{\prime \prime}$.

$$
\begin{aligned}
& -\alpha,=\beta,+\gamma \vdash(\alpha * \beta) \rightarrow(\beta * \gamma):(+) \\
& =\alpha,=\beta,=\gamma \vdash(\alpha * \beta) \rightarrow(\beta * \gamma):(=)
\end{aligned}
$$

For instance, in the arrow case:

$$
\frac{\Gamma \vdash \sigma_{1}: v .-\quad \Gamma \vdash \sigma_{2}: v .+}{\Gamma \vdash\left(\sigma_{1} \rightarrow \sigma_{2}\right): v}
$$

Closure properties in depth

In our system, $\alpha * \beta$ is upward-closed. This is because the head type constructor, $(*)$, is closed.

For $\alpha \mathrm{t} \rightarrow(\beta * \gamma)$ to be upward-closed, $\alpha \mathrm{t}$ must be downward-closed. In the general case, we recursively check closure, according to variance.

What about variables?

What about variables?

[Reminder] Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$. Repeating a variable twice is dangerous.

What about variables?

[Reminder] Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$. Repeating a variable twice is dangerous.

Yet, $(\beta$ ref $) *(\beta$ ref $)$ is closed... because all occurences are invariant.

What about variables?

[Reminder] Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$. Repeating a variable twice is dangerous.

Yet, $(\beta$ ref $) *(\beta$ ref $)$ is closed... because all occurences are invariant.
We capture those subtleties through a partial variance operation $v_{1} \uparrow v_{2}$. Defined only when two occurences at variances v_{1} and v_{2} can be soundly combined.

$\Gamma \vdash \tau: v \Rightarrow v^{\prime}$

We can finally extend the judgment $\Gamma \vdash \tau: v$ to capture closure properties.
We want to say that $\Gamma \vdash \tau$ is v-closed if:

$$
\forall \tau^{\prime}, \bar{\sigma}, \tau[\bar{\sigma}] \prec_{v} \tau^{\prime} \Longrightarrow \exists \bar{\sigma}^{\prime}, \tau\left[\bar{\sigma}^{\prime}\right]=\tau^{\prime}
$$

We need a generalization:

$$
\forall \tau^{\prime}, \bar{\sigma}, \tau[\bar{\sigma}] \prec_{v} \tau^{\prime} \Longrightarrow \exists \bar{\sigma}^{\prime}, \tau\left[\bar{\sigma}^{\prime}\right] \prec_{v^{\prime}} \tau^{\prime}
$$

This is our $\Gamma \vdash \tau: v \Rightarrow v^{\prime}$ judgment.

Inference rules for the show

They rely on closure information for type constructors, and λ to merge contexts of subterms.

Inference rules for the show

They rely on closure information for type constructors, and $入$ to merge contexts of subterms.

$$
\begin{aligned}
& \text { TRIV } \\
& \frac{v \geq v^{\prime}}{\Gamma \vdash \tau: v \Rightarrow v^{\prime}} \quad \frac{\text { VAR }}{} \quad \frac{w \alpha \in \Gamma \quad w=v}{\Gamma \vdash \alpha: v \Rightarrow v^{\prime}}
\end{aligned}
$$

Constr

$$
\frac{\Gamma \vdash \overline{w \alpha} \mathrm{t}: v \text {-closed } \quad \Gamma=\lambda_{i} \Gamma_{i} \quad \forall i, \Gamma_{i} \vdash \sigma_{i}: v \cdot w_{i} \Rightarrow v^{\prime} \cdot w_{i}}{\Gamma \vdash \bar{\sigma} \mathrm{t}: v \Rightarrow v^{\prime}}
$$

How do you check those rules?

Theorem
$\Gamma \vdash \tau: v$ holds if and only if $\forall \bar{\sigma}, \bar{\sigma}^{\prime}, \bar{\sigma} \nprec \bar{\sigma}^{\prime} \Longrightarrow \tau[\bar{\sigma}] \prec_{v} \tau\left[\bar{\sigma}^{\prime}\right]$
Simple.

How do you check those rules?

Theorem
$\Gamma \vdash \tau: v$ holds if and only if $\forall \bar{\sigma}, \bar{\sigma}^{\prime}, \bar{\sigma} \nprec \Gamma \bar{\sigma}^{\prime} \Longrightarrow \tau[\bar{\sigma}] \prec_{v} \tau\left[\bar{\sigma}^{\prime}\right]$
Simple.

Theorem
$\Gamma \vdash \tau: v \Rightarrow(=)$ holds if and only if $\Gamma \vdash \tau: v$ and
$\forall \bar{\rho}, \tau^{\prime}, \tau[\bar{\rho}] \prec_{v} \tau^{\prime} \Longrightarrow \exists \bar{\rho}^{\prime}, \tau\left[\bar{\rho}^{\prime}\right]=\tau^{\prime}$
Soundness (syntactic \Longrightarrow semantic): routine.
Completeness (semantic \Longrightarrow syntactic): surprisingly hard.

Back to the check

From these primitives, we can devise a syntactic check for our initial semantic criterion. Assume we have the variances $\overline{V \alpha}$ and a constructor declaration of the form $\left(\exists \bar{\beta}\left[\bigwedge_{i \in I} \alpha_{i}=T_{i}[\bar{\beta}]\right] . \tau[\bar{\beta}]\right)$. Remember the sophisticated semantic criterion:

$$
\begin{array}{r}
\forall \bar{\sigma}, \bar{\sigma}^{\prime}, \bar{\rho}, \quad \bar{\sigma} \mathrm{t} \leq \bar{\sigma}^{\prime} \mathrm{t} \wedge\left(\sigma_{i}=T_{i}[\bar{\rho}]\right)_{i \in I} \Longrightarrow \\
\exists \bar{\rho}^{\prime}, \quad\left(\sigma_{i}^{\prime}=T_{i}\left[\bar{\rho}^{\prime}\right]\right)_{i \in I} \wedge \tau[\bar{\rho}] \leq \tau\left[\bar{\rho}^{\prime}\right]
\end{array}
$$

Back to the check

From these primitives, we can devise a syntactic check for our initial semantic criterion. Assume we have the variances $\overline{\overline{V \alpha}}$ and a constructor declaration of the form $\left(\exists \bar{\beta}\left[\bigwedge_{i \in I} \alpha_{i}=T_{i}[\bar{\beta}]\right] . \tau[\bar{\beta}]\right)$. Remember the sophisticated semantic criterion:

$$
\begin{array}{r}
\forall \bar{\sigma}, \bar{\sigma}^{\prime}, \bar{\rho}, \quad \bar{\sigma} \mathrm{t} \leq \bar{\sigma}^{\prime} \mathrm{t} \wedge\left(\sigma_{i}=T_{i}[\bar{\rho}]\right)_{i \in I} \Longrightarrow \\
\exists \bar{\rho}^{\prime}, \quad\left(\sigma_{i}^{\prime}=T_{i}\left[\bar{\rho}^{\prime}\right]\right)_{i \in I} \wedge \tau[\bar{\rho}] \leq \tau\left[\bar{\rho}^{\prime}\right]
\end{array}
$$

Theorem (Algorithmic criterion)

The soundness criterion above is equivalent to

$$
\exists \Gamma,\left(\Gamma_{i}\right)_{i \in I}, \quad \Gamma \vdash \tau:(+) \wedge \Gamma=\widehat{i \in I}, \Gamma_{i} \wedge \forall i \in I, \Gamma_{i} \vdash T_{i}: v_{i} \Rightarrow(=)
$$

(Oral explanation)

Phew!

That was the formal side of things.

Phew!

That was the formal side of things.

This criterion raises interesting design issues: private definitions make all OCaml types non-downward-closed. Should we restrict those? The opposite of OOP's final keyword.

Another solution

We showed, through hard work, how to check that equality constraints are upward-closed.

With subtyping in constructor types, variance is easy to check

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \text { I Val : } \forall \beta \geq \alpha . \beta \rightarrow \alpha \operatorname{expr} \\
& \text { I Prod : } \forall \beta \gamma[\alpha \geq(\beta * \gamma)] . \beta \text { expr } * \gamma \operatorname{expr} \rightarrow \alpha \operatorname{expr}
\end{aligned}
$$

Now pattern-matching only knows a subtyping relation:

$$
\begin{aligned}
& \text { let eval : } \forall \alpha . \alpha \text { expr } \rightarrow \alpha=\text { function } \\
& \text { | Int } \mathrm{n} \rightarrow>(\mathrm{n}:>\alpha) \\
& \\
& \text { | Bool } \mathrm{b} \rightarrow>(\mathrm{b}:>\alpha) \\
& (* \alpha \geq \text { bool } *)
\end{aligned}
$$

Less convenient: use of subtyping must be annotated explicitly, while equations where implicit.

Future work:

- Completeness of the S\&P criterion: type inhabitation.
- Verify behavior through type abstraction.
- Does this also happen with inductive dependent types?

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

Not anecdotal: raises deeper design questions.

We have a sound criterion that can be implemented easily in a type checker.

Bonus Slide: Variance and the value restriction

```
type (='a) ref = { mutable contents : 'a }
```

In a language with mutable data, generalizing any expression is unsafe (because you may generalize data locations):

```
# let test = ref [];;
val test : '_a list ref
```

Solution (Wright, 1992): only generalize values (fun () -> ref [], or []).

Painful when manipulating polymorphic data structures:

$$
\text { let test }=\text { id [] (* not generalized? *) }
$$

OCaml relies on variance for the relaxed value restriction covariant data is immutable, so covariant type variables may be safely generalized. Very useful in practice.

```
# let test = id [];;
val test : 'a list = []
```

