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Code inference

Many programs are fun to write. Some parts can be boring, though.

We get bored when there is no choice to make.
The compiler should guess this code for you: code inference.

Some existing examples:

Overloaded identifier disambiguation.

Type classes, implicits.

Proof assistants tactics.

We should infer any code uniquely determined by its type.
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Which types have a unique inhabitant?

Uniquely inhabited typing (Γ,A): inhabited (Γ ` t : A) and

Γ ` t : A ∧ Γ ` u : A =⇒ Γ ` t ' u : A

(`) in a given type system (STLC with atoms, products and sums)

(') modulo some program equivalence (here, βη)

Contribution: a decision procedure (algorithm) in this setting.
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Killer example

The Monad instance for Exception A
def
= A + E is canonical.

return: X → (X + E )

bind: X + E → (X → Y + E ) → Y + E

Functor instance also canonical.

Applicative functor, two distinct choices.

ap: (X → Y ) + E → X + E → Y + E

(Which argument to evaluate first?)
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βη-equivalence

Type system for pure language: enforces strong normalization.

(λx . t) u →β t[u/x ] (t : A→ B) =η λx . t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

match (L t) with

∣∣∣∣ L x1 → u1
R x2 → u2

→β u1[t/x1]

(t : A + B) =η match t with

∣∣∣∣ L x1 → L x1
R x2 → R x2
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βη-equivalence

Type system for pure language: enforces strong normalization.

(λx . t) u →β t[u/x ] (t : A→ B) =η λx . t x
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∀C [� : A + B],

C [t : A + B] =η match t with

∣∣∣∣ L x1 → C [L x1]
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Equivalence algorithm decidable (Neil Ghani, 1995). Unicity?
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Unicity

A search process, enumerating distinct normal forms.

We know about proof search.

We know about program equivalence.

Is there a proof or type system that characterizes distinct programs?
No duplicates.
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the Graal of program equivalence

A type system for “normal forms” (Γ `nf v : A) that is

canonical: syntactically distinct ⇒ semantically distinct

complete: each STLC program is equivalent to a typable normal form

Unicity test by goal-directed search in this system.

Γ `nf ? : A

Contribution: this, for simply-typed λ-calculus with sums.
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β-short (weak)-η-long does not cut it

f : (X → Y + Y ), x : X ` ? : X

x

match f x with

∣∣∣∣ L y1 → x
R y2 → x

match f x with

∣∣∣∣∣∣ L y1 → match f x with

∣∣∣∣ L z1 → x
R z2 → x

R y2 → x
. . .

In general: equivalent programs may differ by matching on the same
subterm at different places.

Need to quotient over that.
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Intuition

Enforce sum elimination as early as possible.

During goal-directed search, we don’t know yet which sums will be useful.
(Type system: maximally-early introduction is a non-local criterion)

Cannot enforce early elimination of all useful subterms.

Just eliminate all possible sums : saturation.
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Demo time

Implementation available:
https://gitlab.com/gasche/unique-inhabitant

f : (X → Y + Y ), x : X

`

? : X

Final result: zero, one or two (distinct) terms.
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Saturation

We alternate goal-directed (backward) search and (forward) saturation.

Saturation of Γ: compute all possible neutral terms Γ ` n : A + B and
deconstruct (some of) them.

freshness condition: neutrals typeable in a strictly smaller Γ are old,
don’t deconstruct them again

⇒ canonicity

subformula property: the sums (A + B) that appear in Γ suffice

two-or-more property: at most two different neutrals of each type suffice

⇒ termination
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Conclusion

We build upon proof theory and logic programming – focusing
(bidirectional typing, better).

Contribution: a focused saturating proof/type system, canonical and
computationally complete for STLC with sums.
⇒ decidability of unique inhabitation
⇒ new insights on program equivalence (empty type?)

In the paper: other practical examples, detailed related work.

Future work: extend to polymorphism and. . . dependent types.

Thanks. Any question?
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