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Context

A formal look at code inference (program synthesis).

Γ ` ? : A

We are searching among well-typed programs for a fixed (Γ,A).

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment Γ `foc t : A that is

complete: For any Γ ` t : A, there is an equivalent Γ `foc t ′ : A.

canonical: If Γ `foc t : A and Γ `foc u : A and t 6= u, then t and u
are not equivalent.

?

Focusing: not the complete answer (not canonical), but a good step
forward.
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Simply-typed lambda-calculus

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ ` t1 : A1

Γ ` t2 : A2

Γ ` (t1, t2) : A1 × A2

Γ ` t : A1 × A2

Γ ` πi t : Ai

Γ ` t : Ai

Γ ` σi t : A1 + A2

Γ ` t : A1 + A2

Γ, x1 : A1 ` u1 : C
Γ, x2 : A2 ` u2 : C

Γ ` match t with

∣∣∣∣ σ1 x1 → u1
σ2 x2 → u2

: C

(plus units 0 and 1)
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λ =⇒ sequents

Γ ` t : A1 × A2

Γ ` π1 t : A1
⇒

Γ ` A1 × A2

Γ ` A1
⇒

Γ,A1 ` C

Γ,A1 × A2 ` C

(, ) is non-disjoint union

4



Sequent calculus

Γ ` A Γ,B ` C

Γ,A→ B ` C
–

Γ,A ` B

Γ ` A→ B

Γ,Ai ` C

Γ,A1 × A2 ` C
–

Γ ` A1 Γ ` A2

Γ ` A1 × A2

Γ,A1 ` C Γ,A2 ` C

Γ,A1 + A2 ` C

Γ ` Ai

Γ ` A1 + A2
+

Invertible vs. non-invertible rules. Positives vs. negatives.
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Invertible phase

?

X + Y ` X

X + Y ` Y + X

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
– and their order does not matter.

Imposing this restriction gives a single proof of (X → Y )→ (X → Y )
instead of two (λf . f and λf . λx . f x).

After all invertible rules, negative context, positive goal.
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Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

X2, Y1 ` A

X2 × X3, Y1 ` A

X2 × X3, Y1 × Y2 ` A

X1 × X2 × X3,Y1 × Y2 ` A
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Demo Time

` ( 1 → X → ( Y + Z )) → X → (Y →W )→ (Z + W )

invertible rules
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Demo Time

Y ,Y → W ` Z + W Z ` Z + W

( 1 → X → ( Y + Z )) , X , Y →W ` Z + W

conclusion
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This was focusing

Focused proofs are structured in alternating phases,
invertible (boring) and non-invertible (focus).

Phases are forced to be as long as possible – to eliminate duplicate proofs.

The idea is independent from the proof system.
Applies to sequent calculus or natural deduction;
intuitionistic, classical, linear, you-name-it logic.
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Focused normal forms for λ-calculus

(Grammar with type annotations)

v ::= values
| λx . v
| (v1, v2)

| match x with

∣∣∣∣ σ1 x → v1
σ2 x → v2

| (f : P |X )

f ::= focused forms
| let (x : P) = n in v
| (n : X−)
| (p : P)

n ::= negative neutrals
| (x : N)
| πi n
| n p

p ::= positive neutrals
| (x : X+)
| σi p
| (v : N)
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