Focusing for code inference, a tutorial

Gabriel Scherer, Didier Rémy

Northeastern University

May 31, 2016

Context

A formal look at code inference (program synthesis).

$$
\Gamma \vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).

Context

A formal look at code inference (program synthesis).

$$
\Gamma \vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.

Context

A formal look at code inference (program synthesis).

$$
\Gamma \vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.
Question: is there a restricted judgment $\Gamma \vdash_{\text {foc }} t: A$ that is

Context

A formal look at code inference (program synthesis).

$$
\Gamma \vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.
Question: is there a restricted judgment $\Gamma \vdash_{\text {foc }} t: A$ that is

- complete: For any $\Gamma \vdash t: A$, there is an equivalent $\Gamma \vdash_{\text {foc }} t^{\prime}: A$.

Context

A formal look at code inference (program synthesis).

$$
\ulcorner\vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.
Question: is there a restricted judgment $\Gamma \vdash_{\text {foc }} t: A$ that is

- complete: For any $\Gamma \vdash t: A$, there is an equivalent $\Gamma \vdash_{\mathrm{foc}} t^{\prime}: A$.
- canonical: If $\Gamma \vdash_{\text {foc }} t: A$ and $\Gamma \vdash_{\text {foc }} u: A$ and $t \neq u$, then t and u are not equivalent.

Context

A formal look at code inference (program synthesis).

$$
\ulcorner\vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.
Question: is there a restricted judgment $\Gamma \vdash_{\text {foc }} t: A$ that is

- complete: For any $\Gamma \vdash t: A$, there is an equivalent $\Gamma \vdash_{\mathrm{foc}} t^{\prime}: A$.
- canonical: If $\Gamma \vdash_{\text {foc }} t: A$ and $\Gamma \vdash_{\text {foc }} u: A$ and $t \neq u$, then t and u are not equivalent.
?

Context

A formal look at code inference (program synthesis).

$$
\ulcorner\vdash ?: A
$$

We are searching among well-typed programs for a fixed (Γ, A).
Many of these programs are equivalent; considering duplicates is useless.
Question: is there a restricted judgment $\Gamma \vdash_{\text {foc }} t: A$ that is

- complete: For any $\Gamma \vdash t: A$, there is an equivalent $\Gamma \vdash_{\mathrm{foc}} t^{\prime}: A$.
- canonical: If $\Gamma \vdash_{\text {foc }} t: A$ and $\Gamma \vdash_{\text {foc }} u: A$ and $t \neq u$, then t and u are not equivalent.
?
Focusing: not the complete answer (not canonical), but a good step forward.

Simply-typed lambda-calculus

$$
\begin{array}{cc}
\overline{\Gamma, x: A \vdash x: A} \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: A \rightarrow B} & \frac{\Gamma \vdash t: A \rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B} \\
\frac{\Gamma \vdash t_{1}: A_{1}}{\Gamma \vdash t_{2}: A_{2}} & \frac{\Gamma \vdash t: A_{1} \times A_{2}}{\Gamma \vdash \pi_{i} t: A_{i}} \\
\frac{\Gamma \vdash t: A_{i}}{\left.\Gamma \vdash \sigma_{i} t: A_{1}+A_{2}\right): A_{1} \times A_{2}} & \frac{\Gamma \vdash t: A_{1}+A_{2}}{\Gamma \vdash \operatorname{match} t \text { with }} \begin{array}{l}
\sigma_{1}: x_{2}: A_{1} \vdash u_{1} \rightarrow u_{2}: C \\
\sigma_{2} x_{2} \rightarrow u_{2}
\end{array} \\
\hline
\end{array}
$$

(plus units 0 and 1)

$\lambda \Longrightarrow$ sequents

$$
\begin{aligned}
\frac{\Gamma \vdash t: A_{1} \times A_{2}}{\Gamma \vdash \pi_{1} t: A_{1}} \quad \Rightarrow \quad \frac{\Gamma \vdash A_{1} \times A_{2}}{\Gamma \vdash A_{1}} & \Rightarrow \frac{\Gamma, A_{1} \vdash C}{\Gamma, A_{1} \times A_{2} \vdash C} \\
& (,) \text { is non-disjoint union }
\end{aligned}
$$

Sequent calculus

$$
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C}-
$$

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

$$
\frac{\Gamma, A_{i} \vdash C}{\Gamma, A_{1} \times A_{2} \vdash C}-
$$

$$
\frac{\Gamma, A_{1} \vdash C \quad \Gamma, A_{2} \vdash C}{\Gamma, A_{1}+A_{2} \vdash C}
$$

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \times A_{2}}
$$

$$
\frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1}+A_{2}}+
$$

Invertible vs. non-invertible rules. Positives vs. negatives.

Invertible phase

$$
\frac{\frac{?}{X+Y \vdash X}}{X+Y \vdash Y+X}
$$

If applied too early, non-invertible rules can ruin your proof.
Focusing restriction 1: invertible phases
Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Invertible phase

$$
\frac{\frac{?}{X+Y \vdash X}}{X+Y \vdash Y+X}
$$

If applied too early, non-invertible rules can ruin your proof.
Focusing restriction 1: invertible phases
Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Imposing this restriction gives a single proof of $(X \rightarrow Y) \rightarrow(X \rightarrow Y)$ instead of two ($\lambda f . f$ and $\lambda f . \lambda x . f x)$.

After all invertible rules, negative context, positive goal.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rules on it.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rules on it.
Focusing restriction 2: non-invertible phase
When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rules on it.
Focusing restriction 2: non-invertible phase
When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial ! Example of removed redundancy:

$$
\begin{array}{cc}
\frac{X_{2},}{}, Y_{1} \vdash A \\
\hline X_{2} \times X_{3}, & Y_{1} \vdash A \\
\hline X_{2} \times X_{3}, & Y_{1} \times Y_{2} \vdash A \\
\hline X_{1} \times X_{2} \times X_{3}, Y_{1} \times Y_{2} \vdash A
\end{array}
$$

Demo Time

$\vdash(1 \rightarrow X \rightarrow(Y+Z)) \rightarrow X \rightarrow(Y \rightarrow W) \rightarrow(Z+W)$
invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)) \vdash X \rightarrow(Y \rightarrow W) \rightarrow(Z+W)
$$

invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X \vdash(Y \rightarrow W) \rightarrow(Z+W)
$$

invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

choice of focus

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

choice of focus

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

non-invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

non-invertible rules

Demo Time

$$
(1 \rightarrow X \rightarrow(Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W
$$

invertible rules

Demo Time

$Y, Y \rightarrow W \vdash Z+W$	$Z \vdash Z+W$
$(1 \rightarrow X \rightarrow(Y+Z)), \quad X$,	$Y \rightarrow W \vdash Z+W$

invertible rules

Demo Time

$Y, Y \rightarrow W \vdash Z+W$	$Z \vdash Z+W$
$(1 \rightarrow X \rightarrow(Y+Z)), \quad X$,	$Y \rightarrow W \vdash Z+W$

choice of focus

Demo Time

$$
\begin{array}{cl}
Y, Y \rightarrow W \vdash Z+W & Z \vdash Z+W \\
\hline(1 \rightarrow X \rightarrow(Y+Z)), \quad X, & Y \rightarrow W \vdash Z+W
\end{array}
$$

conclusion

This was focusing

Focused proofs are structured in alternating phases, invertible (boring) and non-invertible (focus).

Phases are forced to be as long as possible - to eliminate duplicate proofs.

The idea is independent from the proof system. Applies to sequent calculus or natural deduction; intuitionistic, classical, linear, you-name-it logic.

Focused normal forms for λ-calculus

(Grammar with type annotations)
$v::=$ values
$\mid \lambda x . v$
$\mid\left(v_{1}, v_{2}\right)$
\mid match x with $\left\lvert\, \begin{aligned} & \sigma_{1} x \rightarrow v_{1} \\ & \sigma_{2} x \rightarrow v_{2}\end{aligned}\right.$
$\mid(f: P \mid X)$
$n::=$ negative neutrals

$$
\left\lvert\, \begin{aligned}
& (x: N) \\
& \pi_{i} n \\
& n p
\end{aligned}\right.
$$

$$
f::=\text { focused forms }
$$

$$
\mid \operatorname{let}(x: P)=n \text { in } v
$$

$$
\mid\left(n: X^{-}\right)
$$

$$
\mid(p: P)
$$

$p::=$ positive neutrals
$\mid\left(x: X^{+}\right)$
$\sigma_{i} p$
| ($v: N$)

