Focusing for code inference, a tutorial

Gabriel Scherer, Didier Rémy

Northeastern University

May 31, 2016

A formal look at **code inference** (program synthesis).

Γ ⊢ **?** : *A*

We are searching among well-typed programs for a fixed (Γ, A) .

A formal look at **code inference** (program synthesis).

 $\Gamma \vdash$? : A

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

A formal look at **code inference** (program synthesis).

 $\Gamma \vdash$? : A

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment $\Gamma \vdash_{foc} t : A$ that is

A formal look at **code inference** (program synthesis).

 $\Gamma \vdash$? : A

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment $\Gamma \vdash_{foc} t : A$ that is

• **complete**: For any $\Gamma \vdash t : A$, there is an equivalent $\Gamma \vdash_{foc} t' : A$.

A formal look at **code inference** (program synthesis).

 $\Gamma \vdash$? : A

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment $\Gamma \vdash_{foc} t : A$ that is

- **complete**: For any $\Gamma \vdash t : A$, there is an equivalent $\Gamma \vdash_{foc} t' : A$.
- **canonical**: If $\Gamma \vdash_{foc} t : A$ and $\Gamma \vdash_{foc} u : A$ and $t \neq u$, then t and u are not equivalent.

A formal look at **code inference** (program synthesis).

 $\Gamma \vdash$? : A

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment $\Gamma \vdash_{foc} t : A$ that is

- **complete**: For any $\Gamma \vdash t : A$, there is an equivalent $\Gamma \vdash_{foc} t' : A$.
- **canonical**: If $\Gamma \vdash_{foc} t : A$ and $\Gamma \vdash_{foc} u : A$ and $t \neq u$, then t and u are not equivalent.
- ?

A formal look at **code inference** (program synthesis).

Γ ⊢ **?** : *A*

We are searching among well-typed programs for a fixed (Γ, A) .

Many of these programs are equivalent; considering duplicates is useless.

Question: is there a restricted judgment $\Gamma \vdash_{foc} t : A$ that is

- **complete**: For any $\Gamma \vdash t : A$, there is an equivalent $\Gamma \vdash_{foc} t' : A$.
- **canonical**: If $\Gamma \vdash_{foc} t : A$ and $\Gamma \vdash_{foc} u : A$ and $t \neq u$, then t and u are not equivalent.

?

Focusing: not the complete answer (not canonical), but a good step forward.

Simply-typed lambda-calculus

$$\Gamma, \mathbf{x} : \mathbf{A} \vdash \mathbf{x} : \mathbf{A}$$

$\Gamma, \mathbf{x} : \mathbf{A} \vdash \mathbf{t} : \mathbf{B}$	$\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A$	A
$\overline{\Gamma \vdash \lambda x. t : A \rightarrow B}$	Γ ⊢ <i>t u</i> : <i>B</i>	_

$$\frac{\Gamma \vdash t_1 : A_1}{\Gamma \vdash t_2 : A_2} \qquad \qquad \frac{\Gamma \vdash t : A_1 \times A_2}{\Gamma \vdash (t_1, t_2) : A_1 \times A_2}$$

 $\frac{\Gamma \vdash t : A_i}{\Gamma \vdash \sigma_i \ t : A_1 + A_2} \qquad \frac{\Gamma \vdash t : A_1 + A_2}{\Gamma \vdash \mathsf{match} \ t \ \mathsf{with}} \quad \frac{\begin{array}{c} \Gamma, x_1 : A_1 \vdash u_1 : C \\ \Gamma, x_2 : A_2 \vdash u_2 : C \end{array}}{\sigma_1 \ x_1 \rightarrow u_1} \\ c \\ \sigma_2 \ x_2 \rightarrow u_2 \end{array}$

(plus units 0 and 1)

$$\lambda \Longrightarrow sequents$$

$$\frac{\Gamma \vdash t : A_1 \times A_2}{\Gamma \vdash \pi_1 \ t : A_1} \qquad \Rightarrow \qquad \frac{\Gamma \vdash A_1 \times A_2}{\Gamma \vdash A_1} \qquad \Rightarrow \qquad \frac{\Gamma, A_1 \vdash C}{\Gamma, A_1 \times A_2 \vdash C}$$

(,) is ${\bf non}{\rm -disjoint}$ union

Sequent calculus

$$\begin{array}{ccc}
\Gamma \vdash A & \Gamma, B \vdash C \\
\hline \Gamma, A \to B \vdash C \\
\hline \hline & \Gamma, A_i \vdash C \\
\hline & \Gamma, A_1 \times A_2 \vdash C \\
\hline \hline & \Gamma, A_1 \vdash C \\
\hline & \Gamma, A_1 + A_2 \vdash C \\
\hline \hline & \Gamma \vdash A_1 + A_2 \\
\hline & \Gamma \vdash A_1 \\
\hline & \Gamma \vdash A_2 \\
\hline & \Gamma \vdash A_1 \\
\hline & \Gamma \vdash A_2 \\
\hline & \Gamma \vdash A_1 \\
\hline & \Gamma \vdash A_2 \\
\hline & \Gamma \vdash A_$$

Invertible vs. non-invertible rules. Positives vs. negatives.

Invertible phase

? $X + Y \vdash X$ $\overline{X + Y \vdash Y + X}$

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible – and their order does not matter.

Invertible phase

 $\overline{X + Y \vdash X}$ $\overline{X + Y \vdash Y + X}$

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible – and their order does not matter.

Imposing this restriction gives a single proof of $(X \to Y) \to (X \to Y)$ instead of two $(\lambda f, f \text{ and } \lambda f, \lambda x, f x)$.

After all invertible rules, negative context, positive goal.

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rules on it.

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible – until its polarity changes.

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. **Non-trivial !** Example of removed redundancy:

$$\frac{\begin{array}{ccc}X_2, & Y_1 \vdash A\\ \hline X_2 \times X_3, & Y_1 \vdash A\\ \hline X_2 \times X_3, & Y_1 \times Y_2 \vdash A\\ \hline X_1 \times X_2 \times X_3, & Y_1 \times Y_2 \vdash A\end{array}$$

$\vdash (1 \rightarrow X \rightarrow (Y + Z)) \rightarrow X \rightarrow (Y \rightarrow W) \rightarrow (Z + W)$

$(1 \rightarrow X \rightarrow (Y + Z)) \vdash X \rightarrow (Y \rightarrow W) \rightarrow (Z + W)$

$(1 \rightarrow X \rightarrow (Y+Z)), X \vdash (Y \rightarrow W) \rightarrow (Z+W)$

$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$

$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$

choice of focus

$(1 \rightarrow X \rightarrow (Y + Z)), \quad X, \quad Y \rightarrow W \vdash Z + W$

choice of focus

$(1 \rightarrow X \rightarrow (Y + Z)), X, Y \rightarrow W \vdash Z + W$

non-invertible rules

$(1 \rightarrow X \rightarrow (Y + Z)), X \rightarrow W \vdash Z + W$

non-invertible rules

$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$

choice of focus

conclusion

This was focusing

Focused proofs are structured in alternating phases, invertible (boring) and non-invertible (focus).

Phases are forced to be as long as possible – to eliminate duplicate proofs.

The idea is independent from the proof system. Applies to sequent calculus or natural deduction; intuitionistic, classical, linear, you-name-it logic.

Focused normal forms for λ -calculus

(Grammar with type annotations)

$$v ::= values | $\lambda x. v$
 | (v_1, v_2)
 | match x with $\sigma_1 x \rightarrow v_1$
 | $\sigma_2 x \rightarrow v_2$
 | $(f: P | X)$$$

n ::= negative neutrals| (x : N) $| <math>\pi_i n$ | n p

$$f ::= \text{focused forms} \\ | \text{let} (x : P) = n \text{ in } v \\ | (n : X^-) \\ | (p : P) \end{cases}$$

$$p ::= \text{positive neutrals} \\ | (x : X^+) \\ | \sigma_i p \\ | (v : N)$$