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Which types have a unique inhabitant?

@ in a given type system (STLC with atoms, products and sums)

e modulo some program equivalence (/37)

Motivation: a principal way to study code inference.

We can infer the instance declaration for the exception monad A+— A+ E:

X+E—-X—>Y+E)—-Y+E



STLC with sums

Ax:AFt: B AFt:A—B AFu:A
AFXx.t:A— B AtFtu:B
AFt: A Atu:B AFt:A;xA
Ax:AEx: A
AF(t,u): AxB AbFmit: A
At A

AbFojt: AL+ A

AFt: A+ A Axy:Abu: C Axp: Ak C
AF (5({', X1.U1, X2.U2) : C




[n-equivalence

(Ax.t) u =g tu/x] (t:A—= B) =y Ax.tx
mi (t1, ) =5 t; (t:AxB) =, (m t,m t)
d(oi t, x1.u1, x2.up) =g ui[t/xi]
vC[O], C[t:A+ B] =, d(t, x.Clo1 x], x.Cloz x])

Equivalence algorithm dedicable — since 1995.



A primer on focusing



Sequent calculus

(Can be done in natural deduction, but less regular)

AAFB
AFAB

AFA  ABFC
AA—BFC

AF A AF A

AAFC
A,Al*AzF C

AF A x A
AAFC  AAFC N
AAL+AEC AF A+ A

Invertible vs. non-invertible rules.
Negatives (interesting on the left): products, arrow, atoms.
Positives (interesting on the right): sums, atoms.
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If applied too early, non-invertible rules can ruin your proof.
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Invertible phase

?
X+YEX
X+YEX+Y

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (X — Y) — (X — Y)
instead of two (Af.f and Af.\x. f x).
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Non-invertible phases

After all invertible rules, ', = Pp

Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

Xo, YiFA
Xo * Xz, YiFA
Xox X3, YixYoEA

X1 Xox X3, YixYoFA




This was focusing

Focused proofs are structured in alternating phases,
invertible (boring) and non-invertible (focus).

Phases are forced to be as long as possible — to eliminate duplicate proofs.

The idea is independent from the proof system.
Applies to sequent calculus or natural deduction;
intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to Sn-normal forms (at least
for products and arrows). But the fun is in the search.



Back to unique inhabitants



You said (3-short 7-long normal forms?

In presence of negative connectives only (or positive only), focused proof
search enumerates distinct normal forms.

This fails when sums (positives) are mixed with arrows (negatives).
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You said (3-short 7-long normal forms?

In presence of negative connectives only (or positive only), focused proof
search enumerates distinct normal forms.

This fails when sums (positives) are mixed with arrows (negatives).

(Ad break)
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The obvious idea...

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.
Stop if two proofs are found.
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Enumerate all derivations in a reasonable (focused) system.
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Stop if two proofs are found.

Infinitely many duplicates — non-termination.
fF:X=Y+Y),x: XF?7: X

X
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The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.

Stop if two proofs are found.

Infinitely many duplicates — non-termination.
fF:X=Y+Y),x: XF?7: X

X

6(fX7 y1.X, )/2‘X)
o(f x, y1.0(f x, z1.x, 22.X), ¥2.X)

We need a more canonical proof search process.
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Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:
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Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

Provability completeness: at least one
Computational completeness: all programs
Unicity completeness: at least two

Canonicity: no duplicates — more canonical

Termination — of failure

Focused proof search: computationally complete, not canonical.
Focused proof search quotiented by equivalence: complete, canonical,
non-terminating.

Forward method with subsumption: provability complete but not unicity
complete.
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Our approach

We promised an algorithm that decides uniqueness of inhabitation.
We distinguish specification and implementation.
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Our approach

We promised an algorithm that decides uniqueness of inhabitation.
We distinguish specification and implementation.

Specification: a novel focused logic that is computationally complete
and canonical.

Implementation: a restriction of this logic that is unicity complete and
terminating.
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Sum equivalence

fun £ x >
match £ x with

fun y >
match £ x with
match f y with ...

Sum equivalence algorithms move case-splits up — then merge them.
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http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf

Sum equivalence
fun £ x >
match f x with
fun y >
match £ x with
match f y with ...
Sum equivalence algorithms move case-splits up — then merge them.

Moving up corresponds to the core idea of maximal multi-focusing:
non-invertible phases should happen as early as possible.

http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf
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Backward search for maximal multi-focusing?
Maximality is a global property.

Building a maximal proof by goal-directed proof search seems difficult. At
a focusing point I' = 7 : P, we would have to guess which non-invertible
phases will be used deep in ?, and perform them now.
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Backward search for maximal multi-focusing?

Maximality is a global property.

Building a maximal proof by goal-directed proof search seems difficult. At
a focusing point I' = 7 : P, we would have to guess which non-invertible
phases will be used deep in ?, and perform them now.

Our answer: let's perform all the non-invertible sequences we can, even
those that won't be needed by any proof.
Saturating proof search: “Cut the positives as soon as possible”
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Polarized simply-typed lambda-calculus, with non-biased
atoms

A,B,C,D = types
| X,Y,Z atoms
| P,Q positive types
| N, M negative types
P,Q =A+B positive
N, M n=A— B|AxB negative
Pat,Qat == P,Q| X,Y,Z positive or atomic
Nat, Mot = N, M | X,Y,Z negative or atomic
r ::= varmap(Nat) negative or atomic context
A ::= varmap(A) general context

(Note: we could have a positive product as well, it works.)
17



Focused natural deduction for intuitionistic logic

INV-SUM INV-ARR

A x: Akt C MMAx:BFnu:C A Xx: Akt B
I A x: A+ BhEp 6(x, x.t, x.u): C MARwAX.t:A—= B
INV-PAIR INV-END
MAFWE: A MmAF.uU:B I Fpoc t 1 Pat

I AbFn (tu): Ax B T by t 1 Pat
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Focused natural deduction for intuitionistic logic

INV-SUM
A x: Akt C

MMAx:BFnu:C

INV-ARR
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I A x: A+ BhEp 6(x, x.t, x.u): C MARwAX.t:A—= B

INV-PAIR

AN T i | AR u:B

I AbFn (tu): Ax B

INV-END
C T Foc t 0 Pat

T by t 1 Pat

FOC-ELIM FOC-INTRO FOC-ATOM
Fr=ny P [x: Pl t: Qat Fr=tp P NM=ny X
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Saturating focused natural deduction

SINV-SUM
A Xx:Abgnwt: C A x:Blgnwu: C

I A x: A+ Blgn 0(x, x.t, x.u): C

SINV-PAIR
ARGt A MAbFgwu:B

I A Fgny (t,u) : Ax B

19

SINV-ARR
A x:Abgnw t: B

AW AXx.t:A— B

SINV-END
r, rl Fsat t: Pat

I r Fainv t 1 Pat
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What we have so far:
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What we have so far:
@ computational completeness (fresh look at focusing)

@ canonicity (modulo invertible commuting conversions) (the hard part)

What we lack:

@ termination
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Usual termination arguments

Subformula property: finite number of judgments I - A.

21



Usual termination arguments

Subformula property: finite number of judgments ' - A.

No need for recurrent judgments.

?
M=A

Nr-A

21



Usual termination arguments

Subformula property: finite number of judgments I - A.
Not true for typing contexts (multisets)

No need for recurrent judgments.

?
M=A

Nr-A

21



Usual termination arguments

Subformula property: finite number of judgments I - A.
Not true for typing contexts (multisets)

No need for recurrent judgments.

?
M=A

Nr-A

Breaks computational completeness
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Termination 1: bounded multisets

There exists a n € N such that, by keeping at most n variables of each

type/formula in T, then we can find at least 2 distinct proofs of I' - A if
they exist.
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Termination 1: bounded multisets

There exists a n € N such that, by keeping at most n variables of each

type/formula in T, then we can find at least 2 distinct proofs of I' - A if
they exist.

In fact n := 2 suffices — for any bound n, you find at least n proofs.
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Termination 2: recurring at most twice

MrM-A

r-A
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Termination 2: recurring at most twice

MrM-A

r-A

Computational completeness is lost, but
Unicity completeness regained.
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Algorithm

Our algorithm searches for all saturated proofs under these two
search-space restriction.

Optimization 1: redundancy (elim and intro).
Optimization 2: monotonicity.
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(The logic again)

SINV-SUM SINV-ARR
A x:Abgnwt: C A x:Bhlgyw u: C A Xx:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFgy U:B T bt t: Pat
M A Fgny (t,u): Ax B M T Fainy 1 Pat
(A, P) C{(n,P) | (T,T"nll P) A nusesT'} SAT-INTRO
MM % Plgny t: Qat Vx € X, t uses X Fr=tf P
MM bt let X = Aint: Qu MQbFegtt: P
SAT-ATOM INTRO-SUM INTRO-END
FrEny X M=t A [0 Fainy t: Na
0 e n: X ot AL+ A M=t Na
ELIM-PAIR ELIM-START ELIM-ARR
MFEnl A x Ay (x:Na)erl r=nl A—>B FrM-uf A
M0l A MEx U Mo, Fnull B



Conclusion

Future work: extend to polymorphism and dependent types.
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Conclusion

Future work: extend to polymorphism and dependent types.

Thanks. Any question?

Paper draft:
gallium.inria.fr/~scherer/drafts/unique_stlc_sums.pdf
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