Which simple types have a unique inhabitant?

Gabriel Scherer, Didier Rémy
Gallium — INRIA

2015

Which types have a unique inhabitant?

@ in a given type system (STLC with atoms, products and sums)

e modulo some program equivalence (/37)

Which types have a unique inhabitant?

@ in a given type system (STLC with atoms, products and sums)

e modulo some program equivalence (/37)

Motivation: a principal way to study code inference.

We can infer the instance declaration for the exception monad A+— A+ E:

X+E—-X—>Y+E)—-Y+E

STLC with sums

Ax:AFt: B AFt:A—B AFu:A
AFXx.t:A— B AtFtu:B
AFt: A Atu:B AFt:A;xA
Ax:AEx: A
AF(t,u): AxB AbFmit: A
At A

AbFojt: AL+ A

AFt: A+ A Axy:Abu: C Axp: Ak C
AF (5({', X1.U1, X2.U2) : C

[n-equivalence

(Ax.t) u =g tu/x] (t:A—= B) =y Ax.tx
mi (t1,) =5 t; (t:AxB) =, (m t,m t)
d(oi t, x1.u1, x2.up) =g ui[t/xi]
vC[O], C[t:A+ B] =, d(t, x.Clo1 x], x.Cloz x])

Equivalence algorithm dedicable — since 1995.

A primer on focusing

Sequent calculus

(Can be done in natural deduction, but less regular)

AAFB
AFAB

AFA ABFC
AA—BFC

AF A AF A

AAFC
A,Al*AzF C

AF A x A
AAFC AAFC N
AAL+AEC AF A+ A

Invertible vs. non-invertible rules.
Negatives (interesting on the left): products, arrow, atoms.
Positives (interesting on the right): sums, atoms.

6

Invertible phase

?
X+YEX
X+YEX+Y

If applied too early, non-invertible rules can ruin your proof.

Invertible phase

?
X+YEX
X+YEX+Y

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Invertible phase

?
X+YEX
X+YEX+Y

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (X — Y) — (X — Y)
instead of two (Af.f and Af.\x. f x).

Non-invertible phases

After all invertible rules, ', = Pp

Only step forward: select a formula, apply some non-invertible rules on it.

Non-invertible phases
After all invertible rules, ', = Pp
Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Non-invertible phases

After all invertible rules, ', = Pp

Only step forward: select a formula, apply some non-invertible rules on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

Xo, YiFA
Xo * Xz, YiFA
Xox X3, YixYoEA

X1 Xox X3, YixYoFA

This was focusing

Focused proofs are structured in alternating phases,
invertible (boring) and non-invertible (focus).

Phases are forced to be as long as possible — to eliminate duplicate proofs.

The idea is independent from the proof system.
Applies to sequent calculus or natural deduction;
intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to Sn-normal forms (at least
for products and arrows). But the fun is in the search.

Back to unique inhabitants

You said (3-short 7-long normal forms?

In presence of negative connectives only (or positive only), focused proof
search enumerates distinct normal forms.

This fails when sums (positives) are mixed with arrows (negatives).

11

You said (3-short 7-long normal forms?

In presence of negative connectives only (or positive only), focused proof
search enumerates distinct normal forms.

This fails when sums (positives) are mixed with arrows (negatives).

(Ad break)

11

The obvious idea...

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.
Stop if two proofs are found.

12

The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.
Stop if two proofs are found.

Infinitely many duplicates — non-termination.

fF:X=Y+Y),x: XF?7: X

12

The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.
Stop if two proofs are found.

Infinitely many duplicates — non-termination.

fF:X=Y+Y),x: XF?7: X

12

The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.

Stop if two proofs are found.

Infinitely many duplicates — non-termination.

fF:X=Y+Y),x: XF?7: X

X
6(f X, Y1-X,)/2‘X)

12

The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.

Stop if two proofs are found.

Infinitely many duplicates — non-termination.
fF:X=Y+Y),x: XF?7: X

X

6(fX7 y1.X,)/2‘X)
o(f x, y1.0(f x, z1.x, 22.X), ¥2.X)

12

The obvious idea... does not work

Enumerate all derivations in a reasonable (focused) system.
Remove duplicates using the equivalence algorithm.

Stop if two proofs are found.

Infinitely many duplicates — non-termination.
fF:X=Y+Y),x: XF?7: X

X

6(fX7 y1.X,)/2‘X)
o(f x, y1.0(f x, z1.x, 22.X), ¥2.X)

We need a more canonical proof search process.

12

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

@ Provability completeness: at least one

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

@ Provability completeness: at least one

@ Computational completeness: all programs

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

@ Provability completeness: at least one
@ Computational completeness: all programs

@ Unicity completeness: at least two

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

@ Provability completeness: at least one
@ Computational completeness: all programs
@ Unicity completeness: at least two

@ Canonicity: no duplicates — more canonical

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

Provability completeness: at least one
Computational completeness: all programs
Unicity completeness: at least two

Canonicity: no duplicates — more canonical

Termination — of failure

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

Provability completeness: at least one
Computational completeness: all programs
Unicity completeness: at least two

Canonicity: no duplicates — more canonical

Termination — of failure
Focused proof search: computationally complete, not canonical.

Focused proof search quotiented by equivalence: complete, canonical,
non-terminating.

13

Terminology (a contribution?)

We consider search processes of the form “enumerating the derivations of
this restricted system of inference rules”.

Various concepts of interest:

Provability completeness: at least one
Computational completeness: all programs
Unicity completeness: at least two

Canonicity: no duplicates — more canonical

Termination — of failure

Focused proof search: computationally complete, not canonical.
Focused proof search quotiented by equivalence: complete, canonical,
non-terminating.

Forward method with subsumption: provability complete but not unicity
complete.

13

Our approach

We promised an algorithm that decides uniqueness of inhabitation.
We distinguish specification and implementation.

14

Our approach

We promised an algorithm that decides uniqueness of inhabitation.
We distinguish specification and implementation.

Specification: a novel focused logic that is computationally complete
and canonical.

14

Our approach

We promised an algorithm that decides uniqueness of inhabitation.
We distinguish specification and implementation.

Specification: a novel focused logic that is computationally complete
and canonical.

Implementation: a restriction of this logic that is unicity complete and
terminating.

14

Sum equivalence

fun £ x >
match £ x with

fun y >
match £ x with
match f y with ...

Sum equivalence algorithms move case-splits up — then merge them.

15

http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf

Sum equivalence
fun £ x >
match f x with
fun y >
match £ x with
match f y with ...
Sum equivalence algorithms move case-splits up — then merge them.

Moving up corresponds to the core idea of maximal multi-focusing:
non-invertible phases should happen as early as possible.

http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf

15

http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf

Backward search for maximal multi-focusing?
Maximality is a global property.

Building a maximal proof by goal-directed proof search seems difficult. At
a focusing point I' = 7 : P, we would have to guess which non-invertible
phases will be used deep in ?, and perform them now.

16

Backward search for maximal multi-focusing?

Maximality is a global property.

Building a maximal proof by goal-directed proof search seems difficult. At
a focusing point I' = 7 : P, we would have to guess which non-invertible
phases will be used deep in ?, and perform them now.

Our answer: let's perform all the non-invertible sequences we can, even
those that won't be needed by any proof.
Saturating proof search: “Cut the positives as soon as possible”

16

Polarized simply-typed lambda-calculus, with non-biased
atoms

A,B,C,D = types
| X,Y,Z atoms
| P,Q positive types
| N, M negative types
P,Q =A+B positive
N, M n=A— B|AxB negative
Pat,Qat == P,Q| X,Y,Z positive or atomic
Nat, Mot = N, M | X,Y,Z negative or atomic
r ::= varmap(Nat) negative or atomic context
A ::= varmap(A) general context

(Note: we could have a positive product as well, it works.)
17

Focused natural deduction for intuitionistic logic

INV-SUM INV-ARR

A x: Akt C MMAx:BFnu:C A Xx: Akt B
I A x: A+ BhEp 6(x, x.t, x.u): C MARwAX.t:A—= B
INV-PAIR INV-END
MAFWE: A MmAF.uU:B I Fpoc t 1 Pat

I AbFn (tu): Ax B T by t 1 Pat

18

Focused natural deduction for intuitionistic logic

INV-SUM INV-ARR
A x: Akt C MMAx:BFnu:C A Xx: Akt B
I A x: A+ BhEp 6(x, x.t, x.u): C MARwAX.t:A—= B
INV-PAIR INV-END
MAFWE: A MmAF.uU:B I Fpoc t 1 Pat
I AbFn (tu): Ax B T by t 1 Pat
FOC-ELIM FOC-INTRO FOC-ATOM
Fr=nl P Mx: Pl t: Qat Fr=tp P N=ni{ X

INfoc let x = nin t: Qut Mo t: P MNoe n: X

18

Focused natural deduction for intuitionistic logic

INV-SUM
A x: Akt C

MMAx:BFnu:C

INV-ARR
A Xx: Akt B

I A x: A+ BhEp 6(x, x.t, x.u): C

INV-PAIR
AN T i | AR u:B

I AbFn (tu): Ax B

MARL X t:A—> B

INV-END
C T Foc t 0 Pat

T by t 1 Pat

FOC-ELIM FOC-INTRO FOC-ATOM
Fr=nl P Mx: Pl t: Qat Fr=tp P N=ni{ X
INfoc let x = nin t: Qut Mo t: P MNoe n: X
INTRO-SUM INTRO-END
FTEtA F 0 Finy £ Nag
ot A+ A IEtf Na

18

Focused natural deduction for intuitionistic logic

INV-SUM INV-ARR
A x: Akt C MMAx:BFnu:C A Xx: Akt B

I A x: A+ BhEp 6(x, x.t, x.u): C MARwAX.t:A—= B

INV-PAIR

AN T i | AR u:B

I AbFn (tu): Ax B

INV-END
C T Foc t 0 Pat

T by t 1 Pat

FOC-ELIM FOC-INTRO FOC-ATOM
Fr=ny P [x: Pl t: Qat Fr=tp P NM=ny X
INfoc let x = nin t: Qut Mo t: P MNoe n: X
INTRO-SUM INTRO-END
Fl—tﬂA, F;Q)I—;m,t:Nat
MFoith AL+ A It Na
ELIM-PAIR ELIM-START ELIM-ARR
F=nl A x Ay (x: Ny) el rMN-n}lA—~B FrNuf A

MN=mnl A M= x4 Nat

18

T-nul B

Saturating focused natural deduction

SINV-SUM
A Xx:Abgnwt: C A x:Blgnwu: C

I A x: A+ Blgn 0(x, x.t, x.u): C

SINV-PAIR
ARGt A MAbFgwu:B

I A Fgny (t,u) : Ax B

19

SINV-ARR
A x:Abgnw t: B

AW AXx.t:A— B

SINV-END
r, rl Fsat t: Pat

I r Fainv t 1 Pat

Saturating focused natural deduction

SINV-SUM SINV-ARR
A Xx:Abgnwt: C A x:Blgnwu: C A x:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFg, Uu:B T bt t: Pat
I A Fgny (t,u) : Ax B M7 Fainy 1 Pat
INTRO-SUM INTRO-END
Fl—tﬂA,- F;@l—sinvt:Nat

Mot AL+ A M=t Na

19

Saturating focused natural deduction

SINV-SUM
A Xx:Abgnwt: C A x:Blgnwu: C

I A x: A+ Blgn 0(x, x.t, x.u): C

SINV-PAIR
ARGt A MAbFgwu:B

M A Fgny (t,u): Ax B

SINV-ARR
A x:Abgnw t: B

AW AXx.t:A— B

SINV-END
r, rl Fsat t: Pat

I r Fainv t 1 Pat

INTRO-SUM INTRO-END
Fl—tﬂA,- F;@l—sim,t:Nat
Mot AL+ A M=t Na
ELIM-PAIR ELIM-START ELIM-ARR
FEnl Apx A (x:Ny)el r’EnllA—=B TrHupA
Femnll A M x4 Na g FTenull B

Saturating focused natural deduction

SINV-SUM SINV-ARR
A Xx:Abgnwt: C A x:Blgnwu: C A x:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFg, Uu:B T bt t: Pat
M A Fgny (t,u): Ax B M7 Fainy 1 Pat
SAT-INTRO SAT-ATOM INTRO-SUM INTRO-END
r=tq P FrEnd X M=t A [0 Fainy £ Nag
M0 b t: P M0bFaen: X Mot AL+ A et Nyt
ELIM-PAIR ELIM-START ELIM-ARR
FEnl Apx A (x:Ny)el r’EnllA—=B TrHupA

M7 n{ A M= x4 Nat 1o Fr-nul B

Saturating focused natural deduction

SINV-SUM

SINV-ARR
A Xx:Abgnwt: C A x:Blgnwu: C A x:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFg, Uu:B T bt t: Pat
M A Fgny (t,u): Ax B M7 Fainy 1 Pat
(ﬁp):{_("P)|(rr'FnllP) }
M5 Pl t: Qu saturation
[T Farlet X = Adn t: Qu X,(X=Y+Y)FY
SAT-INTRO SAT-ATOM INTRO-SUM INTRO-END
r=tq P FrEnd X M=t A [0 Fainy £ Nag
M0 b t: P M0bFaen: X Mot AL+ A et Nyt
ELIM-PAIR ELIM-START ELIM-ARR
FEnl Apx A (x:Ny)el r’EnllA—=B TrHupA

M7 n{ A M= x4 Nat 1o Fr-nul B

Saturating focused natural deduction

SINV-SUM SINV-ARR
A Xx:Abgnwt: C A x:Blgnwu: C A x:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFg, Uu:B T bt t: Pat
M A Fgny (t,u): Ax B M7 Fainy 1 Pat
(ﬁ,F_’):{g P)|(T,I"+nl P)A nuses [’}
FT % Plging £ Qat canonicity
MM e let X = Ain t: Qu X, (X = X+X)FX
SAT-INTRO SAT-ATOM INTRO-SUM INTRO-END
MHeqP Menl X CE A [0 sy £ Nag
M0 b t: P M0k n: X Mot AL+ A et Nat
ELIM-PAIR ELIM-START ELIM-ARR
FEnl Apx A (x:Ny)el r’EnllA=B TrRupA

FmnlA T x U Na o F-nulB

Saturating focused natural deduction

SINV-SUM SINV_ARR
LA Xx:Absing t: C A x: Blgnyu: C MAx:Abgnwt: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
ARGy t:A M AbFgw u:B FT et Pa
M A bginy (t,u) A% B CT Fany t 2 Pt

(A, P <{(n,P)| (T,T"+n{ P)AnusesT'}
MR P Fainy £ Qar Vx € X, t uses x finite derivations
T et let X = Adint: Qa

SAT-INTRO SAT-ATOM INTRO-SUM INTRO-END
F-efP Fnl X Fhtf A [30 Fain 0 Nat
M0Fat: P T0Faen:X TEotfh A+ A [t Na
ELIM-PAIR ELIM-START ELIM-ARR
Ml A A (x:Ny) el rFnlAsB THufA

FemnlA M x| Ny 19 Fr-nulB

Saturating focused natural deduction

SINV-SUM SINV_ARR
LA Xx:Absing t: C A x: Blgnyu: C MAx:Abgnwt: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
ARGy t:A M AbFgw u:B FT et Pa
M A bginy (t,u) A% B CT Fany t 2 Pt

(A, P C{(n,P)| (T,T"+nl P)Anuses’}
M % 0 Plginy t: Qa Vx € X, t uses x
MM e let X = Ain t: Qu

SAT-INTRO SAT-ATOM INTRO-SUM INTRO-END
F-efP Fnl X Fhtf A [30 Fain 0 Nat
M0Fat: P T0Faen:X TEotfh A+ A [t Na
ELIM-PAIR ELIM-START ELIM-ARR
Ml A A (x:Ny) el rFnlAsB THufA

FEminl A FExd Ny 1o FTenull B

What we have so far:

What we lack:

20

What we have so far:

@ computational completeness (fresh look at focusing)

What we lack:

20

What we have so far:
@ computational completeness (fresh look at focusing)

@ canonicity (modulo invertible commuting conversions) (the hard part)

What we lack:

20

What we have so far:
@ computational completeness (fresh look at focusing)

@ canonicity (modulo invertible commuting conversions) (the hard part)

What we lack:

@ termination

20

Usual termination arguments

Subformula property: finite number of judgments I - A.

21

Usual termination arguments

Subformula property: finite number of judgments ' - A.

No need for recurrent judgments.

?
M=A

Nr-A

21

Usual termination arguments

Subformula property: finite number of judgments I - A.
Not true for typing contexts (multisets)

No need for recurrent judgments.

?
M=A

Nr-A

21

Usual termination arguments

Subformula property: finite number of judgments I - A.
Not true for typing contexts (multisets)

No need for recurrent judgments.

?
M=A

Nr-A

Breaks computational completeness

21

Termination 1: bounded multisets

There exists a n € N such that, by keeping at most n variables of each

type/formula in T, then we can find at least 2 distinct proofs of I' - A if
they exist.

22

Termination 1: bounded multisets

There exists a n € N such that, by keeping at most n variables of each

type/formula in T, then we can find at least 2 distinct proofs of I' - A if
they exist.

In fact n := 2 suffices — for any bound n, you find at least n proofs.

22

Termination 2: recurring at most twice

MrM-A

r-A

23

Termination 2: recurring at most twice

MrM-A

r-A

Computational completeness is lost, but
Unicity completeness regained.

23

Algorithm

Our algorithm searches for all saturated proofs under these two
search-space restriction.

Optimization 1: redundancy (elim and intro).
Optimization 2: monotonicity.

24

(The logic again)

SINV-SUM SINV-ARR
A x:Abgnwt: C A x:Bhlgyw u: C A Xx:Abgnw t: B
I A x: A+ Blgn 0(x, x.t, x.u): C MAbFgw Mx.t: A= B
SINV-PAIR SINV-END
MAFGwt: A MAFgy U:B T bt t: Pat
M A Fgny (t,u): Ax B M T Fainy 1 Pat
(A, P) C{(n,P) | (T,T"nll P) A nusesT'} SAT-INTRO
MM % Plgny t: Qat Vx € X, t uses X Fr=tf P
MM bt let X = Aint: Qu MQbFegtt: P
SAT-ATOM INTRO-SUM INTRO-END
FrEny X M=t A [0 Fainy t: Na
0 e n: X ot AL+ A M=t Na
ELIM-PAIR ELIM-START ELIM-ARR
MFEnl A x Ay (x:Na)erl r=nl A—>B FrM-uf A
M0l A MEx U Mo, Fnull B

Conclusion

Future work: extend to polymorphism and dependent types.

26

gallium.inria.fr/~scherer/drafts/unique_stlc_sums.pdf

Conclusion

Future work: extend to polymorphism and dependent types.

Thanks. Any question?

Paper draft:
gallium.inria.fr/~scherer/drafts/unique_stlc_sums.pdf

26

gallium.inria.fr/~scherer/drafts/unique_stlc_sums.pdf

