Reducing shapes

Gabriel Scherer, Nathanaëlle Courant

September 18, 2022

A metaphor

G.W. Tryon Jr. (1879)
https://commons.wikimedia.org/wiki/File:Ommastrephes_mouchezi.jpg
The giant squid that washed ashore on Île Saint-Paul on 2 November 1874.

In case you wonder where Île Saint-Paul is:

In case you wonder where Île Saint-Paul is:

This talk

A field report on the
first sighting (to our knowledge)
of

This talk

A field report on the

first sighting (to our knowledge)

of
strong (by-need) reduction
in the wild, outside proof assistants.

Note: I'm not an expert!

Shapes

Shapes, as designed by Thomas Refis, Ulysse Gérard and Leo White, are λ-terms representing the shape of OCaml modules - and source files. (no term-level information except source locations)

They extended the OCaml compiler to compute shapes and store them in object files.

Motivation: tooling support: "where is foo defined?" (requires normalization)

Shape computations

Separate compilation: the shape of a module is an open term.

Definition lookup inside functors: we want strong reduction.

Problem

A naive implementation of strong reduction does fine in general, but it

Problem

A naive implementation of strong reduction does fine in general, but it explodes
on some complex functor-using OCaml programs. (Irmin)

Solution

Ulysse Gérard and Thomas Refis implemented some optimizations; enough for "termination" but still unsatisfying.

Strong call-by-need reduction avoids blowups.

Performance on a problematic source file:

	compilation time	output size
no shapes	0.39 s	$2538 \mathrm{Kio}: 2.5 \mathrm{Mio}$
shapes, naive +opts	2.15 s	91 Mio
shapes, strong cbneed	0.40 s	$2552 \mathrm{Kio}: 2.5 \mathrm{Mio}$

Why the blowup?

Consider:

$$
\begin{aligned}
& \text { module } M=\text { struct } \\
& \text { let } x=A \cdot x \\
& \text { let } y=A \cdot y \\
& \text { let } z=A \cdot z \\
& \text { end }
\end{aligned}
$$

With closed reduction, this only reduces when A is a structure/record.

$$
\|M\| \leq\|A\|
$$

With open reduction, A may be neutral: $\mathrm{F}(\mathrm{X})$. Bar. Then:

$$
\|M\| \simeq 3 *\|A\|
$$

Actually a very common pattern:

$$
\text { module } M=(A: S)
$$

Why the blowup? Intuition

Intuition:
closed, weak reduction has size-exploding examples, but strong reduction explodes more

More precisely:
some realistic closed programs have small normal forms, but their subterms could blow up under strong reduction.

Thanks!
(Bonus slides follow.)

A terrible implementation

let rec eval env : $\mathrm{t} \rightarrow \mathrm{t}=$ function
$\mid \operatorname{Var} \mathrm{x} \rightarrow$
Ident.find_same x env
\mid Abs (x, t) \rightarrow
Abs (x ,
let env' $=$ Ident.add $\times(\operatorname{Var} x)$ env in
eval env' t)
$\mid \operatorname{App}(\mathrm{t}, \mathrm{u}) \rightarrow$
let $\mathrm{f}, \arg =$ eval env t , eval env u in match f with
$\mid($ Var _ | App _) as ne \rightarrow App (ne, arg)
| Abs (x, body) \rightarrow
eval (Ident.add x arg env) body

A naive implementation (1): types

type $\mathrm{nf}=(*$ normal forms $*)$
Ne of ne
Clos of env $*$ var $* \mathrm{t} *$ var $* \mathrm{nf}$
and ne $=(*$ neutral terms $*)$
Var of var
App of ne $* n f$
type open_value $=$
Val of $n f$
Free of var

A naive implementation (2): code

let rec eval $=$ fun env ($\mathrm{t}: \mathrm{t}$) : nf \rightarrow match t with
Var $x \rightarrow$ begin match Ident.find same x env with
\mid Val $v \rightarrow v$
| Free $x \rightarrow \operatorname{Ne}(\operatorname{Var} x)$
end
Abs (x, t) \rightarrow
let $y=$ fresh x in
Clos (env, x, t, y,
let env' $=$ Ident.add $\times($ Free $y)$ env in eval env' t)
App (t, u) \rightarrow
let $f, \arg =$ eval env t, eval env u in
match f with
$\mid \mathrm{Nen} \rightarrow \mathrm{Ne}(\mathrm{App}(\mathrm{n}, \arg))$
Clos (env', x, body, -y, _v) \rightarrow
eval (Ident.add $\times($ Val $\underset{14}{\arg })$ env' $)$ body

A naive implementation (3): memoization

let eval = memo_fix_2 @@ fun eval env ($\mathrm{t}: \mathrm{t}$) : nf \rightarrow match t with
Var $x \rightarrow$ begin match Ident.find_same x env with
\mid Val $v \rightarrow v$
| Free $x \rightarrow \operatorname{Ne}(\operatorname{Var} x)$
end
Abs (x, t) \rightarrow
let $y=$ fresh x in
Clos (env, x, t, y,
let env' $=$ Ident.add $\times($ Free $y)$ env in eval env' t)
App (t, u) \rightarrow
let $f, \arg =$ eval env t, eval env u in
match f with
$\mid \mathrm{Nen} \rightarrow \mathrm{Ne}(\mathrm{App}(\mathrm{n}, \arg))$
Clos (env', x, body, -y, _v) \rightarrow
eval (Ident.add $\times($ Val $\underset{15}{\arg)}$ env') body

A by-need implementation (1)

```
type \(\mathrm{nf}=(*\) normal forms \(*)\)
    Ne of ne
    Clos of env \(* \operatorname{var} * \mathrm{t} * \operatorname{var} * \operatorname{dnf}\)
and \(\mathrm{dnf}=\mathrm{nf}\) Lazy.t
and ne \(=(*\) neutral terms \(*)\)
    Var of var
    App of ne \(* \operatorname{dnf}\)
```

 let force eval env \(t=\) lazy (eval env)
 let delay eval env \(\mathrm{dv}=\) Lazy.force dv

A naive implementation: reminder

let eval = memo_fix_2 @@ fun eval env ($\mathrm{t}: \mathrm{t}$) : nf \rightarrow match t with
Var $x \rightarrow$ begin match Ident.find_same x env with
\mid Val $v \rightarrow v$
| Free $x \rightarrow \operatorname{Ne}(\operatorname{Var} x)$
end
Abs (x, t) \rightarrow
let $y=$ fresh x in
Clos (env, x, t, y,
let env' $=$ Ident.add $\times($ Free $y)$ env in
eval env' t)
App (t, u) \rightarrow
let $f, \arg =$ eval env t, eval env u in
match f with
$\mid \mathrm{Nen} \rightarrow \mathrm{Ne}(\mathrm{App}(\mathrm{n}, \arg))$
Clos (env', x, body, -y, _v) \rightarrow
eval (Ident.add \times (Val arg) env') body

A by-need implementation (2)

let eval = memo_fix_2 @@ fun eval env ($\mathrm{t}: \mathrm{t}$) : nf \rightarrow match t with
Var $x \rightarrow$ begin match Ident.find_same x env with
| Val v \rightarrow force eval v
| Free $x \rightarrow \operatorname{Ne}(\operatorname{Var} \mathrm{x}$)
end
Abs (x, t) \rightarrow
let $y=$ fresh x in
Clos (env, x, t, y,
let env' $=$ Ident.add $\times($ Free $y)$ env in
delay eval env' t)
App (t, u) \rightarrow
let f , $\arg =$ eval env t , delay eval env u in
match f with
$\mid \mathrm{Nen} \rightarrow \mathrm{Ne}(\mathrm{App}(\mathrm{n}, \arg))$
Clos (env', x, body, -y, _v) \rightarrow
eval (Ident.add \times (Val arg) env') body

A by-need implementation (3)

type $\mathrm{nf}=(*$ normal forms $*)$
Ne of ne
Clos of env * var * t * var * dnf and $\operatorname{dnf}=$ Delayed of env $* \mathrm{t}$ and ne $=(*$ neutral terms $*)$

Var of var
App of ne $* \operatorname{dnf}$
let force eval (env, t) $=$ eval env t
let delay eval env $t=(e n v, t)$

A by-need implementation (3)

```
type nf = (* normal forms *)
        Ne of ne
    Clos of env * var * t * var * dnf
and dnf = Delayed of env * t
and ne = (* neutral terms *)
    Var of var
    App of ne * dnf
```

 let force eval (env, \(t\)) \(=\) eval env \(t\)
 let delay eval env \(t=(e n v, t)\)
 If you squint: a by-need version of iterated weak reduction.

