Normalization by realizability also evaluates

Pierre-Évariste Dagand, Gabriel Scherer

Gallium - INRIA

Goal

Acquire a better understanding of "semantic soundness proofs" for type systems: realizability and logical relations.

Goal

Acquire a better understanding of "semantic soundness proofs" for type systems: realizability and logical relations.

To which program do a soundness proof correspond?

Goal

Acquire a better understanding of "semantic soundness proofs" for type systems: realizability and logical relations.

To which program do a soundness proof correspond?

Answer: an evaluation program.

The result appears to be not-well-communicated folklore. We will (briefly) discuss related works.

Setting

We will look at a soundness proof:

- of weak normalization
- for the simply-typed lambda-calculus
- using classical realizability

$$
\vdash t: A \quad \Longrightarrow \quad t \in|A|
$$

If t is well-typed at A, then it belongs to the set $|A|$ of "good terms".

Classical realizability in one slide

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

Classical realizability in one slide

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t : A belong to a set of truth witnesses $|A|$
- well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines (combining those) belong to a pole \Perp.

Those sets capture good (sound) terms/coterms/machines.
Here, we define \Perp as the set of machines that reduce to a valid machine in normal form.

Classical realizability in one slide

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t : A belong to a set of truth witnesses $|A|$
- well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines (combining those) belong to a pole \Perp.

Those sets capture good (sound) terms/coterms/machines.
Here, we define \Perp as the set of machines that reduce to a valid machine in normal form.

We will define $|A|$ and $\|A\|$ such that $t \in|A|$ and $e \in\|A\|$ imply $\langle t \mid e\rangle \in \Perp$.

Orthogonality is central to this:

$$
\mathcal{T}^{\perp} \triangleq\{e \mid \forall t \in \mathcal{T},\langle t \mid e\rangle \in \Perp\} \quad \mathcal{E}^{\perp} \triangleq\{t \mid \forall e \in \mathcal{E},\langle t \mid e\rangle \in \Perp\}
$$

Concretely

Our language:

$$
\begin{aligned}
& t \triangleq x|\lambda x \cdot t| t u \\
& e \triangleq \star \mid u \cdot e
\end{aligned}
$$

(+ some reduction relation \rightsquigarrow) normal machines: $\mathbb{M}_{N} \triangleq\langle x \mid e\rangle \mid\langle t \mid \star\rangle$

Recall that \Perp is the set of machines that reduce to a normal machine.
t is weakly-normalising as a lambda-term exactly if $\langle t \mid \star\rangle$ is in \Perp.

Witnesses

The function type $A \rightarrow B$ is a negative type.
Its is determined by its falsity witnesses that are values: $\|A \rightarrow B\|_{V}$. The rest follows by orthoginality. For example:

$$
\begin{aligned}
\|A \rightarrow B\|_{V} & \triangleq|A| \cdot\|B\|_{V} \\
|A \rightarrow B| & \triangleq\|A \rightarrow B\|_{V}^{\perp} \\
\|A \rightarrow B\| & \triangleq|A \rightarrow B|^{\perp}
\end{aligned}
$$

For a positive type we would have, for example:

$$
|A \times B|_{v} \triangleq|A|_{V} *|B|_{v}
$$

In general, for negatives N and positives P we have:

$$
\begin{array}{ll}
\|P\| \triangleq|P| \stackrel{\perp}{V} & |P| \triangleq|P| \frac{\perp}{V} \perp \\
\|N\| \triangleq\|N\| \frac{\perp}{V} & |N| \triangleq\|N\| \frac{\perp}{V}
\end{array}
$$

General approach

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) . m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right)
\end{gathered}
$$

General approach

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) . m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right)
\end{gathered}
$$

Truth and falsity value witnesses have specific shapes:

$$
\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V}
$$

$$
\pi_{0} \in\|A \rightarrow B\|_{V} \triangleq \Sigma(u, \pi) \cdot \pi_{0} \equiv u \cdot \pi \wedge u \in|A| \wedge \pi \in\|B\|_{V}
$$

General approach

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) . m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right)
\end{gathered}
$$

Truth and falsity value witnesses have specific shapes:

$$
\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V}
$$

$$
\pi_{0} \in\|A \rightarrow B\|_{V} \triangleq \Sigma(u, \pi) \cdot \pi_{0} \equiv u \cdot \pi \wedge u \in|A| \wedge \pi \in\|B\| v
$$

The notion of orthogonality is also made computational:

$$
\begin{aligned}
& \mathcal{T}^{\perp} \triangleq\{e \mid \forall t \in \mathcal{T},\langle t \mid e\rangle \in \Perp\} \\
& t \in\left\|\left\|A^{\perp} \triangleq \Pi(e: \mathbb{E}) . e \in\right\|\right\| A \rightarrow\langle t \mid e\rangle \in \Perp
\end{aligned}
$$

Conclusion

We are done: the way we defined truth and value witnesses (the shape of values) completely determines the evaluation strategy and its implementation.

We found it rather fun - I'll try to show you a bit of it.

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by definiting, for each predicate $\in T$, a non-dependent type $\mathcal{J}(T)$.

$$
\begin{gathered}
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) \cdot m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right) \\
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N}
\end{gathered}
$$

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by definiting, for each predicate $\in T$, a non-dependent type $\mathcal{J}(T)$.

$$
\begin{gathered}
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) \cdot m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right) \\
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N} \\
\pi_{0} \in\|A \rightarrow B\| v \triangleq \Sigma(u, \pi) \cdot \pi_{0} \equiv u \cdot \pi \wedge u \in|A| \wedge \pi \in\|B\| v \\
\mathcal{J}(\|A \rightarrow B\| v) \triangleq \mathcal{J}(|A|) * \mathcal{J}(\|B\| v)
\end{gathered}
$$

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by definiting, for each predicate $\in^{\in} T$, a non-dependent type $\mathcal{J}(T)$.

$$
\begin{gathered}
m \in \Perp \triangleq\left(\Sigma\left(\left[m_{1}, \ldots, m_{n}\right]: \operatorname{List}(\mathbb{M})\right) \cdot m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n} \in \mathbb{M}_{N}\right) \\
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N} \\
\pi_{0} \in\|A \rightarrow B\| v \triangleq \Sigma(u, \pi) \cdot \pi_{0} \equiv u \cdot \pi \wedge u \in|A| \wedge \pi \in\|B\| v \\
\mathcal{J}(\|A \rightarrow B\| v) \triangleq \mathcal{J}(|A|) * \mathcal{J}(\|B\| v) \\
t \in\|A\|^{\perp} \triangleq \Pi(e: \mathbb{E}) \cdot e \in\| \| A \rightarrow\langle t \mid e\rangle \in \Perp \\
\mathcal{J}\left(\|A\|^{\perp}\right) \triangleq \mathcal{J}(\|A\|) \rightarrow \mathcal{J}(\Perp)
\end{gathered}
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea } & : \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea } & \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq ?: \mathcal{J}(|B|)$

$$
\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v} . ?: \mathcal{J}(\Perp)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\begin{gathered}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{gathered}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v} . ?: \mathcal{J}(|A \rightarrow B|) \quad\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)\right)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\begin{gathered}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{gathered}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi}\|B\|_{v}$. ?: $\mathcal{J}(|A \rightarrow B|) \quad\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)\right)$

$$
\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)
$$

Adequacy, computationally

$$
\begin{gathered}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{gathered}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi}\|B\|_{v}$. rea $t \bar{\rho}$
$\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{V}\right)\right)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\begin{gathered}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{gathered}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho} \quad\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)\right)$

$$
\mathcal{J}(|B|)=\mathcal{J}\left(\|B\|_{V}\right) \rightarrow \mathcal{J}(\Perp) \quad \mathcal{J}\left(\|A \rightarrow B\|_{V}\right)=\mathcal{J}(|A|) * \mathcal{J}\left(\|B\|_{v}\right)
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho} \quad \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
\mathcal{J}(|B|)=\mathcal{J}\left(\|B\|_{v}\right) \rightarrow \mathcal{J}(\Perp) \quad \mathcal{J}(\|A \rightarrow B\| v)=\mathcal{J}(|A|) * \mathcal{J}(\|B\| v)
$$

Adequacy, computationally

$$
\begin{gathered}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{gathered}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$
(now let's un-simplify things)

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \stackrel{\perp}{\nu} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\| v \rightarrow\langle t \mid \pi\rangle \in \Perp
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi}\|B\|_{V}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\|_{V}^{\perp} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\|_{V} \rightarrow\langle t \mid \pi\rangle \in \Perp
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda(\pi) \lambda \bar{\pi}^{\pi \in\|B\|_{v}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \stackrel{\perp}{V} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\| v \rightarrow\langle t \mid \pi\rangle \in \Perp
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda(\pi) \lambda \bar{\pi}^{\pi \in\|B\|_{v}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \frac{\perp}{V} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\| \nu \rightarrow\langle t \mid \pi\rangle \in \Perp
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda(\pi) \lambda \bar{\pi}^{\pi \in\|B\|_{v}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
\begin{aligned}
& \langle t u \mid \pi\rangle \in \Perp \\
& t \in\|B\| \frac{\perp}{V} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\| V \rightarrow\langle t \mid \pi\rangle \in \Perp
\end{aligned}
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda(\pi) \lambda \bar{\pi}^{\pi \in\|B\|_{v}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
\begin{aligned}
& \langle t u \mid \pi\rangle \in \Perp \quad\langle t \mid u \cdot \pi\rangle \in \Perp \\
& t \in\|B\| \stackrel{\perp}{V} \triangleq \Pi(\pi: \mathbb{E}) . \pi \in\|B\|_{V} \rightarrow\langle t \mid \pi\rangle \in \Perp
\end{aligned}
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda(\pi) \lambda \bar{\pi}^{\pi \in\|B\|_{v}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
\langle t u \mid \pi\rangle \in \Perp
$$

$$
\rightsquigarrow
$$

$$
\langle t \mid u \cdot \pi\rangle \in \Perp
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:

$$
\text { (old) }\|A \rightarrow B\|_{V} \triangleq|A| *\|B\|_{V} \quad \text { (new) } \quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} *\|B\|_{V}
$$

$$
|A * B|_{V} \triangleq|A| *|B| \quad|A * B|_{V} \triangleq|A|_{V} *|B|_{V}
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:

$$
\text { (old) }\|A \rightarrow B\|_{V} \triangleq|A| *\|B\|_{V} \quad \text { (new) } \quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} *\|B\|_{V}
$$

$$
|A * B|_{V} \triangleq|A| *|B| \quad|A * B|_{V} \triangleq|A|_{V} *|B|_{V}
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
(old) $\|A \rightarrow B\|_{V} \triangleq|A| *\|B\|_{V} \quad$ (new) $\quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} *\|B\|_{V}$

$$
|A * B|_{V} \triangleq|A| *|B| \quad|A * B|_{V} \triangleq|A|_{V} *|B|_{V}
$$

It gives us different evaluation strategies: (new) call-by-value arrow. They are forced by the typing obligations of the dependent version.

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
(old) $\|A \rightarrow B\|_{V} \triangleq|A| *\|B\|_{V} \quad$ (new) $\quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} *\|B\|_{V}$

$$
|A * B|_{V} \triangleq|A| *|B| \quad|A * B|_{V} \triangleq|A|_{V} *|B|_{V}
$$

It gives us different evaluation strategies: (new) call-by-value arrow.
They are forced by the typing obligations of the dependent version.

When we have both positive and negative types, some definitions are by case-distinction on the polarity. Hints of a polarized evaluation order.

Strongly related work

Hugo Herbelin (informally) explains that realizability and normalization-by-evaluation (NbE) are two sides of the same coin.

$$
\begin{aligned}
& (\text { rea }) \vdash t: A \rightarrow t \in|A| \\
(N b E) & (\vdash t: A \rightarrow \Vdash A) \wedge(\Vdash A \rightarrow\{v \mathrm{NF} \mid \vdash v: A\})
\end{aligned}
$$

The computational aspect of NbE was already obvious - duh!

Strongly related work

Hugo Herbelin (informally) explains that realizability and normalization-by-evaluation (NbE) are two sides of the same coin.

$$
\begin{gathered}
(r e a) \quad \vdash t: A \rightarrow t \in|A| \\
(N b E) \quad(\vdash t: A \rightarrow \Vdash A) \wedge(\vdash A \rightarrow\{v \mathrm{NF} \mid \vdash v: A\})
\end{gathered}
$$

The computational aspect of NbE was already obvious - duh!

In a hidden part of "Continuation-passing style models complete for intuitionistic logic" (2013), Danko llik remarks that the completeness proof of his Kripke-model construction (in CPS style) extracts to a NbE algorithm. He points out that a different CPS translation gives call-by-value instead of call-by-name.

Full CBN version

$$
\begin{aligned}
\langle-\mid-\rangle_{A} & : \mathcal{J}(|A|) \rightarrow \mathcal{J}(\|A\|) \rightarrow \mathcal{J}(\Perp) \\
\langle\bar{t} \mid \bar{e}\rangle_{P} & \triangleq \bar{t} \bar{e} \\
\langle\bar{t} \mid \bar{e}\rangle_{N} & \triangleq \bar{e} \bar{t}
\end{aligned}
$$

rea $x^{A} \quad \bar{\rho} \triangleq \bar{\rho}(x)$
rea $\left(\lambda x^{A} \cdot t^{B}\right) \quad \bar{\rho} \triangleq \lambda\left(\bar{u}^{|A|}, \bar{e}^{| | B \|}\right) .\langle\text { rea } t \bar{\rho}[x \mapsto \bar{u}] \mid \bar{e}\rangle_{B}$
rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho} \triangleq \lambda \bar{\pi}^{\|B\| v}$. rea $t \bar{\rho}($ rea $u \bar{\rho},(\bar{\pi}) v)$
rea $\left(t^{A}, u^{B}\right) \quad \bar{\rho} \triangleq(\text { rea } t \bar{\rho}, \text { rea } u \bar{\rho})^{\perp \perp}$

$$
\begin{gathered}
\text { rea }\left(\operatorname{let}(x, y)=t^{A * B} \text { in } u^{C}\right) \bar{\rho} \triangleq \\
\left.\lambda \bar{\pi}^{\|C\|_{V}} .\langle\text { rea } t \bar{\rho}| \lambda(\bar{x}, \bar{y}) . \text { rea } u \bar{\rho}[x \mapsto \bar{x}, y \mapsto \bar{y}] \bar{\pi}\right\rangle_{A * B}
\end{gathered}
$$

Auxiliary definitions

$$
\begin{aligned}
& { }^{\perp \perp} \quad: \quad \mathcal{J}(|P| v) \rightarrow \mathcal{J}(|P|) \\
& \left(\bar{v}^{|P| v}\right)^{\perp \perp} \triangleq \lambda \bar{e} \|^{\mid P \|} \cdot \bar{e} \bar{v} \\
& { }^{\perp \perp} \quad: \quad \mathcal{J}\left(\|N\|_{v}\right) \rightarrow \mathcal{J}(\|N\| v) \\
& \left(\bar{\pi}^{\|N\| v}\right)^{\perp \perp} \triangleq \lambda \bar{t}^{|N|} \cdot \bar{t} \bar{\pi} \\
& (-)_{V} \quad: \quad \mathcal{J}(|A| v) \rightarrow \mathcal{J}(|A|) \\
& \left(\bar{v}^{|P| v}\right)_{V} \triangleq \bar{v}^{\perp \perp} \\
& \left(\bar{t}^{|N|_{v}}\right)_{v} \triangleq \bar{t} \\
& (-) v \quad: \quad \mathcal{J}\left(\|A\|_{v}\right) \rightarrow \mathcal{J}(\|A\|) \\
& \left(\bar{e}^{\|P\|_{v}}\right)_{v} \triangleq \bar{e} \\
& \left(\bar{\pi}^{\|N\|_{v}}\right)_{v} \triangleq \bar{\pi}^{\perp \perp}
\end{aligned}
$$

CBV arrow

rea $x^{A} \quad \bar{\rho} \triangleq(\bar{\rho}(x)) v$
rea $\left(\lambda x^{A} . t^{B}\right) \quad \bar{\rho} \triangleq \lambda\left(\bar{v}|A|_{v}, \bar{e} \|^{B \|}\right) \cdot\langle\text { rea } t \bar{\rho}[x \mapsto \bar{v}] \mid \bar{e}\rangle_{B}$
rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho} \triangleq \lambda \bar{\pi}^{\|B\|_{v}}$. \langle rea $u \bar{\rho}| \lambda \bar{v}_{u}^{|A| v}$. rea $\left.t \bar{\rho}\left(\bar{v}_{u},(\bar{\pi}) v\right)\right\rangle_{A}$

