Functional programming with λ -tree syntax

Ulysse Gérard, Dale Miller, Gabriel Scherer

Parsifal, Inria Saclay, France

HOPE, September 23rd, 2018

Introduction

MLTS is an ongoing language design experiment. WIP! Extend ML with binder handling constructs from λ Prolog and Abella.

Theory: in logic programming, computation from *proof search*. Binders: a new *quantifier* in the logic: ∇x , "for a fresh x".

Implementation: online, compiles to λ Prolog. https://voodoos.github.io/mlts/

Look and feel: a funny mix of FreshML and HOAS. Mobility and λ -Tree Syntax.

MLTS : datatypes with binders

 MLTS extends ML with binders.

Normal ML datatypes are closed.

Example of open datatype:

```
type lam =
| App of lam * lam
| Abs of lam => lam
;;
```

(notice: no constructor for variables)

MLTS : datatypes with binders

 MLTS extends ML with binders.

Normal ML datatypes are *closed*.

Example of open datatype:

```
type lam =
| App of lam * lam
| Abs of lam => lam
;;
```

(notice: no constructor for variables) Inhabitants:

 $\lambda x. x$ $\lambda x. (x x)$ $(\lambda x. x) (\lambda x. x)$

```
Abs(X \setminus X)
Abs(X \setminus App(X, X))
App(Abs(X \setminus X), Abs(X \setminus X))
```

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

let rec subst t x u = match (x, t) with

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

nab X in (X, X) will only match if x = t = X is a nominal.

let rec subst t x u = match (x, t) with | nab X in (X, X) -> u

subst : lam \rightarrow lam \rightarrow lam subst t x u is $t[x \setminus u]$.

nab X Y in (X, Y) will only match two distinct nominals.

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) \rightarrow u
| nab X Y in (X, Y) \rightarrow Y
```

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

r : lam => lam

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

subst : lam \rightarrow lam \rightarrow lam subst t x u is $t[x \setminus u]$.

r : lam => lam r @ Y : lam

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

r : lam => lam r @ Y : lam (Y\ r @ Y) : lam => lam

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

subst : lam -> lam -> lam subst t x u is $t[x \setminus u]$.

r : lam => lam r @ Y : lam (Y\ r @ Y) : lam => lam Abs(Y\ r @ Y) : lam

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

subst : lam \rightarrow lam \rightarrow lam subst t x u is $t[x \setminus u]$.

In Abs(Y $\$ subst (r @ Y) x u), no variable is ever free. Binders move.

```
let rec subst t x u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, App(m, n)) ->
        App(subst m x u, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
```

(a => b): "open" values of type b under a binder of type a. introduction $X \setminus t$, elimination t @ X.

(a => b): "open" values of type b under a binder of type a. introduction $X \setminus t$, elimination t @ X.

(a => b): "open" values of type b under a binder of type a. introduction $X \setminus t$, elimination t @ X.

```
type lam =
| App of lam * lam
| Abs of lam => lam;;
(X \setminus X)
                        : lam => lam
Abs(X \ App(X, X)) : lam
(fun r \rightarrow Abs(Y \setminus App(r @ Y, r @ Y)))
                                   : (lam => lam) -> lam
            \frac{\Gamma, X : A \vdash t : B}{\Gamma \vdash X \setminus t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B \quad (X : A) \in \Gamma}{\Gamma \vdash t @ X : B}
```

(a => b): "open" values of type b under a binder of type a. introduction X $\ t$, elimination t @ X.

```
type lam =
| App of lam * lam
| Abs of lam => lam;;
(X \setminus X)
                        : lam => lam
Abs(X \setminus App(X, X)) : lam
(fun r \rightarrow Abs(Y \setminus App(r @ Y, r @ Y)))
                                    : (lam => lam) -> lam
             \frac{\Gamma, X : A \vdash t : B}{\Gamma \vdash X \setminus t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B \quad (X : A) \in \Gamma}{\Gamma \vdash t @ X : B}
```

(and in patterns)

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

```
subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;
```

We need a way to introduce a nominal to call subst.

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

```
subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;
```

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

```
subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;
```

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));; \longrightarrow Abs(Y\ App(Y, Abs(Z\ Z)))

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

```
subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;
```

We need a way to introduce a nominal to call subst.

new X in subst $(Abs(Y \land App(Y, X))) X (Abs(Z \land Z));;$ $\longrightarrow Abs(Y \land App(Y, Abs(Z \land Z)))$

new X in: a scope in which a new nominal X is available.

How to perform that substitution : $(\lambda y. y x)[x \setminus \lambda z. z]$?

```
subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;
```

We need a way to introduce a nominal to call subst.

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check. (Safer when returning a closed type.)

$$\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u/x]}$$

let rec subst (t : lam => lam) (u : lam) : lam =
 match t with

$$\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u/x]}$$

```
let rec subst (t : lam => lam) (u : lam) : lam =
   match t with
   | X \ X ->
        u
```

$$\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u/x]}$$

```
let rec subst (t : lam => lam) (u : lam) : lam =
    match t with
    | X \ X ->
        u
    | nab Y in (X \ Y) ->
        y
```

$$\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u/x]}$$

```
let rec subst (t : lam => lam) (u : lam) : lam =
  match t with
  | X \ X ->
        u
        l nab Y in (X \ Y) ->
        Y
        l X \ App (m @ X, n @ X) ->
        App (subst m u, subst n u)
```

$$\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u/x]}$$

```
let rec subst (t : lam => lam) (u : lam) : lam =
  match t with
  | X \ X ->
      u
  | nab Y in (X \setminus Y) \rightarrow
       Y
  | X \ App (m @ X, n @ X) ->
       App (subst m u, subst n u)
  | X \ Abs (Y \ r @ X Y) ->
       Abs (Y \setminus subst (X \setminus r @ X Y) u)
```

```
let rec beta t =
  match t with
  | nab X in X -> X
```

```
let rec beta t =
  match t with
  | nab X in X -> X
  | Abs r -> Abs (Y\ beta (r @ Y))
```

```
let rec beta t =
  match t with
  | nab X in X -> X
  | Abs r -> Abs (Y\ beta (r @ Y))
  | App(m, n) ->
    let m = beta m in
    let n = beta n in
```

```
let rec beta t =
  match t with
  | nab X in X -> X
  | Abs r -> Abs (Y\ beta (r @ Y))
  | App(m, n) ->
    let m = beta m in
    let n = beta n in
    begin match m with
    | Abs r -> beta (subst r n)
```

```
let rec beta t =
  match t with
  | nab X in X -> X
  | Abs r -> Abs (Y\ beta (r @ Y))
  | App(m, n) ->
    let m = beta m in
    let n = beta n in
    begin match m with
    | Abs r -> beta (subst r n)
    | _ -> App(m, n)
```

```
let rec beta t =
  match t with
  | nab X in X -> X
  | Abs r \rightarrow Abs (Y\ beta (r @ Y))
  | App(m, n) ->
      let m = beta m in
      let n = beta n in
      begin match m with
      | Abs r -> beta (subst r n)
      | _ -> App(m, n)
      end
```

;;

Unification modulo α , β_0 and η . β_0 : $(\lambda x.B)y = B[y/x]$ provided y is not free in $\lambda x.B$

Unification modulo α , β_0 and η . β_0 : $(\lambda x.B)y = B[y/x]$ provided y is not free in $\lambda x.B$

Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

Unification modulo α , β_0 and η . β_0 : $(\lambda x.B)y = B[y/x]$ provided y is not free in $\lambda x.B$

Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

```
| X \ App (m @ X, n @ X) ->
App (subst m u, subst n u)
```

Unification modulo α , β_0 and η . β_0 : $(\lambda x.B)y = B[y/x]$ provided y is not free in $\lambda x.B$

Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) -> App (subst m u, subst n u)

This is called higher-order pattern unification. Decidable, most general unifiers.

ML admits type-erasure:

can define an operational semantics on untyped terms.

 \Longrightarrow untyped interpreter in $\lambda\text{-prolog, all}$ ML types map to tm.

kind	tm	type.
type	app	tm -> tm -> tm.
type	lam	(tm -> tm) -> tm.
type	let	tm -> (tm -> tm) -> tm.
type	match	tm -> clauses -> tm.
type	К	tm ->> tm -> tm.
type	cp	tm -> tm -> prop.
type	eval	tm -> tm -> prop.
	(let Def al Def VD,	Body) VB :-
eva	al (Body N	VD) VB.

To extend to $\operatorname{MLTS}\nolimits$,

$$transl(a \Rightarrow b) = tm \rightarrow transl(b) transl(_) = tm$$

To extend to MLTS ,

 $transl(a \Rightarrow b) = tm \rightarrow transl(b) \quad transl(_) = tm$ $transl(X \setminus t) = x \setminus transl(t) \quad transl(t @ x) = transl(t) x$

To extend to $\operatorname{MLTS}\nolimits$,

$$\begin{aligned} & \text{transl}(a \implies b) = \text{tm} \implies \text{transl}(b) & \text{transl}(_{-}) = \text{tm} \\ & \text{transl}(X \setminus t) = x \setminus \text{transl}(t) & \text{transl}(t @ x) = \text{transl}(t) x \end{aligned}$$

type new_{$$\tau$$} (tm -> τ) -> τ .

To extend to $\operatorname{MLTS}\nolimits$,

$$\begin{aligned} & \text{transl}(a \Rightarrow b) = \text{tm} \rightarrow \text{transl}(b) & \text{transl}(_{-}) = \text{tm} \\ & \text{transl}(X \setminus t) = x \setminus \text{transl}(t) & \text{transl}(t @ x) = \text{transl}(t) x \end{aligned}$$

type new_{$$au$$} (tm -> au) -> au .

eval (new_{τ} T) V :- pi x \ eval (T x) V.

Demo time?

Implementation by Ulysse Gérard.

Technology: Menhir + his code + Elpi + js_of_ocaml + Nice web stuff.

Conclusion & Future work

- This treatment of bindings has a clean semantic inspired by Abella.
- The interpreter was quite simple to write : pprox140 lines of code

Future work:

- More examples in the meta-programming area (a compiler ?)
- Provide an operational semantics (small-step?) without primitive binding constructs.
- Statics checks such as pattern matching exhaustivity, use of distinct pattern variables in pattern application, nominals escaping their scope, etc.
- Design a "real" implementation. A compiler ? An extension to OCaml ? An abstract machine ?

https://trymlts.github.io

Thank you

Concrete syntax typing rules (1/2)

$$\overline{\Gamma, x : C \vdash x : C} \qquad \frac{\Gamma \vdash M : A \rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (M \ N) : B}$$

$$\frac{\Gamma, x : A \vdash M : B}{\overline{\Gamma} \vdash (fun \ x \rightarrow M) : A \rightarrow B}$$

$$\frac{\Gamma, X : A \vdash M : B \qquad \text{open } A}{\Gamma \vdash (new \ X \ in \ M) : B} \qquad \frac{\Gamma, X : A \vdash M : B \qquad \text{open } A}{\Gamma \vdash (X \ M) : A \Rightarrow B}$$

$$\frac{\Gamma \vdash r : A1 \Rightarrow \dots \Rightarrow An \Rightarrow A \qquad \Gamma \vdash t1 : A1 \qquad \dots \qquad \Gamma \vdash tn : An}{\Gamma \vdash (r \ Q \ t1 \ \dots \ tn) : A}$$

Concrete syntax typing rules (2/2)

 $\Gamma \vdash \texttt{term} : B$ $\Gamma \vdash B : \texttt{R1} : \texttt{A}$... $\Gamma \vdash B : \texttt{Rn} : \texttt{A}$ $\Gamma \vdash$ match term with R1 | ... | Rn : A $\frac{\Gamma, X: C \vdash A: R: B \quad \text{open } C}{\Gamma \vdash A: \texttt{nab} X \text{ in } R: B} \qquad \frac{\Gamma \vdash L: A \vdash \Delta \quad \Gamma, \Delta \vdash R: B}{\Gamma \vdash A: L \text{ -> } R: B}$ $\Gamma \vdash \texttt{t1} : \texttt{A1} \vdash \Delta_1 \quad \dots \quad \Gamma \vdash \texttt{tn} : \texttt{An} \vdash \Delta_n \quad C \text{ of type } \texttt{A1} \ast \dots \ast \texttt{An} \rightarrow \texttt{A}$ $\Gamma \vdash C(t1,\ldots,tn) : A \vdash \Delta_1,\ldots,\Delta_n$ $\Gamma \vdash X1 : A1 \dots \Gamma \vdash Xn : An open A1 \dots open An$ $\overline{\Gamma \vdash (\mathbf{r} \ \mathbb{Q} \ \mathbb{X}1 \ \dots \ \mathbb{X}n)} : \mathbb{A} \vdash \mathbf{r} : \mathbb{A}1 \implies \dots \implies \mathbb{A}n \implies \mathbb{A}$ $\frac{}{\Gamma \vdash \mathbf{x} : \mathbf{A} \vdash \{\mathbf{x} : \mathbf{A}\}} \qquad \frac{\Gamma \vdash \mathbf{p} : \mathbf{A} \vdash \Delta_1 \qquad \Gamma \vdash \mathbf{q} : \mathbf{B} \vdash \Delta_2}{\Gamma \vdash (\mathbf{p}, \mathbf{q}) : \mathbf{A} * \mathbf{B} \vdash \Delta_1, \Delta_2}$

Natural semantics for the abstract syntax (G-logic [Gacek, 2009, Gacek et al., 2011]) (1/2)

$$\frac{\vdash val \ V}{\vdash V \Downarrow V} \qquad \frac{\vdash M \Downarrow F \qquad \vdash N \Downarrow U \qquad \vdash apply \ F \ U \ V}{\vdash M@N \Downarrow V}$$

$$\frac{\vdash (R \ U) \Downarrow V}{\vdash apply \ (lam \ R) \ U \ V} \qquad \frac{\vdash (R \ (fixpt \ R)) \Downarrow V}{\vdash (fixpt \ R) \Downarrow V}$$

$$\frac{\vdash C \Downarrow tt \qquad \vdash L \Downarrow V}{\vdash cond \ C \ L \ M \Downarrow V} \qquad \frac{\vdash C \Downarrow ff \qquad \vdash M \Downarrow V}{\vdash cond \ C \ L \ M \Downarrow V}$$

Natural semantics for the abstract syntax (2/2)

$$\frac{\vdash \nabla x.(E \ x) \Downarrow (V \ x)}{\vdash x \setminus E \ x \Downarrow x \setminus V \ x} \qquad \frac{\vdash \nabla x.(E \ x) \Downarrow V}{\vdash new \ E \Downarrow V}$$

$$\frac{\vdash pattern \ T \ Rule \ U \ \vdash U \Downarrow V}{\vdash (match \ T \ (Rule :: \ Rules)) \Downarrow V} \qquad \frac{\vdash (match \ T \ Rules) \Downarrow V}{\vdash (match \ T \ (Rule :: \ Rules)) \Downarrow V}$$

$$\frac{\vdash \exists x.pattern \ T \ (P \ x) \ U}{\vdash pattern \ T \ (all \ (x \setminus P \ x)) \ U} \qquad \frac{\vdash (\lambda z_1 \dots \lambda z_m.(t \Longrightarrow s)) \trianglerighteq (T \Longrightarrow U)}{\vdash pattern \ T \ (nab \ z_1 \dots nab \ z_m.(t \Longrightarrow s)) \ U}$$

$$\frac{\vdash \lambda X.(X \Longrightarrow s) \trianglerighteq (Y \Longrightarrow U)}{\vdash pattern \ Y \ (nab \ X \ in \ (X \Longrightarrow s)) \ U} \qquad \vdash U \Downarrow V$$

Gacek, A. (2009).

A Framework for Specifying, Prototyping, and Reasoning about Computational Systems.

PhD thesis, University of Minnesota.

Gacek, A., Miller, D., and Nadathur, G. (2011). Nominal abstraction.

Information and Computation, 209(1):48–73.

- Miller, D. and Nadathur, G. (2012). Programming with Higher-Order Logic. Cambridge University Press.

Miller, D. and Palamidessi, C. (1999). Foundational aspects of syntax. *ACM Computing Surveys*, 31. Nordstrom, B., Petersson, K., and Smith, J. M. (1990).
 Programming in Martin-Löf's type theory : an introduction.
 International Series of Monographs on Computer Science. Oxford: Clarendon.