
Functional programming with λ−tree syntax

Ulysse Gérard, Dale Miller, Gabriel Scherer

Parsifal, Inria Saclay, France

HOPE, September 23rd, 2018

1

Introduction

MLTS is an ongoing language design experiment. WIP!
Extend ML with binder handling constructs from λProlog and Abella.

Theory: in logic programming, computation from proof search.
Binders: a new quantifier in the logic: ∇x , “for a fresh x”.

Implementation: online, compiles to λProlog.
https://voodoos.github.io/mlts/

Look and feel: a funny mix of FreshML and HOAS.
Mobility and λ-Tree Syntax.

2

https://voodoos.github.io/mlts/

MLTS: datatypes with binders

MLTS extends ML with binders.

Normal ML datatypes are closed.

Example of open datatype:

type lam =

| App of lam * lam

| Abs of lam => lam

;;

(notice: no constructor for variables)

Inhabitants:

λx . x
λx . (x x)
(λx . x) (λx . x)

Abs(X \ X)

Abs(X \ App(X, X))

App(Abs(X \ X), Abs(X \ X))

3

MLTS: datatypes with binders

MLTS extends ML with binders.

Normal ML datatypes are closed.

Example of open datatype:

type lam =

| App of lam * lam

| Abs of lam => lam

;;

(notice: no constructor for variables)
Inhabitants:

λx . x
λx . (x x)
(λx . x) (λx . x)

Abs(X \ X)

Abs(X \ App(X, X))

App(Abs(X \ X), Abs(X \ X))

3

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

nab X in (X, X) will only match if x = t = X is a nominal.

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

nab X Y in (X, Y) will only match two distinct nominals.

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

r : lam => lam

(Y\ r @ Y) : lam => lam

r @ Y : lam

Abs(Y\ r @ Y) : lam

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

r : lam => lam

(Y\ r @ Y) : lam => lam

r @ Y : lam

Abs(Y\ r @ Y) : lam

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

r : lam => lam

(Y\ r @ Y) : lam => lam

r @ Y : lam

Abs(Y\ r @ Y) : lam

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

r : lam => lam

(Y\ r @ Y) : lam => lam

r @ Y : lam

Abs(Y\ r @ Y) : lam

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

r : lam => lam

(Y\ r @ Y) : lam => lam

r @ Y : lam

Abs(Y\ r @ Y) : lam

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

In Abs(Y \ subst (r @ Y) x u), no variable is ever free.
Binders move.

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4

Binder type
(a => b): “open” values of type b under a binder of type a.
introduction X \ t, elimination t @ X.

type lam =

| App of lam * lam

| Abs of lam => lam;;

(X \ X) : lam => lam

Abs(X \ App(X, X)) : lam

(fun r -> Abs(Y \ App(r @ Y, r @ Y))

: (lam => lam) -> lam

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

(and in patterns)

5

Binder type
(a => b): “open” values of type b under a binder of type a.
introduction X \ t, elimination t @ X.

type lam =

| App of lam * lam

| Abs of lam => lam;;

(X \ X) : lam => lam

Abs(X \ App(X, X)) : lam

(fun r -> Abs(Y \ App(r @ Y, r @ Y))

: (lam => lam) -> lam

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

(and in patterns)

5

Binder type
(a => b): “open” values of type b under a binder of type a.
introduction X \ t, elimination t @ X.

type lam =

| App of lam * lam

| Abs of lam => lam;;

(X \ X) : lam => lam

Abs(X \ App(X, X)) : lam

(fun r -> Abs(Y \ App(r @ Y, r @ Y))

: (lam => lam) -> lam

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

(and in patterns)

5

Binder type
(a => b): “open” values of type b under a binder of type a.
introduction X \ t, elimination t @ X.

type lam =

| App of lam * lam

| Abs of lam => lam;;

(X \ X) : lam => lam

Abs(X \ App(X, X)) : lam

(fun r -> Abs(Y \ App(r @ Y, r @ Y))

: (lam => lam) -> lam

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

(and in patterns)

5

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

new binder?

How to perform that substitution : (λy . y x)[x\λz . z]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

6

Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)

7

Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)

7

Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)

7

Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)

7

Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)

7

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;

8

Pattern matching

Unification modulo α, β0 and η.
β0: (λx .B)y = B[y/x] provided y is not free in λx .B

Implied restrictions:

Applications lists are distinct nominals.
(nab X1 X2 in C(r @ X1 X2) -> ...).

In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

This is called higher-order pattern unification.
Decidable, most general unifiers.

9

Pattern matching

Unification modulo α, β0 and η.
β0: (λx .B)y = B[y/x] provided y is not free in λx .B

Implied restrictions:

Applications lists are distinct nominals.
(nab X1 X2 in C(r @ X1 X2) -> ...).

In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

This is called higher-order pattern unification.
Decidable, most general unifiers.

9

Pattern matching

Unification modulo α, β0 and η.
β0: (λx .B)y = B[y/x] provided y is not free in λx .B

Implied restrictions:

Applications lists are distinct nominals.
(nab X1 X2 in C(r @ X1 X2) -> ...).

In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

This is called higher-order pattern unification.
Decidable, most general unifiers.

9

Pattern matching

Unification modulo α, β0 and η.
β0: (λx .B)y = B[y/x] provided y is not free in λx .B

Implied restrictions:

Applications lists are distinct nominals.
(nab X1 X2 in C(r @ X1 X2) -> ...).

In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

This is called higher-order pattern unification.
Decidable, most general unifiers.

9

Interpreter in λProlog: just ML
ML admits type-erasure:
can define an operational semantics on untyped terms.

=⇒ untyped interpreter in λ-prolog, all ML types map to tm.

kind tm type.

type app tm -> tm -> tm.

type lam (tm -> tm) -> tm.

type let tm -> (tm -> tm) -> tm.

type match tm -> clauses -> tm.

type K tm -> ... -> tm -> tm.

type cp tm -> tm -> prop.

type eval tm -> tm -> prop.

eval (let Def Body) VB :-

eval Def VD ,

eval (Body VD) VB.
10

Interpreter in λProlog: MLTS

To extend to MLTS,

transl(a => b) = tm -> transl(b) transl() = tm

transl(X \ t) = x \ transl(t) transl(t @ x) = transl(t) x

type newτ (tm -> τ) -> τ .

eval (newτ T) V :- pi x \ eval (T x) V.

11

Interpreter in λProlog: MLTS

To extend to MLTS,

transl(a => b) = tm -> transl(b) transl() = tm

transl(X \ t) = x \ transl(t) transl(t @ x) = transl(t) x

type newτ (tm -> τ) -> τ .

eval (newτ T) V :- pi x \ eval (T x) V.

11

Interpreter in λProlog: MLTS

To extend to MLTS,

transl(a => b) = tm -> transl(b) transl() = tm

transl(X \ t) = x \ transl(t) transl(t @ x) = transl(t) x

type newτ (tm -> τ) -> τ .

eval (newτ T) V :- pi x \ eval (T x) V.

11

Interpreter in λProlog: MLTS

To extend to MLTS,

transl(a => b) = tm -> transl(b) transl() = tm

transl(X \ t) = x \ transl(t) transl(t @ x) = transl(t) x

type newτ (tm -> τ) -> τ .

eval (newτ T) V :- pi x \ eval (T x) V.

11

Demo time?

Implementation by Ulysse Gérard.

Technology: Menhir + his code + Elpi + js of ocaml + Nice web stuff.
12

Conclusion & Future work

This treatment of bindings has a clean semantic inspired by Abella.

The interpreter was quite simple to write : ≈140 lines of code

Future work:

More examples in the meta-programming area (a compiler ?)

Provide an operational semantics (small-step?) without primitive
binding constructs.

Statics checks such as pattern matching exhaustivity, use of distinct
pattern variables in pattern application, nominals escaping their
scope, etc.

Design a ”real” implementation. A compiler ? An extension to
OCaml ? An abstract machine ?

https://trymlts.github.io

Thank you

13

https://trymlts.github.io

14

Concrete syntax typing rules (1/2)

Γ, x : C ` x : C
Γ ` M : A -> B Γ ` N : A

Γ ` (M N) : B

Γ, x : A ` M : B

Γ ` (fun x -> M) : A -> B

Γ, X : A ` M : B open A

Γ ` (new X in M) : B

Γ, X : A ` M : B open A

Γ ` (X \ M) : A => B

Γ ` r : A1 => ... => An => A Γ ` t1 : A1 . . . Γ ` tn : An
Γ ` (r @ t1 ... tn) : A

15

Concrete syntax typing rules (2/2)

Γ ` term : B Γ ` B : R1 : A . . . Γ ` B : Rn : A
Γ ` match term with R1 | ... | Rn : A

Γ, X : C ` A : R : B open C

Γ ` A : nab X in R : B

Γ ` L : A ` ∆ Γ,∆ ` R : B

Γ ` A : L -> R : B

Γ ` t1 : A1 ` ∆1 . . . Γ ` tn : An ` ∆n

Γ ` C(t1,...,tn) : A ` ∆1, . . . ,∆n
C of type A1*...*An -> A

Γ ` X1 : A1 . . . Γ ` Xn : An open A1 . . . open An

Γ ` (r @ X1 ... Xn) : A ` r : A1 => ... => An => A

Γ ` x : A ` {x : A}
Γ ` p : A ` ∆1 Γ ` q : B ` ∆2

Γ ` (p,q) : A * B ` ∆1,∆2

16

Natural semantics for the abstract syntax
(G-logic [Gacek, 2009, Gacek et al., 2011]) (1/2)

` val V
` V ⇓ V

` M ⇓ F ` N ⇓ U ` apply F U V

` M@N ⇓ V

` (R U) ⇓ V

` apply (lam R) U V

` (R (fixpt R)) ⇓ V

` (fixpt R) ⇓ V

` C ⇓ tt ` L ⇓ V

` cond C L M ⇓ V

` C ⇓ ff ` M ⇓ V

` cond C L M ⇓ V

17

Natural semantics for the abstract syntax (2/2)

` ∇x .(E x) ⇓ (V x)

` x\ E x ⇓ x\ V x

` ∇x .(E x) ⇓ V

` new E ⇓ V

` pattern T Rule U ` U ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` (match T Rules) ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ∃x .pattern T (P x) U

` pattern T (all (x\ P x)) U

` (λz1 . . . λzm.(t =⇒ s)) D (T =⇒ U)

` pattern T (nab z1 . . . nab zm.(t =⇒ s)) U

` λX .(X =⇒ s) D (Y =⇒ U)

` pattern Y (nab X in (X =⇒ s)) U ` U ⇓ V

` match Y with (nab X in (X =⇒ s)) ⇓ V

18

Gacek, A. (2009).
A Framework for Specifying, Prototyping, and Reasoning about
Computational Systems.
PhD thesis, University of Minnesota.

Gacek, A., Miller, D., and Nadathur, G. (2011).
Nominal abstraction.
Information and Computation, 209(1):48–73.

Miller, D. and Nadathur, G. (2012).
Programming with Higher-Order Logic.
Cambridge University Press.

Miller, D. and Palamidessi, C. (1999).
Foundational aspects of syntax.
ACM Computing Surveys, 31.

19

Nordstrom, B., Petersson, K., and Smith, J. M. (1990).
Programming in Martin-Löf’s type theory : an introduction.
International Series of Monographs on Computer Science. Oxford:
Clarendon.

20

	Introduction

