Functional programming with λ-tree syntax Ulysse Gérard, Dale Miller, Gabriel Scherer

Parsifal, Inria Saclay, France
HOPE, September 23rd, 2018

1

Introduction

MLTS is an ongoing language design experiment. WIP! Extend ML with binder handling constructs from λ Prolog and Abella.

Theory: in logic programming, computation from proof search. Binders: a new quantifier in the logic: ∇x, "for a fresh x ".

Implementation: online, compiles to λ Prolog.
https://voodoos.github.io/mlts/

Look and feel: a funny mix of FreshML and HOAS.
Mobility and λ-Tree Syntax.

MLTS: datatypes with binders

MLTS extends ML with binders.
Normal ML datatypes are closed.
Example of open datatype:

```
    type lam =
    | App of lam * lam
    | Abs of lam => lam
    ;;
```

(notice: no constructor for variables)

MLTS: datatypes with binders

MLTS extends ML with binders.
Normal ML datatypes are closed.
Example of open datatype:

```
type lam =
    | App of lam * lam
| Abs of lam => lam
;;
```

(notice: no constructor for variables)
Inhabitants:
$\lambda x . x$
$\lambda x .(x x)$
$(\lambda x . x)(\lambda x, x)$

Abs (X \X)
$\operatorname{Abs}(X \backslash \operatorname{App}(X, X))$
$\operatorname{App}(\operatorname{Abs}(X \backslash X), \operatorname{Abs}(X \backslash X))$

MLTS crash course

$$
\begin{gathered}
\text { subst }: \operatorname{lam}->\operatorname{lam} \rightarrow \text { lam } \\
\text { subst } \mathrm{t} x \mathrm{x} \text { is } t[x \backslash u]
\end{gathered}
$$

let rec subst $t x u=m a t c h(x, t) w i t h$

MLTS crash course

$$
\begin{aligned}
& \text { subset : lam }->\operatorname{lam}->\operatorname{lam} \\
& \text { subs } \mathrm{t} \text { x is } t[x \backslash u] .
\end{aligned}
$$

nab X in (X, X) will only match if $\mathrm{x}=\mathrm{t}=\mathrm{X}$ is a nominal.

$$
\begin{aligned}
& \text { let rec subst } t \mathrm{x} u=\text { match (x, t) with } \\
& \text { l nab } X \text { in (X, X) -> u }
\end{aligned}
$$

MLTS crash course

$$
\begin{aligned}
& \text { subset : lam -> lam -> lam } \\
& \text { subs } \mathrm{t} \mathrm{x} \text { is } t[x \backslash u] .
\end{aligned}
$$ nab X Y in (X, Y) will only match two distinct nominal.

$$
\begin{aligned}
& \text { let rec subst } t X \quad u=\text { match }(x, t) \text { with } \\
& \text { I nab } X \text { in }(X, X)->y \\
& \text { I nab } X \text { in }(X, Y)->Y
\end{aligned}
$$

MLTS crash course

$$
\begin{gathered}
\text { subst }: \operatorname{lam}->\operatorname{lam}->\text { lam } \\
\text { subst } \mathrm{t} x \mathrm{x} \text { is } t[x \backslash u]
\end{gathered}
$$

let rec subst $t \mathrm{x}$ u = match (x, t) with
| nab X in (X, X) $->$ u
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App(subst m x u, subst $n \mathrm{x} u)$

MLTS crash course

$$
\begin{aligned}
& \text { subst : lam -> lam -> lam } \\
& \text { subst } \mathrm{t} \mathrm{x} \text { u is } t[x \backslash u] .
\end{aligned}
$$

let rec subst $t \mathrm{x}$ u = match (x, t) with
| nab X in (X, X) $->$ u
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App (subst m x u, subst $n \mathrm{x} u)$
| ($\mathrm{x}, \mathrm{Abs}(\mathrm{r})$) $->\operatorname{Abs}(\mathrm{Y} \backslash$ subst (r @ Y) $\mathrm{x} u)$

MLTS crash course

> subset : lam -> lam -> lam subs t x u is $t[x \backslash u]$.

```
r : lam => lam
```

let rec subs $t \mathrm{x} u=$ match ($\mathrm{x}, \mathrm{t})$ with
| nab X in (X, X) $->$ u
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App (subset m x u, subs $n \mathrm{x} u)$
| ($x, A b s(r))$ - Abs (Y

MLTS crash course

> subset : lam -> lam -> lam subs t x u is $t[x \backslash u]$.

```
r : lam => lam
```

r © Y : lam
let rec subs $t \mathrm{x}$ u = match (x, t) with
| nab X in (X, X) $->$ u
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App (subset m x u, subs $n \mathrm{x} u)$
| ($x, A b s(r))$ - Abs (Y

MLTS crash course

subst : lam -> lam -> lam subst t x is $t[x \backslash u]$.

```
r : lam => lam
r @ Y : lam
(Y\ r @ Y) : lam => lam
```

let rec subst $t \mathrm{x}$ u = match (x, t) with
| nab X in (X, X) -> u
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App(subst $m \mathrm{x} u$, subst n x u)
| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

MLTS crash course

subst : lam -> lam -> lam subst t x is $t[x \backslash u]$.

```
r : lam => lam
(Y\ r @ Y) : lam => lam
```

```
r @ Y : lam
Abs(Y\ r @ Y) : lam
```

let rec subst $t \mathrm{x}$ u = match (x, t) with
| nab X in (X, X) $->u$
| nab X Y in (X, Y) -> Y
| (x, $\operatorname{App}(m, n))$->
App(subst m x u, subst $n \mathrm{x} u)$
| (x, Abs(r)) -> Abs(Y\ subst (r © Y) x u)

MLTS crash course

$$
\begin{aligned}
& \text { subset : lam -> lam -> lam } \\
& \text { subs } \mathrm{t} \mathrm{x} \text { u is } t[x \backslash u] .
\end{aligned}
$$

In Abs (Y \ subst (r @ Y) xu), no variable is ever free. Binders move.

$$
\begin{aligned}
& \text { let rec subs } t \mathrm{x} \text { u = match (x, t) with } \\
& \text { | nab } X \text { in (} X, X \text {) }->\text { u } \\
& \text { | nab X Y in (X, Y) -> Y } \\
& \text { | (x, } \operatorname{App}(m, n)) \text {-> } \\
& \text { App (subs m x u, subs } n \mathrm{x} u) \\
& \text { | (} x, A b s(r)) \text {-> Abs (Y } \backslash \text { subs (r © Y) } x \text { u) }
\end{aligned}
$$

Binder type

($\mathrm{a}=>\mathrm{b}$): "open" values of type b under a binder of type a . introduction $\mathrm{X} \backslash \mathrm{t}$, elimination t @ X .

Binder type

($\mathrm{a}=>\mathrm{b}$): "open" values of type b under a binder of type a . introduction $\mathrm{X} \backslash \mathrm{t}$, elimination t @ X .

```
type lam =
| App of lam * lam
| Abs of lam => lam;;
```


Binder type

($\mathrm{a}=>\mathrm{b}$): "open" values of type b under a binder of type a . introduction $\mathrm{X} \backslash \mathrm{t}$, elimination t @ X .

```
type lam =
| App of lam * lam
| Abs of lam => lam;
```


$$
\frac{\Gamma, X: A \vdash t: B}{\Gamma \vdash X \backslash t: A=>B} \quad \frac{\Gamma \vdash t: A=>B \quad(X: A) \in \Gamma}{\Gamma \vdash t @ X: B}
$$

Binder type

($\mathrm{a}=>\mathrm{b}$): "open" values of type b under a binder of type a . introduction $\mathrm{X} \backslash \mathrm{t}$, elimination t @ X .

```
type lam =
| App of lam * lam
| Abs of lam => lam;;
```

(X \ X) : lam => lam	
$\operatorname{Abs}(X \backslash \operatorname{App}(X, X))$:	
(fun $r \rightarrow$ Abs (Y \ App	r @ Y, r @ Y)
	lam => lam) -> lam
$\Gamma, X: A \vdash t: B$	$\Gamma \vdash t: A \Rightarrow B \quad(X: A) \in \Gamma$
$\overline{\Gamma \vdash X \backslash t: A ~} \quad$ > B	$\Gamma \vdash t @ X: B$

(and in patterns)

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z . z]$?

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z . z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\Z));

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z, z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\Z));

We need a way to introduce a nominal to call subst.

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z . z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\ Z));

We need a way to introduce a nominal to call subst.
new X in subst (Abs(Y\App(Y, X))) X (Abs(Z\Z));

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z, z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.
new X in subst (Abs(Y\App(Y, X))) X (Abs(Z\Z));
$\longrightarrow \operatorname{Abs}(Y \backslash \operatorname{App}(Y, \operatorname{Abs}(Z \backslash Z)))$

new binder?

How to perform that substitution : $(\lambda y . y x)[x \backslash \lambda z . z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.
new X in subst (Abs(Y\App(Y, X))) X (Abs(Z\Z));
$\longrightarrow \operatorname{Abs}(Y \backslash \operatorname{App}(Y, \operatorname{Abs}(Z \backslash Z)))$
new X in: a scope in which a new nominal X is available.

new binder?

How to perform that substitution : $(\lambda y, y x)[x \backslash \lambda z, z]$?
subst (Abs(Y\App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.
new X in subst (Abs(Y $\operatorname{App(Y,X)))} \mathrm{X}(\operatorname{Abs}(Z \backslash Z)) ;$;
$\longrightarrow \operatorname{Abs}(Y \backslash \operatorname{App}(Y, \operatorname{Abs}(Z \backslash Z)))$
new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)

Pure substitution

$$
\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u / x]}
$$

let $r e c$ subst (t : lam => lam) (u : lam) : lam = match t with

Pure substitution

$$
\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u / x]}
$$

let $r e c$ subst (t : lam => lam) (u : lam) : lam = match t with
| X \ X ->
u

Pure substitution

$$
\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u / x]}
$$

let $r e c$ subst (t : lam => lam) (u : lam) : lam = match t with
| X \ X ->
u
| nab Y in (X \Y) -> Y

Pure substitution

$$
\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u / x]}
$$

let rec subst (t : lam => lam) (u : lam) : lam = match t with
| X \X ->
u
| nab Y in (X \ Y) -> Y
IX \App (m @ X, n @ X) -> App (subst mu, subst n u)

Pure substitution

$$
\frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t[u / x]}
$$

let rec subst (t : lam => lam) (u : lam) : lam = match t with
| X \X ->
u
| nab Y in (X \ Y) ->
Y
| X \App (m @ X, n @ X) -> App (subst m u, subst $n u$)
| X \Abs (Y \re X Y) ->
Abs (Y \ subst (X \ r @ X Y) u)

Beta reduction

let rec beta $t=$
match t with
| nab X in $X \quad->$

Beta reduction

let rec beta $t=$
match t with
| nab X in $X->X$
| Abs r -> Abs (Y

Beta reduction

let rec beta $\mathrm{t}=$
match t with
| nab X in $X ~->X$
| Abs r -> Abs (Y
| App (m, n) ->
let $m=$ beta m in
let $n=$ beta n in

Beta reduction

let rec beta $\mathrm{t}=$
match t with
| nab X in $X->X$
| Abs r -> Abs (Y
| App (m, n) ->
let $m=$ beta m in
let $n=$ beta n in
begin match m with
| Abs r -> beta (subst rn)

Beta reduction

let rec beta $\mathrm{t}=$
match t with
| nab X in $X->X$
| Abs r -> Abs (Y
| App (m, n) ->
let $m=$ beta m in
let $n=$ beta n in
begin match m with
| Abs r -> beta (subst rn)
| _ -> App (m, n)

Beta reduction

let rec beta $\mathrm{t}=$
match t with
| nab X in $X->X$
| Abs r -> Abs (Y
| App (m, n) ->
let $m=$ beta m in
let $n=$ beta n in
begin match m with
| Abs r -> beta (subst rn)
| _ -> App (m, n)
end
; ;

Pattern matching

Unification modulo α, β_{0} and η.
$\beta_{0}:(\lambda x . B) y=B[y / x]$ provided y is not free in $\lambda x . B$

Pattern matching

Unification modulo α, β_{0} and η.
$\beta_{0}:(\lambda x . B) y=B[y / x]$ provided y is not free in $\lambda x . B$
Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

Pattern matching

Unification modulo α, β_{0} and η.
$\beta_{0}:(\lambda x . B) y=B[y / x]$ provided y is not free in $\lambda x . B$
Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

$$
\begin{aligned}
& \text { IX \App (m @ X, n @ X) -> } \\
& \quad \text { App (subs mu, subst } n \text { u) }
\end{aligned}
$$

Pattern matching

Unification modulo α, β_{0} and η.
$\beta_{0}:(\lambda x . B) y=B[y / x]$ provided y is not free in $\lambda x . B$

Implied restrictions:

- Applications lists are distinct nominals. (nab X1 X2 in C(r @ X1 X2) -> ...).
- In r @ X, the nominal X is not free in r.

$$
\begin{aligned}
& \text { I X \App (m @ X, n @ X) -> } \\
& \quad \text { App (subst m u, subst } n \text { u) }
\end{aligned}
$$

This is called higher-order pattern unification.
Decidable, most general unifiers.

Interpreter in λ Prolog: just ML

ML admits type-erasure:
can define an operational semantics on untyped terms.
\Longrightarrow untyped interpreter in λ-prolong, all ML types map to tm.
kind tm
type app
type lam
type let
type match
type K
type cp
type oval
type.
$\mathrm{tm} \rightarrow \mathrm{tm}->\mathrm{tm}$.
(tm $->\mathrm{tm}$) $\rightarrow>\mathrm{tm}$.
$\mathrm{tm} \rightarrow>(\mathrm{tm} \rightarrow>\mathrm{tm}) \rightarrow>\mathrm{tm}$.
tm $->$ clauses $\rightarrow>$ tm.
$\mathrm{tm}->\cdots \quad->\mathrm{tm} \quad->\mathrm{tm}$.
tm -> tm -> prop.
tm -> tm -> prop.
eval (let Def Body) VB :-
eval Def VD, eval (Body VD) VB.

Interpreter in λ Prolog: MLTS

To extend to MLTS,

$$
\operatorname{transl}(\mathrm{a}=>\mathrm{b})=\mathrm{tm} \rightarrow \operatorname{transl}(\mathrm{~b}) \quad \operatorname{transl}(-)=\mathrm{tm}
$$

Interpreter in λ Prolog: MLTS

To extend to MLTS,

$$
\begin{gathered}
\operatorname{transl}(\mathrm{a}=>\mathrm{b})=\operatorname{tm} \rightarrow \operatorname{transl}(\mathrm{b}) \quad \operatorname{transl}(-)=\mathrm{tm} \\
\operatorname{transl}(\mathrm{X} \backslash \mathrm{t})=\mathrm{x} \backslash \operatorname{transl}(\mathrm{t}) \quad \operatorname{transl}(\mathrm{t} @ \mathrm{x})=\operatorname{transl}(\mathrm{t}) \mathrm{x}
\end{gathered}
$$

Interpreter in λ Prolog: MLTS

To extend to MLTS,

$$
\begin{gathered}
\operatorname{transl}(\mathrm{a}=>\mathrm{b})=\mathrm{tm} \rightarrow \operatorname{transl}(\mathrm{~b}) \quad \operatorname{transl}(-)=\mathrm{tm} \\
\operatorname{transl}(\mathrm{X} \backslash \mathrm{t})=\mathrm{x} \backslash \operatorname{transl}(\mathrm{t}) \quad \operatorname{transl}(\mathrm{t} @ \mathrm{x})=\operatorname{transl}(\mathrm{t}) \mathrm{x}
\end{gathered}
$$

type new ${ }_{\tau}(\mathrm{tm} \rightarrow \tau) \quad \rightarrow \tau$.

Interpreter in λ Prolog: MLTS

To extend to MLTS,

$$
\begin{gathered}
\operatorname{transl}(\mathrm{a}=>\mathrm{b})=\operatorname{tm} \rightarrow \operatorname{transl}(\mathrm{b}) \quad \operatorname{transl}(-)=\mathrm{tm} \\
\operatorname{transl}(\mathrm{X} \backslash \mathrm{t})=\mathrm{x} \backslash \operatorname{transl}(\mathrm{t}) \quad \operatorname{transl}(\mathrm{t} @ \mathrm{x})=\operatorname{transl}(\mathrm{t}) \mathrm{x}
\end{gathered}
$$

type new $w_{\tau}(\mathrm{tm} \rightarrow \tau) \rightarrow \tau$.
eval (new T) V :- pi x \eval (T x) V.

Demo time?

Implementation by Ulysse Gérard.

Technology: Menhir + his code + Elpi + js_of_ocaml + Nice web stuff.

Conclusion \& Future work

- This treatment of bindings has a clean semantic inspired by Abella.
- The interpreter was quite simple to write : ≈ 140 lines of code Future work:
- More examples in the meta-programming area (a compiler ?)
- Provide an operational semantics (small-step?) without primitive binding constructs.
- Statics checks such as pattern matching exhaustivity, use of distinct pattern variables in pattern application, nominals escaping their scope, etc.
- Design a "real" implementation. A compiler ? An extension to OCaml ? An abstract machine ?
https: //trymlts.github.io

Thank you

Concrete syntax typing rules $(1 / 2)$

$$
\begin{aligned}
& \overline{\Gamma, x: C \vdash \mathrm{x}: \mathrm{C}} \frac{\Gamma \vdash \mathrm{M}: \mathrm{A} \rightarrow \mathrm{~B}}{\Gamma \vdash(\mathrm{M} \mathrm{~N}): \mathrm{B}} \\
& \Gamma, x: A \vdash M: B \\
& \Gamma \vdash(\text { fun } x \rightarrow M): A->B \\
& \frac{\Gamma, \mathrm{X}: \mathrm{A} \vdash \mathrm{M}: \mathrm{B} \quad \text { open } \mathrm{A}}{\Gamma \vdash(\text { new } \mathrm{X} \text { in } \mathrm{M}): \mathrm{B}} \quad \frac{\Gamma, \mathrm{X}: \mathrm{A} \vdash \mathrm{M}: \mathrm{B} \quad \text { open } \mathrm{A}}{\Gamma \vdash(\mathrm{X} \backslash \mathrm{M}): \mathrm{A} \Rightarrow \mathrm{~B}} \\
& \frac{\Gamma \vdash \mathrm{r}: \mathrm{A} 1 \Rightarrow \mathrm{~A}=\mathrm{An} \Rightarrow \mathrm{~A} \quad \Gamma \vdash \mathrm{t} 1: \mathrm{A} 1 \ldots \quad \ldots \vdash \mathrm{tn}: \mathrm{An}}{\Gamma \vdash(\mathrm{r} @ \mathrm{t} 1 \ldots \mathrm{tn}): \mathrm{A}}
\end{aligned}
$$

Concrete syntax typing rules $(2 / 2)$

$$
\begin{aligned}
& \begin{array}{cccc}
\Gamma \vdash \text { term : B } & \Gamma \vdash \mathrm{B}: \mathrm{R} 1: \mathrm{A} & \ldots & \Gamma \vdash \mathrm{~B}: \mathrm{Rn}: \mathrm{A} \\
\hline \Gamma \vdash \text { match term with R1 } & \ldots & \text { Rn:A }
\end{array} \\
& \frac{\Gamma, \mathrm{X}: \mathrm{C} \vdash \mathrm{~A}: \mathrm{R}: \mathrm{B} \quad \text { open } \mathrm{C}}{\Gamma \vdash \mathrm{~A}: \mathrm{nab} \mathrm{X} \text { in } \mathrm{R}: \mathrm{B}} \quad \frac{\Gamma \vdash \mathrm{~L}: \mathrm{A} \vdash \Delta \quad \Gamma, \Delta \vdash \mathrm{R}: \mathrm{B}}{\Gamma \vdash \mathrm{~A}: \mathrm{L} \rightarrow \mathrm{R}: \mathrm{B}} \\
& \frac{\Gamma \vdash \mathrm{t} 1: \mathrm{A} 1 \vdash \Delta_{1} \quad \ldots \quad \Gamma \vdash \mathrm{tn}: \mathrm{An} \vdash \Delta_{n}}{\Gamma \vdash \mathrm{C}(\mathrm{t} 1, \ldots, \mathrm{tn}): \mathrm{A} \vdash \Delta_{1}, \ldots, \Delta_{n}} C \text { of type } \mathrm{A} 1 * \ldots * \mathrm{An} \rightarrow \mathrm{~A} \\
& \frac{\Gamma \vdash \mathrm{X} 1: \mathrm{A} 1 \ldots \Gamma \vdash \mathrm{Xn}: \mathrm{An} \text { open } \mathrm{A} 1 \ldots \text { open } \mathrm{An}}{\Gamma \vdash(\mathrm{r} @ \mathrm{X} 1 \ldots \mathrm{Xn}): \mathrm{A} \vdash \mathrm{r}: \mathrm{A} 1 \ldots \Rightarrow \ldots \mathrm{An} \Rightarrow \mathrm{~A}} \\
& \overline{\Gamma \vdash \mathrm{x}: \mathrm{A} \vdash\{\mathrm{x}: \mathrm{A}\}} \quad \frac{\Gamma \vdash \mathrm{p}: \mathrm{A} \vdash \Delta_{1} \quad \Gamma \vdash \mathrm{q}: \mathrm{B} \vdash \Delta_{2}}{\Gamma \vdash(\mathrm{p}, \mathrm{q}): \mathrm{A} * \mathrm{~B} \vdash \Delta_{1}, \Delta_{2}}
\end{aligned}
$$

Natural semantics for the abstract syntax (G-logic [Gacek, 2009, Gacek et al., 2011]) (1/2)

$$
\begin{array}{cc}
\frac{\vdash v a l V}{\vdash V \Downarrow V} \quad \frac{\vdash M \Downarrow F}{\vdash N \Downarrow U \quad \vdash \text { apply } F U V} \\
\frac{\vdash(R U) \Downarrow V}{\vdash \text { apply }(\operatorname{lam} R) U V} & \frac{\vdash(R(\text { fixpt } R)) \Downarrow V}{\vdash(\text { fixpt } R) \Downarrow V} \\
\frac{\vdash C \Downarrow t t}{\vdash \text { cond } C L M \Downarrow V} & \frac{\vdash C \Downarrow f f}{\vdash M \Downarrow V} \\
\vdash \text { cond C L } L \Downarrow V
\end{array}
$$

Natural semantics for the abstract syntax $(2 / 2)$

$$
\begin{aligned}
& \frac{\vdash \nabla x .(E x) \Downarrow(V x)}{\vdash x \backslash E x \Downarrow x \backslash V x} \quad \frac{\vdash \nabla x .(E x) \Downarrow V}{\vdash \operatorname{new} E \Downarrow V} \\
& \vdash \text { pattern } T \text { Rule } U \quad \vdash \Downarrow V \quad \vdash \text { (match } T \text { Rules }) \Downarrow V \\
& \digamma \text { (match } T \text { (Rule :: Rules) } \Downarrow V \quad \stackrel{\vdash}{ } \Downarrow \text { match } T \text { (Rule :: Rules)) } \Downarrow V \\
& \vdash \exists x \text {.pattern } T(P x) U \quad \vdash\left(\lambda z_{1} \ldots \lambda z_{m} \cdot(t \Longrightarrow s)\right) \unrhd(T \Longrightarrow U) \\
& \vdash \text { pattern } T(a l l(x \backslash P x)) U \quad \vdash \text { pattern } T\left(\text { nab } z_{1} \ldots \text { nab } z_{m} .(t \Longrightarrow s)\right) U \\
& \frac{\stackrel{\vdash \lambda X .(X \Longrightarrow s) \unrhd(Y \Longrightarrow U)}{\vdash \text { pattern } Y(\text { nab } X \text { in }(X \Longrightarrow s)) U} \vdash \vdash \Downarrow V}{\vdash \text { match } Y \text { with }(\text { nab } X \text { in }(X \Longrightarrow s)) \Downarrow V}
\end{aligned}
$$

目 Gacek, A. (2009).
A Framework for Specifying, Prototyping, and Reasoning about Computational Systems.
PhD thesis, University of Minnesota.
R Gacek, A., Miller, D., and Nadathur, G. (2011).
Nominal abstraction.
Information and Computation, 209(1):48-73.
(i. Miller, D. and Nadathur, G. (2012).

Programming with Higher-Order Logic.
Cambridge University Press.
雷 Miller, D. and Palamidessi, C. (1999).
Foundational aspects of syntax.
ACM Computing Surveys, 31.

目 Nordstrom, B., Petersson, K., and Smith, J. M. (1990). Programming in Martin-Löf's type theory : an introduction. International Series of Monographs on Computer Science. Oxford: Clarendon.

