Full abstraction for multi-language systems ML plus linear types

Gabriel Scherer, Amal Ahmed, Max New

Northeastern University, Boston

January 15, 2017

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up: C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the feature space. (simpler?)

Multi-language system design may include designing new languages for interoperation.

Full abstraction to understand graceful language interoperability.

Full abstraction for multi-language systems
【_】 : $S \rightarrow T$ fully abstract:

$$
a \approx c t x b \Longrightarrow \llbracket a \rrbracket \approx^{c t x} \llbracket b \rrbracket
$$

Full abstraction preserves (equational) reasoning.

Full abstraction for multi-language systems

【_】 : $S \rightarrow T$ fully abstract:

$$
a \approx^{c t x} b \Longrightarrow \llbracket a \rrbracket \approx^{c t x} \llbracket b \rrbracket
$$

Full abstraction preserves (equational) reasoning.

Mixed S_{1}, S_{2} programs preserve (equational) reasoning of their fragments.

Full abstraction for multi-language systems

【_】 : $S \rightarrow T$ fully abstract:

$$
a \approx^{c t x} b \Longrightarrow \llbracket a \rrbracket \approx^{c t x} \llbracket b \rrbracket
$$

Full abstraction preserves (equational) reasoning.

Mixed S_{1}, S_{2} programs preserve (equational) reasoning of their fragments. Graceful multi-language semantics. (or vice versa)

Full abstraction for multi-language systems

【_】 : S $\rightarrow T$ fully abstract:

$$
a \approx^{c t x} b \Longrightarrow \llbracket a \rrbracket \approx^{c t x} \llbracket b \rrbracket
$$

Full abstraction preserves (equational) reasoning.

Mixed S_{1}, S_{2} programs preserve (equational) reasoning of their fragments. Graceful multi-language semantics.
(or vice versa)
In this talk: a first ongoing experiment on ML plus linear types.
$\mathrm{U}:$ a core ML
$\Gamma \vdash \vdash_{u} \mathrm{e}: \sigma$

L: linear types

Resource tracking, unique ownership.
σ
! σ
「
! Γ

$$
\Gamma \vdash_{\mathrm{I}} \mathrm{e}: \sigma
$$

We own e at type σ (duplicable or not), e owns the resources in Γ.

Multi-language applications

Protocol with resource handling requirements.
"This file descriptor must be closed"
open : ! (! Path] \multimap Handle)
line $: \quad!($ Handle $-($ Handle $\oplus(![$ String $] \otimes$ Handle $)))$
close : ! (Handle $\multimap 1$)
(details about the boundaries come later)

Typestate.

```
let concat_lines path : String = UL(
    loop (open LU(path)) LU(Nil)
    where rec loop handle (acc : ![List String]) =
    match line handle with
    | EOF handle ->
    close handle; LU(rev_concat "\n" UL(acc))
    | Next line handle ->
    loop handle LU(Cons UL(line) UL(acc)))
```

$$
\frac{!\Gamma \vdash_{\mathrm{lu}} \mathrm{e}: \sigma}{!\Gamma \vdash_{\mathrm{ul}} \mathcal{L U}(\mathrm{e}):![\sigma]}
$$

$$
\frac{!\Gamma \vdash_{\mathrm{ul}} \mathrm{e}:![\sigma]}{!\Gamma \vdash_{\mathrm{lu}} \mathcal{U} \mathcal{L}(\mathrm{e}): \sigma}
$$

Linear types: linear locations

Box 1σ : full cell
Box 0 o: empty cell

Applications: in-place reuse of memory cells.

List reversal

```
type LList a = \mut. 1 \oplus Box 1 (a \otimes t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box (l, (x, xs)))
val reverse : LList a \multimap LList a
let reverse list = loop Nil list
    where rec loop tail = function
    | Nil }->\mathrm{ tail
    | Cons l x xs -> loop (Conx l x tail) xs
type List a = \mut. 1 + (a < t)
let reverse list = UL(share (reverse (copy (LU(list)))))
\[
\vdash_{\mathrm{ul}} \sigma \simeq \sigma
\]
```


Full abstraction

Theorem

The embedding of U into UL is fully abstract.
Proof: by pure interpretation of the linear language into ML. (Cogent)

Questions?

Thanks!

Interaction: lump

$$
\begin{array}{cc}
\text { Types } \sigma \mid \sigma & \text { Values } v \mid v \\
\sigma & v \\
\sigma & +::=\cdots \mid[\sigma]
\end{array} \quad v \quad+::=\cdots \mid[\mathrm{v}]
$$

Expressions e | e

$$
\begin{array}{ll}
\mathrm{e}+::=\cdots & \mathcal{U} \mathcal{L}(\mathrm{e}) \\
\mathrm{e} & +::=\cdots \\
\mathcal{L U}(\mathrm{e})
\end{array}
$$

Contexts 「 : : = • \mid Г, x: $\sigma|\Gamma, \alpha| Г, \mathrm{x}: \sigma$

$$
\frac{!\Gamma \vdash_{\mathrm{lu}} \mathrm{e}: \sigma}{!\Gamma \vdash_{\mathrm{ul}} \mathcal{L U}(\mathrm{e}):![\sigma]}
$$

$$
\frac{!\Gamma \vdash_{\mathrm{ul}} \mathrm{e}:![\sigma]}{!\Gamma \vdash_{\mathrm{lu}} \mathcal{U} \mathcal{L}(\mathrm{e}): \sigma}
$$

Interaction: compatibility

Compatibility relation

$$
\vdash_{\mathrm{ul}} \sigma \simeq \sigma
$$

$$
\begin{gathered}
\frac{\vdash_{\mathrm{ul}} 1 \simeq!1}{\sigma_{1} \simeq!\sigma_{1}} \vdash_{\mathrm{ul}} \sigma_{2} \simeq!\sigma_{1} \times \sigma_{2} \simeq!\left(\sigma_{1} \otimes \sigma_{2}\right) \\
\frac{\vdash_{\mathrm{ul}} \sigma_{1} \simeq!\sigma_{1}}{\vdash_{\mathrm{ul}} \sigma_{1}+\sigma_{2} \simeq!\left(\sigma_{1} \oplus \sigma_{2}\right)} \quad \vdash_{\mathrm{ul}} \sigma_{2} \simeq!\sigma_{2} \\
\frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \rightarrow \sigma^{\prime} \simeq!\left(!\sigma-!\vdash_{\mathrm{ul}} \sigma^{\prime} \simeq!\sigma^{\prime}\right)} \\
\frac{\vdash_{\mathrm{ul}} \sigma \simeq![\sigma]}{} \quad \frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \simeq!!\sigma} \quad \frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \simeq!(\operatorname{Box} 1 \sigma)}
\end{gathered}
$$

Interaction primitives and derived constructs:

$$
\begin{aligned}
& { }^{\sigma} \text { unlump } \\
& ![\sigma] \underset{\text { lump }^{\sigma}}{\square} \quad \sigma \text { when } \quad \vdash_{\mathrm{ul}} \sigma \simeq \sigma \\
& \begin{array}{l}
{ }^{\sigma} \mathcal{L U}(\mathrm{e}) \stackrel{\text { def }}{=}{ }^{\sigma} \text { unlump } \mathcal{L U}(\mathrm{e}) \\
\mathcal{U} \mathcal{L}^{\sigma}(\mathrm{e}) \stackrel{\text { def }}{=} \mathcal{U} \mathcal{L}\left(\text { lump }^{\sigma} \mathrm{e}\right)
\end{array}
\end{aligned}
$$

