
Full abstraction for multi-language systems
ML plus linear types

Gabriel Scherer, Amal Ahmed, Max New

Northeastern University, Boston

January 15, 2017

1

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the
feature space. (simpler?)

Multi-language system design may include designing new languages for
interoperation.

Full abstraction to understand graceful language interoperability.

2

Full abstraction for multi-language systems

J_K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)

In this talk: a first ongoing experiment on ML plus linear types.

3

Full abstraction for multi-language systems

J_K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.

Graceful multi-language semantics.
(or vice versa)

In this talk: a first ongoing experiment on ML plus linear types.

3

Full abstraction for multi-language systems

J_K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop.
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)

In this talk: a first ongoing experiment on ML plus linear types.

3

Full abstraction for multi-language systems

J_K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop.
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)

In this talk: a first ongoing experiment on ML plus linear types.

3

U: a core ML

Γ `u e : σ

4

L: linear types

Resource tracking, unique ownership.

σ !σ Γ !Γ

Γ `l e : σ

We own e at type σ (duplicable or not), e owns the resources in Γ.

5

Multi-language applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

open : !(![Path](Handle)
line : !(Handle((Handle⊕ (![String]⊗Handle)))
close : !(Handle(1)

(details about the boundaries come later)

Typestate.

6

(details about the boundaries come later)

open : !(![Path](Handle)
line : !(Handle((Handle⊕ (![String]⊗Handle)))
close : !(Handle(1)

let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle (acc : ![List String]) =
match line handle with
| EOF handle ->
close handle; LU(rev_concat "\n" UL(acc))

| Next line handle ->
loop handle LU(Cons UL(line) UL(acc)))

!Γ `lu e : σ

!Γ `ul LU(e) : ![σ]

!Γ `ul e : ![σ]

!Γ `lu UL(e) : σ

7

Linear types: linear locations

Box 1 σ: full cell

Box 0 σ: empty cell

1
new
−(›−
free

Box 0 σ Box 1 σ

unbox
−(›−
box

Box 0 σ⊗σ

Applications: in-place reuse of memory cells.

8

List reversal

type LList a = µt. 1 ⊕ Box 1 (a ⊗ t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box (l, (x, xs)))

val reverse : LList a (LList a
let reverse list = loop Nil list
where rec loop tail = function
| Nil → tail
| Cons l x xs → loop (Conx l x tail) xs

type List a = µt. 1 + (a × t)
let reverse list = UL(share (reverse (copy (LU(list)))))

`ul σ ' σ

9

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.
(Cogent)

10

Questions ?

Thanks!

11

Interaction: lump

Types σ | σ
σ

σ + ::= · · · | [σ]

Values v | v
v
v + ::= · · · | [v]

Expressions e | e
e + ::= · · · | UL(e)
e + ::= · · · | LU(e)

Contexts Γ ::= · | Γ, x :σ | Γ, α | Γ, x :σ

!Γ `lu e : σ

!Γ `ul LU(e) : ![σ]

!Γ `ul e : ![σ]

!Γ `lu UL(e) : σ

12

Interaction: compatibility
Compatibility relation `ul σ ' σ

`ul 1 ' !1
`ul σ1 ' !σ1 `ul σ2 ' !σ2

`ul σ1 × σ2 ' !(σ1⊗σ2)

`ul σ1 ' !σ1 `ul σ2 ' !σ2

`ul σ1 + σ2 ' !(σ1⊕σ2)

`ul σ ' !σ `ul σ
′ ' !σ′

`ul σ→ σ′ ' !(!σ(!σ′)

`ul σ ' ![σ]

`ul σ ' !σ

`ul σ ' !!σ

`ul σ ' !σ

`ul σ ' !(Box 1 σ)

Interaction primitives and derived constructs:

![σ]

σunlump
−(›−

lumpσ
σ when `ul σ ' σ

σLU(e)
def
= σunlump LU(e)

ULσ(e)
def
= UL(lumpσ e)

13

