
Full reduction in the face of absurdity

Gabriel Scherer, Didier Rémy

Gallium – INRIA

April 16th, 2015

(Version with notes, for remote reading of the slides.)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 1 / 20

“Well-typed programs do not go wrong”

Closed, well-typed terms never reduce to an error.

∅ ` a : τ =⇒ ∀b, a −→ b, b /∈ E

(π1 true) would raise a dynamic error,
and it is not well-typed (in OCaml, fst true).

Is this the only point of type systems?

λ(x) (π1 true)

This closed term cannot evaluate to an error.
Should we improve our type systems to accept it?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 2 / 20

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...
until they are not anymore (GADTs!)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 3 / 20

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...
until they are not anymore (GADTs!)

2
0
1
7
-0
3
-0
3

Full reduction in the face of absurdity

Keeping your type system sound for full reduction forces you to detect
errors in parts of the program that would not be reduced by a weak
reduction strategy. This makes error-checking modular: you are not
forced to use your functions to see errors in their bodies.
It’s hard to convince people with this argument because they’ve been
spoiled by decades of languages sound for full reduction: ML, System F,
etc. There’s a danger in assuming this just works, yet proving soundness
only for call-by-{name,value}. Maybe you let the wolves in without
noticing: GADTs break full reduction.

We have other arguments for full reduction. It’s a necessary first step

equational reasoning for your language. It subsumes soundness proof for

call-by-value and call-by-name (while you’ll usually only prove soundness

for your pet strategy), and it will also tell you whether you soundly

support non-deterministic reduction orders. See our paper for more.

http://gallium.inria.fr/~remy/coercions/

type tag =
| TInt : int tag
| TFloat : float tag

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt → x + x (∗ assume a=int ∗)
| TFloat → x +. x (∗ assume a=float ∗)

The term (double 3) has the following normal form:

fun tag →
match tag with
| TInt → 3 + 3
| TFloat → 3 +. 3

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 4 / 20

Let us study a core language to understand precisely where the
unsoundness happens.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 5 / 20

a, b ::= Terms
| x , y . . . variables
| λ(x) a λ-abstraction
| a b application
| (a, b) pair
| πi a projection

E ::= � | λ(x)E | E b | a E | (E , a) | (a,E) | πi E Contexts

(λ(x) a) b ◦→ a[b/x] πi (a1, a2) ◦→ ai
a ◦→ b

E [a] −→ E [b]

d ::= � a | πi � destructor contexts c ::= λ(x) a | (a, b) constructors

E 4
= {E [d [c]] | d [c] 6◦→} errors

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 6 / 20

a, b ::= Terms
| x , y . . . variables
| λ(x) a λ-abstraction
| a b application
| (a, b) pair
| πi a projection

E ::= � | λ(x)E | E b | a E | (E , a) | (a,E) | πi E Contexts

(λ(x) a) b ◦→ a[b/x] πi (a1, a2) ◦→ ai
a ◦→ b

E [a] −→ E [b]

d ::= � a | πi � destructor contexts c ::= λ(x) a | (a, b) constructors

E 4
= {E [d [c]] | d [c] 6◦→} errors

2
0
1
7
-0
3
-0
3

Full reduction in the face of absurdity

While usually reduction contexts are used to specify a restricted (often
deterministic) reduction strategy, we have every possible term-with-a-hole
in our context. That’s full reduction.

Notice in particular that we allow to reduce under λ (the main point),

and reduce non-deterministically on either sides of pairs or applications.

τ, σ ::= Types
| α, β . . . variables
| τ → σ function types
| τ ∗ σ product types
| ∀(α) τ polymorphism

Γ, x : τ ` x : τ
Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ ∗ σ
Γ ` a : τ1 ∗ τ2

Γ ` πi a : τi

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ
Γ ` a : τ [σ/α]

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 7 / 20

τ, σ ::= Types
| α, β . . . variables
| τ → σ function types
| τ ∗ σ product types
| ∀(α) τ polymorphism

Γ, x : τ ` x : τ
Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ ∗ σ
Γ ` a : τ1 ∗ τ2

Γ ` πi a : τi

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ
Γ ` a : τ [σ/α]2

0
1
7
-0
3
-0
3

Full reduction in the face of absurdity

Note that the rule for polymorphic generalization Γ ` a : ∀(α) τ does not

change the term typed – this is a Curry-style presentation with no explicit

type abstraction in terms. This guarantees by construction that this

abstraction is erasable (does not interact with reduction), as reduction is

defined only on terms, not type derivations.

All the core calculi you know for programming languages work fine with
full reduction: simply-typed, ML, System F, F<:, MLF . . .
It’s fun when it breaks: adding logical propositions.

P,Q ::= > | P ∧ Q | τ ≤ σ | . . . Contexts

How can we add support for logical assumptions to our system?

τ +::= ∀(α | P) τ Γ ` P
Γ ` a : τ Γ ` τ ≤ σ

Γ ` a : σ
. . .

Γ, α,P ` a : τ

Γ ` a : ∀(α | P) τ

Γ ` a : ∀(α | P) τ Γ ` σ Γ ` P[σ/α]

Γ ` a : τ [σ/α]

Subsumes System F, F<: or GADTs:

∀(α | >) σ ∀(α | α ≤ τ) σ (σ ≤ τ) ∧ (τ ≤ σ)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 8 / 20

Problem: this is unsound.

α, (B ≤ B ∗ B) ` true : B α, (B ≤ B ∗ B) ` B ≤ B ∗ B
α, (B ≤ B ∗ B) ` true : B ∗ B
α, (B ≤ B ∗ B) ` (π1 true) : B
∅ ` (π1 true) : ∀(α | B ≤ B ∗ B) B

We have to restrict these typing rules.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 9 / 20

Julien Crétin and Didier Rémy already understood this during Julien’s PhD
thesis.

An abstraction on (α | P) is consistent when P is satisfied by some α.
Only consistent abstractions are erasable. Others must block reduction.

Γ, α,P ` a : τ Γ ` P[σ/α]

Γ ` a : ∀(α | P) τ

If you cannot prove satisfiability (eg. B ≤ B ∗ B), you cannot use this rule.
Previous calculi still expressed: (α | α ≤ σ) consistent (satisfied by α = σ).

But GADTs cannot be expressed with consistent abstraction only.
What is the right design for inconsistent abstraction?
This is our new work.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 10 / 20

Julien Crétin and Didier Rémy already understood this during Julien’s PhD
thesis.

An abstraction on (α | P) is consistent when P is satisfied by some α.
Only consistent abstractions are erasable. Others must block reduction.

Γ, α,P ` a : τ Γ ` P[σ/α]

Γ ` a : ∀(α | P) τ

If you cannot prove satisfiability (eg. B ≤ B ∗ B), you cannot use this rule.
Previous calculi still expressed: (α | α ≤ σ) consistent (satisfied by α = σ).

But GADTs cannot be expressed with consistent abstraction only.
What is the right design for inconsistent abstraction?
This is our new work.

2
0
1
7
-0
3
-0
3

Full reduction in the face of absurdity

Note that not all inconsistent abstractions are absurd as in our example.
In fact we should think of them as potentially-inconsistent abstractions.
If you know a proposition will never be true, it makes little sense to
abstract on it, it’s dead code so the only reasonable thing to do is to
return an absurd value with eg. an assert false that can be accepted
by the type-system when the context is logically absurd.

The interesting cases are when:

we do not know whether the proposition is satisfiable; eg. making a
complexity argument assuming P 6= NP

checking satisfiability for the library declarations is too expensive/un-
decidable, but checking at call site for particular instances is easy

we want to make an assumption that is unprovable but admissible
in the current system, to axiomatize another concept (threads in a
programming language with a sequential semantics, excluded middle
in a proof system...)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 11 / 20

Explicit vs. Implicit

In dependently typed languages, logical propositions are naturally
represented as types. Assumptions are made using just λ(x : P) a.

fun (tag : a) → match tag with
| TInt (x : a = int) → (x 3) + (x 3)
| TFloat (x : a = float) → (x 3) +. (x 3)

If each use of an assumption is marked by the free variables,
all dangerous redexes are blocked by those variables.
Same in functional intermediate typed representations (eg. System FC).

Erasability + user convenience: assumptions should be usable implicitly in
derivations. Just as consistent abstraction.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 12 / 20

A type [P] for explicitly assuming P.
[P] can be “opened”, which makes the assumption implicitly usable – but
it blocks computation.

τ +::= [P] a +::= � | δ(a, φ.b)

Γ ` P

Γ ` � : [P]

Γ ` a : [P] Γ, φ : P ` b : τ

Γ ` δ(a, φ.b) : τ

E +::= δ(E , φ.Q) |�����δ(a, φ.E) δ(�, φ.b) ◦→ b

∅ ` λ(x) δ(x , φ.(π1 true)) : [B ≤ B ∗ B]→ B

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 13 / 20

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]
For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 14 / 20

Mixing full and weak reduction: confluence in danger!

Suppose a −→ b. We have a confluence problem

(λ(x) δ(y , φ. E [x])) a (λ(x) δ(y , φ. E [x])) b

δ(y , φ. E [hideφ in a]) δ(y , φ. E
[
hideφ in b

]
)

A term in reducible position before substitution, should remain reducible
after substitution.

Idea: insert hideφ when substitution traverses the guard φ.

The resulting system is sound for full-reduction and confluent (new proof!).

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 15 / 20

GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float]

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt w → δ(w, φ. x + x)
| TFloat w → δ(w, φ. x +. x)

We offer a continuum between fully-explicit and fully-implicit use of
assumptions.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 16 / 20

GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float]

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt w → δ(w, φ. x) + δ(w, φ. x)
| TFloat w → δ(w, φ. x) +. δ(w, φ. x)

We offer a continuum between fully-explicit and fully-implicit use of
assumptions.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 17 / 20

Dependable ideas

We call Γ ` P the definitional truth judgment:
true by fiat.

The type [P] corresponds to propositional truths:
evidence passed around by the user.

We allow consistent abstraction over definitional truths
– something not usually studied in intensional type theories.

Empty and non-empty contexts (eg., for extraction):
consistent vs. inconsistent contexts.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 18 / 20

Dependable ideas

We call Γ ` P the definitional truth judgment:
true by fiat.

The type [P] corresponds to propositional truths:
evidence passed around by the user.

We allow consistent abstraction over definitional truths
– something not usually studied in intensional type theories.

Empty and non-empty contexts (eg., for extraction):
consistent vs. inconsistent contexts.2

0
1
7
-0
3
-0
3

Full reduction in the face of absurdity

Dependable ideas

The unability to abstract over definitional equalities has been described a

source of difficulty for modular developments in intensional type theories.

It could be interesting to study abstraction over consistent equalities.

Note that a practical problem with this idea is how to decide the

definitional equality under definitional assumptions (eg. by orienting

them as rewrite rules); our work does not discuss how to decide the

Γ ` P judgment and is thus orthogonal to this aspect.

In an article near you

http://gallium.inria.fr/~scherer/drafts/consistency-draft.pdf

Integration into an expressive formal framework of consistent coercion
calculi (Crétin and Rémy): composability of erasable type-system features.

A novel formal proof of confluence with parallel reduction, with
Wright-Felleisen separation of head redexes and contexts:
scales to larger languages.

Detailed soundness proofs by bisimulations with known-sound calculi – and
administrative variants thereof.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 19 / 20

http://gallium.inria.fr/~scherer/drafts/consistency-draft.pdf

Take away

Opinion: in many case programmers think of correctness in an abstract
way, full reduction. Confluence is essential.

We should distinguish consistent and (possibly) inconsistent abstractions.

Unified approaches have downsides for both; language design could help
preserve/structure this distinction.

To support confluent inconsistent abstraction, one must allow to block
(soundness) and unblock (confluence) reduction of subterms.

Thanks! Questions?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity April 16th, 2015 20 / 20

