
Consistent coercion calculi, and

Full reduction in the face of absurdity

Julien Crétin, Gabriel Scherer, Didier Rémy

Gallium – INRIA

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 1 / 46

Julien Crétin was a PhD student of Didier Rémy between 2010 and 2014.

They produced a beautiful and interesting family of type systems:

Consistent coercion calculi

There was one aspect of Julien’s PhD that we were not satisfied with.
The last section is about later work I did with Didier to fix it.

1 Motivation and approach
Computational and erasable rules
Soundness wrt. full reduction

2 Consistent coercion calculi

3 Full reduction in presence of absurdity

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 2 / 46

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 3 / 46

Section 1

Motivation and approach

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 4 / 46

Language design is hard.

Many different needs

Many different solutions

Some needs are in tensions with each other

Compromises to make, explain, and justify

Very large space of choices

How do we even know we’re doing good?

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 5 / 46

How do we test a proposed design?

“Taste” (You only know when you don’t have it)

Use cases, playing with examples, peer feedback
(idea for a conference!)

Empirical user studies

Benchmarks (on measurable aspects)

Meta-theory

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 6 / 46

How do we test a proposed design?

“Taste” (You only know when you don’t have it)

Use cases, playing with examples, peer feedback
(idea for a conference!)

Empirical user studies

Benchmarks (on measurable aspects)

Meta-theory

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 6 / 46

How do we test a proposed design?

“Taste” (You only know when you don’t have it)

Use cases, playing with examples, peer feedback
(idea for a conference!)

Empirical user studies

Benchmarks (on measurable aspects)

Meta-theory

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 6 / 46

How do we test a proposed design?

“Taste” (You only know when you don’t have it)

Use cases, playing with examples, peer feedback
(idea for a conference!)

Empirical user studies

Benchmarks (on measurable aspects)

Meta-theory

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 6 / 46

How do we test a proposed design?

“Taste” (You only know when you don’t have it)

Use cases, playing with examples, peer feedback
(idea for a conference!)

Empirical user studies

Benchmarks (on measurable aspects)

Meta-theory

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 6 / 46

Meta-theory as a pre-flight checklist

Untyped:

determinism

confluence

?

Typed:

type soundness (duh)

weakening / monotonicity

substitution principle / separate compilation
(robustness to abstraction)

principal types

coherence of subtyping or type-classes

It’s ok to fail a test if you understand why.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 7 / 46

In this talk

Two lesser-known related tests.

Can you separate computational from erasable typing rules, and compose
the latter?

Is your language sound for full reduction?

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 8 / 46

Test-based synthesis... for language design

Instead of testing existing languages,

Define general typing rules from those tests,

See what it forces to change in the language.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 9 / 46

Results

A mixed bag of (seemingly unrelated) ideas:

composing polymorphism and subtyping

a new perspective on GADTs

some ideas to understand erasure from proof assistants

(Maybe: Gradual typing? Contracts?)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 10 / 46

Subsection 1

Computational and erasable rules

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 11 / 46

If you don’t separate...

let li = ref [];;
li := 3 :: ! li ;;
li := ”foo” :: ! li ;;

⇒ value restriction

let li = Λα. ref ([] : α list);;
li [int] := 3 :: !(li [int]);;
li [bool] := ”foo” :: !(li [string]);;

not what we want

Or Haskell’s monomorphic instances issue.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 12 / 46

When you try to compose...

How do we mix polymorphism and subtyping?

Fη (Mitchell, 1988)
the natural notion of subtyping arising from polymorphism
(σ → ∀α.τ) ≤ ∀α.(σ → τ)

F<: (kernel, full, rec)
the natural notion of polymorphism to add to a subtyping system
∀(α ≤ σ) . . .

ML languages in practice
subtyping only at the toplevel
type t = private int

MLF
bounded abstraction motivated by principal types
∀(α ≥ σ) . . .

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 13 / 46

When you try to compose...

How do we mix polymorphism and subtyping?

Fη (Mitchell, 1988)
the natural notion of subtyping arising from polymorphism
(σ → ∀α.τ) ≤ ∀α.(σ → τ)

F<: (kernel, full, rec)
the natural notion of polymorphism to add to a subtyping system
∀(α ≤ σ) . . .

ML languages in practice
subtyping only at the toplevel
type t = private int

MLF
bounded abstraction motivated by principal types
∀(α ≥ σ) . . .

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 13 / 46

When you try to compose...

How do we mix polymorphism and subtyping?

Fη (Mitchell, 1988)
the natural notion of subtyping arising from polymorphism
(σ → ∀α.τ) ≤ ∀α.(σ → τ)

F<: (kernel, full, rec)
the natural notion of polymorphism to add to a subtyping system
∀(α ≤ σ) . . .

ML languages in practice
subtyping only at the toplevel
type t = private int

MLF
bounded abstraction motivated by principal types
∀(α ≥ σ) . . .

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 13 / 46

When you try to compose...

How do we mix polymorphism and subtyping?

Fη (Mitchell, 1988)
the natural notion of subtyping arising from polymorphism
(σ → ∀α.τ) ≤ ∀α.(σ → τ)

F<: (kernel, full, rec)
the natural notion of polymorphism to add to a subtyping system
∀(α ≤ σ) . . .

ML languages in practice
subtyping only at the toplevel
type t = private int

MLF
bounded abstraction motivated by principal types
∀(α ≥ σ) . . .

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 13 / 46

Subsection 2

Soundness wrt. full reduction

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 14 / 46

“Well-typed programs do not go wrong”

Closed, well-typed terms never reduce to an error.

∅ ` a : τ =⇒ ∀b, a −→ b, b /∈ E

(π1 true) would raise a dynamic error,
and it is not well-typed (in OCaml, fst true).

Is this the only point of type systems?

λ(x) (π1 true)

This closed term cannot evaluate to an error.
Should we improve our type systems to accept it?

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 15 / 46

“Well-typed programs do not go wrong”

Closed, well-typed terms never reduce to an error.

∅ ` a : τ =⇒ ∀b, a −→ b, b /∈ E

(π1 true) would raise a dynamic error,
and it is not well-typed (in OCaml, fst true).

Is this the only point of type systems?

λ(x) (π1 true)

This closed term cannot evaluate to an error.
Should we improve our type systems to accept it?

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 15 / 46

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...
until they are not anymore (GADTs!)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 16 / 46

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...
until they are not anymore (GADTs!)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 16 / 46

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...

until they are not anymore (GADTs!)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 16 / 46

λ(x) (π1 true)

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

You have been spoiled by decades of language sound for full reduction
(ML, System F)...
until they are not anymore (GADTs!)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 16 / 46

type tag =
| TInt : int tag
| TFloat : float tag

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt → x + x (∗ assume a=int ∗)
| TFloat → x +. x (∗ assume a=float ∗)

The term (double 3) has the following normal form:

fun tag →
match tag with
| TInt → 3 + 3
| TFloat → 3 +. 3

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 17 / 46

type tag =
| TInt : int tag
| TFloat : float tag

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt → x + x (∗ assume a=int ∗)
| TFloat → x +. x (∗ assume a=float ∗)

The term (double 3) has the following normal form:

fun tag →
match tag with
| TInt → 3 + 3
| TFloat → 3 +. 3

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 17 / 46

Section 2

Consistent coercion calculi

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 18 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ : ?

Γ ` a : τ [σ/α]

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

Γ ` a : τ Γ ` τ ≤ σ
Γ ` a : σ

Computational and Erasable rules:

(Γ,∆i ` ai : τi)
i∈1...n J1 . . . Jm

Γ ` node(a1, . . . , an) : σ

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 19 / 46

Introducing coercions

We had many erasable rules:

Γ,∆ ` a : τ J1 . . . Jm

Γ ` a : σ

Factor all erasable rules into a unique term rule,
and coercion rules:

TermCoer

Γ,∆ ` a : τ Γ ` (∆ ` τ) . σ

Γ ` a : σ

J1 . . . Jm

Γ ` (∆ ` τ) . σ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 20 / 46

Gain : composable features

It looks like we only played with the syntax of typing rules.

However, this change makes a clear distinction between terms and type
annotations: terms are totally absent from coercion rules.

J1 . . . Jm

Γ ` (∆ ` τ) . σ

More importantly,

Rule TermCoer enforces a unique interface for all erasable features
(∆ ` τ) . σ
“typing coercion” (converting whole judgments)

This change is a preliminary to have composable features.

It requires decomposing existing features into atomic parts.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 21 / 46

Consistent coercion calculi (Ccc)

τ, σ ::= . . . types
κ ::= . . . kinds
P,Q ::= . . . propositions
Γ,∆ ::= ∅ | Γ, x : τ | Γ, α : κ | Γ, φ : P environments

Judgments:

Γ ` a : τ terms
Γ ` τ : κ types
Γ ` P true propositions
Γ ` (∆ ` τ) . σ coercions

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 22 / 46

Ccc: term typing rules

τ, σ ::= α, β, γ · · · | τ → σ | τ × σ
κ ::= ?

Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ × σ
Γ ` a : τ1 × τ2

Γ ` πi a : τi

TermCoerce
Γ,∆ ` a : τ Γ ` (∆ ` τ) . σ

Γ ` a : σ

(easily encode subtyping: (τ . σ) := (∅ ` τ) . σ)

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 23 / 46

Feature: polymorphism

Old rules:

TermGen
Γ, α : κ ` a : τ

Γ ` a : ∀(α : κ) τ

TermInst
Γ ` a : ∀(α : κ) τ Γ ` σ : κ

Γ ` a : τ [σ/α]

In Ccc:

τ, σ ::= · · · | ∀(α : κ) τ

CoerGen?
?

Γ ` ((α : κ) ` τ) . ∀(α : κ) τ

CoerInst
Γ ` σ : κ

Γ ` (∅ ` ∀(α : κ) τ) . τ [σ/α]

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 24 / 46

Ccc: propositions
Propositions is the logical layer in which the various side-conditions of the
judgments live. Light reasoning power.

P,Q ::= propositions
| P ∧ Q conjunction
| > true

| (∆ ` τ) . σ coercions
| . . . and other primitive notions...

Γ ` P true Γ ` Q true

Γ ` (P ∧ Q) true

Γ ` (P1 ∧ P2) true

Γ ` Pi true
Γ ` > true

Γ ` (∆ ` τ) . σ

Γ ` ((∆ ` τ) . σ) true

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 25 / 46

Feature: bounded polymorphism

The most general way to allow abstractions ∀(α ≤ σ) . . . is to use
refinement kinds {α : κ | P}.

κ ::= · · · | {α : κ | P}

Γ ` τ : κ Γ ` P[τ/α]

Γ ` τ : {α : κ | P}
Γ ` τ : {α : κ | P}

Γ ` τ : κ

Γ ` τ : {α : κ | P}
Γ ` τ : P[τ/α]

Then ∀(α ≤ σ) . . . is expressible as...

∀(α : {α : ? | (∅ ` α) . σ}) . . .

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 26 / 46

Le loup dans la bergerie

Problem: unrestricted erasable polymorphism is unsound.

` true : B α : {α : ? | B . B× B} ` B . B× B
α : {α : ? | B . B× B} ` true : B× B
α : {α : ? | B . B× B} ` (π1 true) : B

∅ ` (π1 true) : ∀(α : {α : ? | (∅ ` B) . B× B})B

A well-typed program that goes wrong.

The problem is that B . B× B is absurd – and unprovable.
We have to restrict these typing rules.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 27 / 46

Le loup dans la bergerie

Problem: unrestricted erasable polymorphism is unsound.

` true : B α : {α : ? | B . B× B} ` B . B× B
α : {α : ? | B . B× B} ` true : B× B
α : {α : ? | B . B× B} ` (π1 true) : B

∅ ` (π1 true) : ∀(α : {α : ? | (∅ ` B) . B× B})B

A well-typed program that goes wrong.

The problem is that B . B× B is absurd – and unprovable.
We have to restrict these typing rules.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 27 / 46

Consistency

The sound rules for polymorphism enforce consistent abstraction.

τ, σ ::= · · · | ∀(α : κ) τ
P ::= · · · | ∃κ

CoerGen

Γ ` ∃κ true

Γ ` ((α : κ) ` τ) . ∀(α : κ) τ

CoerInst
Γ ` σ : κ

Γ ` (∅ ` ∀(α : κ) τ) . τ [σ/α]

PropConsist
Γ ` σ : κ

Γ ` ∃κ true

This is one contribution of Julien Crétin’s PhD thesis: highlighting
consistency as the key to erasable polymorphism.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 28 / 46

Feature: η-expansion (depth subtyping)

CoerArr
Γ,∆ ` (∅ ` σ1) . τ1 Γ ` (∆ ` τ2) . σ2

Γ ` (∆ ` τ1 → τ2) . σ1 → σ2

CoerProd
Γ ` (∆ ` τ1) . σ1 Γ ` (∆ ` τ2) . σ2

Γ ` (∆ ` τ1 × τ2) . σ1 × σ2

Only one such rule needed for each type.
Distributivity rules are derivable, using...

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 29 / 46

Ccc: coercions

Structural rules:

CoerRefl

Γ ` τ . τ

CoerTrans
Γ,∆1 ` (∆2 ` τ3) . τ2 Γ ` (∆1 ` τ2) . τ1

Γ ` (∆1,∆2 ` τ3) . τ1

CoerProp
Γ ` (∆ ` τ) . σ true Γ ` ∃∆ true

Γ ` (∆ ` τ) . σ

With these rules, various features, once expressed as coercions, can be
composed together.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 30 / 46

Feature: multi-abstraction

κ ::= · · · | κ× κ

Γ ` τ : κ1 Γ ` σ : κ′

Γ ` (τ, σ) : κ× κ′
Γ ` τ : κ1 × κ2

Γ ` πi τi : κi

Express ∀(α1, α2 | α1 ≤ α2 → α1) with

∀(α : {α : ?× ? | π1 α . (π2 α→ π1 α)})

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 31 / 46

Feature: recursive types and coinduction

τ, σ ::= · · · | µα. τ

CoerUnfold

Γ ` µα. τ . τ [µα. τ/α]

CoerFold
Γ ` µα. τ : ?

Γ ` τ [µα. τ/α] . µα. τ

Replace Γ ` P true by Γ; Θ ` P true

to keep track of coinductive hypotheses.

PropFix
Γ; Θ,P ` P

Γ; Θ ` P

CoerProd’
Γ,Θ; ∅ ` (∆ ` τ1) . σ1 Γ,Θ; ∅ ` (∆ ` τ2) . σ2

Γ; Θ ` (∆ ` τ1 × τ2) . σ1 × σ2
. . .

Productivity: coinductive hypotheses available under computational
connectives.

The usual equi-recursive rules are derivable.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 32 / 46

Properties

Soundness and termination are formalized in Coq.

Step-indexed techniques, adapted to full reduction by moving indices
inside terms.

Achieved
Fη: subsumed by η-coercions.

F<:: ∀(α ≤ τ)σ is encoded as ∀(α : {α : ? | α . τ})σ.

MLF: ∀(α ≥ τ)σ is encoded as ∀(α : {α : ? | τ . α})σ.

ML with subtyping constraints: bag of constraints using product
kinds.

All features can be combined together.

Still missing
GADTs: Based on equality constraints can be encoded
(τ . σ) ∧ (σ . τ), but also require abstraction over inconsistent
kinds...

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 33 / 46

Section 3

Full reduction in presence of absurdity

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 34 / 46

Full reduction

Consistent coercion calculi as presented above are sound for full reduction.
Easy to define thanks to erasability.

E ::= � | λ(x)E | E b | a E | (E , a) | (a,E) | πi E Contexts

(λ(x) a) b ◦→ a[b/x] πi (a1, a2) ◦→ ai
a ◦→ b

E [a] −→ E [b]

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 35 / 46

Nota Bene

To prove consistency of {α : κ | P} in context Γ, one may pick α arbitrary
(it is flexible) but Γ is rigid.

Γ ` σ : κ Γ ` P[σ/α] true

Γ ` σ : {α : κ | P}
Γ ` ∃{α : κ | P} true

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 36 / 46

Recall our previous GADT example:

type tag =
| TInt : int tag
| TFloat : float tag

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt → x + x (∗ assume a=int; unsatisfiable ! ∗)
| TFloat → x +. x (∗ assume a=float; unsatisfiable ! ∗)

(a = int) is unsatisfiable when a is rigid.

GADTs need inconsistent abstraction.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 37 / 46

Explicit vs. Implicit

In dependently typed languages, logical propositions are naturally
represented as types. Assumptions are made using just λ(x : P) a.

(fun (type a) (x : a) (tag : a tag) → match tag with
| TInt (w : a = int) → (w x) + (w x)
| TFloat (w : a = float) → (w x) +. (w x)

) 3

If each use of an assumption is marked by the free variables,
all dangerous redexes are blocked by those variables.
Same in functional intermediate typed representations (eg. System FC).

Erasability + user convenience: assumptions should be usable implicitly in
derivations. Just as consistent abstraction.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 38 / 46

Explicit vs. Implicit

In dependently typed languages, logical propositions are naturally
represented as types. Assumptions are made using just λ(x : P) a.

(fun (type a) (x : a) (tag : a tag) → match tag with
| TInt (w : a = int) → (w x) + (w x)
| TFloat (w : a = float) → (w x) +. (w x)

) 3

If each use of an assumption is marked by the free variables,
all dangerous redexes are blocked by those variables.
Same in functional intermediate typed representations (eg. System FC).

Erasability + user convenience: assumptions should be usable implicitly in
derivations. Just as consistent abstraction.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 38 / 46

Explicit vs. Implicit

In dependently typed languages, logical propositions are naturally
represented as types. Assumptions are made using just λ(x : P) a.

(fun (type a) (x : a) (tag : a tag) → match tag with
| TInt (w : a = int) → (w x) + (w x)
| TFloat (w : a = float) → (w x) +. (w x)

) 3

If each use of an assumption is marked by the free variables,
all dangerous redexes are blocked by those variables.
Same in functional intermediate typed representations (eg. System FC).

Erasability + user convenience: assumptions should be usable implicitly in
derivations. Just as consistent abstraction.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 38 / 46

A type [P] for explicitly assuming P.
[P] can be “opened”, which makes the assumption implicitly usable – but
it blocks computation.

τ +::= [P] a +::= � | δ(a, φ.b)

Γ ` P

Γ ` � : [P]

Γ ` a : [P] Γ, φ : P ` b : τ

Γ ` δ(a, φ.b) : τ

E +::= δ(E , φ.Q) |�����δ(a, φ.E) δ(�, φ.b) ◦→ b

∅ ` λ(x) δ(x , φ.(π1 true)) : [B . B× B]→ B

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 39 / 46

A type [P] for explicitly assuming P.
[P] can be “opened”, which makes the assumption implicitly usable – but
it blocks computation.

τ +::= [P] a +::= � | δ(a, φ.b)

Γ ` P

Γ ` � : [P]

Γ ` a : [P] Γ, φ : P ` b : τ

Γ ` δ(a, φ.b) : τ

E +::= δ(E , φ.Q) |�����δ(a, φ.E) δ(�, φ.b) ◦→ b

∅ ` λ(x) δ(x , φ.(π1 true)) : [B . B× B]→ B

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 39 / 46

A type [P] for explicitly assuming P.
[P] can be “opened”, which makes the assumption implicitly usable – but
it blocks computation.

τ +::= [P] a +::= � | δ(a, φ.b)

Γ ` P

Γ ` � : [P]

Γ ` a : [P] Γ, φ : P ` b : τ

Γ ` δ(a, φ.b) : τ

E +::= δ(E , φ.Q) |�����δ(a, φ.E) δ(�, φ.b) ◦→ b

∅ ` λ(x) δ(x , φ.(π1 true)) : [B . B× B]→ B

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 39 / 46

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]
For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 40 / 46

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]

For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 40 / 46

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]
For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 40 / 46

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]
For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 40 / 46

What you can block, you can un-block

δ(a, φ. E

[
F
[
b
]]

)

E

[
δ(a, φ. F

[
b
]

)

]
For flexibility, allow un-blocking a subterm by disabling an assumption.

E

[
δ(a, φ. F

[
hideφ in b

]
)

]

a +::= hideφ in b
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 40 / 46

Mixing full and weak reduction: confluence in danger!

Suppose a −→ b. We have a confluence problem

(λ(x) δ(y , φ. E [x])) a (λ(x) δ(y , φ. E [x])) b

δ(y , φ. E [hideφ in a]) δ(y , φ. E
[
hideφ in b

]
)��−→

A term in reducible position before substitution, should remain reducible
after substitution.

Idea: insert hideφ when substitution traverses the guard φ.

The resulting system is sound for full-reduction and confluent (new proof!).

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 41 / 46

Mixing full and weak reduction: confluence in danger!

Suppose a −→ b. We have a confluence problem

(λ(x) δ(y , φ. E [x])) a (λ(x) δ(y , φ. E [x])) b

δ(y , φ. E [hideφ in a]) δ(y , φ. E
[
hideφ in b

]
)��−→

A term in reducible position before substitution, should remain reducible
after substitution.

Idea: insert hideφ when substitution traverses the guard φ.

The resulting system is sound for full-reduction and confluent (new proof!).

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 41 / 46

Mixing full and weak reduction: confluence restored.

Suppose a −→ b. We have a confluence problem

(λ(x) δ(y , φ. E [x])) a (λ(x) δ(y , φ. E [x])) b

δ(y , φ. E [hideφ in a]) δ(y , φ. E
[
hideφ in b

]
)

A term in reducible position before substitution, should remain reducible
after substitution.

Idea: insert hideφ when substitution traverses the guard φ.

The resulting system is sound for full-reduction and confluent (new proof!).

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 41 / 46

GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float]

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt w → δ(w, φ. x + x)
| TFloat w → δ(w, φ. x +. x)

We offer a continuum between fully-explicit and fully-implicit use of
assumptions.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 42 / 46

GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float]

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt w → δ(w, φ. x) + δ(w, φ. x)
| TFloat w → δ(w, φ. x) +. δ(w, φ. x)

We offer a continuum between fully-explicit and fully-implicit use of
assumptions.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 43 / 46

GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float]

let rec double (type a) (x : a) (tag : a tag) : a =
match tag with
| TInt w → δ(w, φ. x) + δ(w, φ. x)
| TFloat w → δ(w, φ. x) +. δ(w, φ. x)

We offer a continuum between fully-explicit and fully-implicit use of
assumptions.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 43 / 46

Dependable ideas

We call Γ ` P true the definitional truth judgment:
true by fiat.

The type [P] corresponds to propositional truths:
evidence passed around by the user.

We allow consistent abstraction over definitional truths
– something not usually studied in intensional type theories.

Empty and non-empty contexts (eg., for extraction):
consistent vs. inconsistent contexts.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 44 / 46

In an article near you

http://gallium.inria.fr/~scherer/drafts/consistency-draft.pdf

A novel formal proof of confluence with parallel reduction, with
Wright-Felleisen separation of head redexes and contexts:
scales to larger languages.

Detailed soundness proofs by bisimulations with known-sound calculi – and
administrative variants thereof.

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 45 / 46

http://gallium.inria.fr/~scherer/drafts/consistency-draft.pdf

Take away

Consistent coercions allow to compose erasable type-system features.

Opinion: in many case programmers think of correctness in an abstract
way, full reduction. Confluence is essential.

We should distinguish consistent and (possibly) inconsistent abstractions.

Unified approaches have downsides for both; language design could help
preserve/structure this distinction.

To support confluent inconsistent abstraction, one must allow to block
(soundness) and unblock (confluence) reduction of subterms.

Thanks! Questions?

Julien Crétin, Gabriel Scherer, Didier Rémy (Gallium)Consistent and inconsistent coercions June 11, 2015 46 / 46

	Motivation and approach
	Computational and erasable rules
	Soundness wrt. full reduction

	Consistent coercion calculi
	Full reduction in presence of absurdity

