Multi-focusing on extensional rewriting with sums (introduction)

Gabriel Scherer
Gallium - INRIA
July 2, 2015

... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?
... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{array}{cr}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] & (t: A \rightarrow B)={ }_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} & (t: A * B)={ }_{\eta}\left(\pi_{1} t, \pi_{2} t\right)
\end{array}
$$

... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{gathered}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] \quad(t: A \rightarrow B)={ }_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} \quad(t: A * B)=_{\eta}\left(\pi_{1} t, \pi_{2} t\right) \\
\delta\left(\sigma_{i} t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) \rightarrow_{\beta} u_{i}\left[t / x_{i}\right] \\
(t: A+B)={ }_{\eta} \delta\left(t, x_{1} \cdot \sigma_{1} x_{1}, x_{2} \cdot \sigma_{2} x_{2}\right)
\end{gathered}
$$

... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{gathered}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] \quad(t: A \rightarrow B)={ }_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} \quad(t: A * B)=_{\eta}\left(\pi_{1} t, \pi_{2} t\right) \\
\delta\left(\sigma_{i} t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) \rightarrow_{\beta} u_{i}\left[t / x_{i}\right] \\
(t: A+B)={ }_{\eta} \delta\left(t, x_{1} \cdot \sigma_{1} x_{1}, x_{2} \cdot \sigma_{2} x_{2}\right) \\
(t, u) \stackrel{?}{=} \delta\left(t, x_{1} \cdot\left(\sigma_{1} x_{1}, u\right), x_{2} \cdot\left(\sigma_{2} x_{2}, u\right)\right)
\end{gathered}
$$

... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{gathered}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] \quad(t: A \rightarrow B)={ }_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} \quad(t: A * B)=_{\eta}\left(\pi_{1} t, \pi_{2} t\right) \\
\delta\left(\sigma_{i} t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) \rightarrow_{\beta} u_{i}\left[t / x_{i}\right] \\
(t: A+B)={ }_{\eta} \delta\left(t, x_{1} \cdot \sigma_{1} x_{1}, x_{2} \cdot \sigma_{2} x_{2}\right) \\
(t, u) \stackrel{?}{=} \delta\left(t, x_{1} \cdot\left(\sigma_{1} x_{1}, u\right), x_{2} \cdot\left(\sigma_{2} x_{2}, u\right)\right) \quad K=(\square, u)
\end{gathered}
$$

... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{array}{cc}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] & (t: A \rightarrow B)==_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} & (t: A * B)=_{\eta}\left(\pi_{1} t, \pi_{2} t\right) \\
\delta\left(\sigma_{i} t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) \rightarrow_{\beta} u_{i}\left[t / x_{i}\right]
\end{array}
$$

$\forall\left(K\left[A_{1}+A_{2}\right]: B\right), \quad K[t]={ }_{\eta} \delta\left(t, x_{1} \cdot K\left[\sigma_{1} x_{1}\right], x_{2} \cdot K\left[\sigma_{2} x_{2}\right]\right)$
... but why?
Current research topic: does a given type have a unique inhabitant (modulo program equivalence)?

$$
\begin{array}{cr}
(\lambda(x) t) u \rightarrow_{\beta} t[u / x] & (t: A \rightarrow B)={ }_{\eta} \lambda(x) t x \\
\pi_{i}\left(t_{1}, t_{2}\right) \rightarrow_{\beta} t_{i} & (t: A * B)={ }_{\eta}\left(\pi_{1} t, \pi_{2} t\right) \\
\delta\left(\sigma_{i} t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) \rightarrow_{\beta} u_{i}\left[t / x_{i}\right]
\end{array}
$$

$\forall\left(K\left[A_{1}+A_{2}\right]: B\right), \quad K[t]={ }_{\eta} \delta\left(t, x_{1} \cdot K\left[\sigma_{1} x_{1}\right], x_{2} \cdot K\left[\sigma_{2} x_{2}\right]\right)$

- Sum equivalence looks hard. Can we implement it?
- Are there representations of programs (proofs) that quotient over those equivalences?

My paper in one slide

The equivalence algorithm of

國 Sam Lindley.
Extensional rewriting with sums.
In TLCA, pages 255-271, 2007.
and the normalization of proof representations in

國 Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin.
Canonical sequent proofs via multi-focusing.
In IFIP TCS, pages 383-396, 2008.
are doing (almost) the same thing

- and we had not noticed.

In this talk

Sam Lindley's rewriting-based algorithm is the first simple solution (first solution: Neil Ghani, 1995) to deciding sum equivalences.

It's easy to understand and follow. But to me it felt a bit arbitrary.

On the other hand, (multi-)focusing is beautiful, but requires some background knowledge.

Providing it is the purpose of this talk.

Sequent calculus

(Can be done in natural deduction, but less regular)

$$
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C}-
$$

$$
\frac{\Gamma, A_{i} \vdash C}{\Gamma, A_{1} * A_{2} \vdash C}-
$$

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}}{\Gamma \vdash A_{1} * A_{2}}
$$

$$
\frac{\Gamma, A_{1} \vdash C \quad \Gamma, A_{2} \vdash C}{\Gamma, A_{1}+A_{2} \vdash C}
$$

$$
\frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1}+A_{2}}+
$$

Inversible vs. non-inversible rules.
Negatives (interesting on the left): products, arrow, atoms. Positives (interesting on the right): sum, atoms (or products).

Inversible phase

Focusing restriction 1: inversible phases
Inversible rules must be applied as soon and as long as possible - and their order does not matter.

Inversible phase

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible - and their order does not matter.

Imposing this restriction gives a single proof of $(X \rightarrow Y) \rightarrow(X \rightarrow Y)$ instead of two $(\lambda(f) f$ and $\lambda(f) \lambda(x) f x)$.

Non-inversible phases

After all inversible rules, $\Gamma_{n} \vdash A_{p}$
Only step forward: select a formula, apply some non-inversible rules on it.

Non-inversible phases

After all inversible rules, $\Gamma_{n} \vdash A_{p}$
Only step forward: select a formula, apply some non-inversible rules on it.
Focusing restriction 2: non-inversible phase
When a principal formula is selected for non-inversible rule, they should be applied as long as possible - until its polarity changes.

Non-inversible phases

After all inversible rules, $\Gamma_{n} \vdash A_{p}$
Only step forward: select a formula, apply some non-inversible rules on it.
Focusing restriction 2: non-inversible phase
When a principal formula is selected for non-inversible rule, they should be applied as long as possible - until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial ! Example of removed redundancy:

$$
\begin{array}{cc}
\frac{X_{2},}{}, Y_{1} \vdash A \\
\hline X_{2} * X_{3}, & Y_{1} \vdash A \\
\hline X_{2} * X_{3}, & Y_{1} * Y_{2} \vdash A \\
\hline X_{1} * X_{2} * X_{3}, Y_{1} * Y_{2} \vdash A
\end{array}
$$

This was focusing

Focused proofs are structured in alternating phases, inversible (boring) and non-inversible (focus).

Phases are forced to be as long as possible - to eliminate duplicate proofs.

The idea is independent from the proof system. Applies to sequent calculus or natural deduction; intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to $\beta \eta$-normal forms (for products and arrows only). But the fun is in the search.

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system. We can give them a syntax that enforces their structure.

$$
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A+B \vdash C} \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system. We can give them a syntax that enforces their structure.

$$
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A+B \vdash C} \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

X atomic

$$
\overline{\Gamma_{n}, X \vdash X}
$$

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system. We can give them a syntax that enforces their structure.

$$
\begin{array}{cccc}
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A+B \vdash C} & & \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \\
\frac{X \text { atomic }}{\Gamma_{n}, X \vdash X} & \frac{\Gamma_{n a},\left[A_{n}\right] \vdash B_{p a}}{\Gamma_{n a}, A_{n} \vdash B_{p a}} & \frac{\Gamma_{n a} \vdash\left[B_{p a}\right]}{\Gamma_{n a} \vdash B_{p a}}
\end{array}
$$

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system. We can give them a syntax that enforces their structure.

$$
\begin{array}{ccc}
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A+B \vdash C} & \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \\
\frac{X \text { atomic }}{\Gamma_{n}, X \vdash X} & \frac{\Gamma_{n a},\left[A_{n}\right] \vdash B_{p a}}{\Gamma_{n a}, A_{n} \vdash B_{p a}} & \frac{\Gamma_{n a} \vdash\left[B_{p a}\right]}{\Gamma_{n a} \vdash B_{p a}} \\
\frac{\Gamma \vdash\left[A_{i}\right]}{\Gamma \vdash\left[A_{1}+A_{2}\right]} & \frac{\Gamma,\left[A_{i}\right] \vdash B}{\Gamma,\left[A_{1} \times A_{2}\right] \vdash B} & \frac{\Gamma \vdash[A] \vdash,[B] \vdash C}{\Gamma,[A \rightarrow B] \vdash C}
\end{array}
$$

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system. We can give them a syntax that enforces their structure.

$$
\begin{array}{ccc}
\frac{\Gamma, A \vdash C ~ \Gamma, B \vdash C}{\Gamma, A+B \vdash C} & \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \times B} & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \\
\frac{X \text { atomic }}{\Gamma_{n}, X \vdash X} & \frac{\Gamma_{n a},\left[A_{n}\right] \vdash B_{p a}}{\Gamma_{n a}, A_{n} \vdash B_{p a}} & \frac{\Gamma_{n a} \vdash\left[B_{p a}\right]}{\Gamma_{n a} \vdash B_{p a}} \\
\frac{\Gamma \vdash\left[A_{i}\right]}{\Gamma \vdash\left[A_{1}+A_{2}\right]} & \frac{\Gamma,\left[A_{i}\right] \vdash B}{\Gamma,\left[A_{1} \times A_{2}\right] \vdash B} & \frac{\Gamma \vdash[A] \Gamma,[B] \vdash C}{\Gamma,[A \rightarrow B] \vdash C} \\
& \frac{\Gamma, A_{p a} \vdash B}{\Gamma,\left[A_{p a}\right] \vdash B} & \frac{\Gamma \vdash B_{n a}}{\Gamma \vdash\left[B_{n a}\right]}
\end{array}
$$

Success stories

Focusing was introduced by Andreoli in 1992.
Revolution in logic programming.
Forward-chaining and backward-chaining expressed in a single system by assigning polarities to atoms.

Syntethic connectives: state-of-the-art automated theorem proving for non-classical logics
(+ Jumbo connectives, Paul Blain Levy, 2006)
Lazy vs. strict evaluation (Zeilberger 2008)

A sequent calculus with cut-free search bisimilar to DPLL (Lengrand, 2013).

This is not the end

$$
\begin{gathered}
(X+X) \rightarrow X \\
(1 \rightarrow(X+X)) \rightarrow X \\
\lambda(f) \delta\left(f 1, x_{1} \cdot x_{1}, x_{1} \cdot x_{1}\right) \\
\lambda(f) \delta\left(f 1, x_{1} \cdot \delta\left(f 1, x_{2} \cdot x_{2}, x_{2} \cdot x_{2}\right), x_{1} \cdot x_{1}\right) \\
\lambda(f) \delta\left(f 1, x_{1} \cdot x_{1}, x_{1} \cdot \delta\left(f 1, x_{2} \cdot x_{1}, x_{2} \cdot x_{2}\right)\right)
\end{gathered}
$$

Multi-focusing

Sometimes several independent foci are possible to make progress in a proof.

Multi-focusing (Miller and Saurin, 2007): do them all at once, in parallel.

$$
\begin{gathered}
\frac{Y_{2},}{\times X_{2} X_{3},} \begin{array}{r}
Y_{1} \vdash A \\
\times X_{2} X_{3}, \quad \times Y_{1} Y_{2} \vdash A \\
\times X_{1} \times X_{2} X_{3}, \times Y_{1} Y_{2} \vdash A
\end{array} \Rightarrow \frac{X_{2},}{\frac{Y_{1} \vdash A}{\times X_{2} X_{3},} Y_{1} \vdash A} \\
\frac{\times X_{2} X_{3}, \times Y_{1} Y_{2} \vdash A}{\times X_{1} \times X_{2} X_{3}, \times Y_{1} Y_{2} \vdash A} \\
\frac{\Gamma_{n a},\left[\Delta_{n}\right] \vdash B^{?}{ }_{p a} \mid\left[C^{?}{ }_{p a}\right]}{\Gamma_{n a}, \Delta_{n} \vdash B^{?}{ }_{p a} \mid C^{?}{ }_{p a}}
\end{gathered}
$$

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism - without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism - without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?
Yes. (In the good logics)

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism - without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?
Yes. (In the good logics)
Maximally multi-focusing is a powerful notion of canonical structure for proof.

- linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)
- first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller, 2013)
"Evolution rather than revolution" (Dale Miller)

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\left\{\begin{array}{cc}
& \mathrm{I}_{3} \\
& \mathrm{NI}_{3} \\
\mathrm{I}_{2} & \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\}
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\left\{\begin{array}{cc}
& \mathrm{I}_{3} \\
& \mathrm{NI}_{3} \\
\mathrm{I}_{2} & \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
& \mathrm{I}_{3} \\
\mathrm{I}_{2} & \\
& \mathrm{NI}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\}
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\left\{\begin{array}{cc}
& \mathrm{I}_{3} \\
\mathrm{NI}_{3} \\
\mathrm{I}_{2} & \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} & \\
& \mathrm{NI}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} & \mathrm{NI}_{3} \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\}\right.
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\begin{aligned}
&\left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} \\
\mathrm{NI}_{3} \\
\mathrm{NI}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
& \mathrm{NI}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} & \mathrm{NI}_{3} \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\} \\
& \rightarrow \\
& \rightarrow ?\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} & \mathrm{NI}_{3} ;\left(\mathrm{I}_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\begin{aligned}
& \left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} \\
\mathrm{NI}_{3} \\
\mathrm{II}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} & \\
\mathrm{NI}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} & \mathrm{NI}_{3} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \\
& \rightarrow \\
& \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) & \mathrm{I}_{3} \\
\mathrm{I}_{1} & \mathrm{NI}_{3} ;\left(\mathrm{I}_{1}\right)
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) & \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1} & \mathrm{NI} I_{3}
\end{array}\right\} ?\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \mathrm{I}_{3} \\
\mathrm{NI}_{1} & \mathrm{NI}_{3}
\end{array}\right\}
\end{aligned}
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\begin{aligned}
& \left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} \\
\mathrm{NI}_{3} \\
\mathrm{II}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{3} \\
\mathrm{I}_{2} & \\
\mathrm{NI}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} & \mathrm{NI}_{3} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \\
& \rightarrow \\
& \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) & \mathrm{I}_{3} \\
\mathrm{I}_{1} & \mathrm{NI}_{3} ;\left(\mathrm{I}_{1}\right)
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) & \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1} & \mathrm{NI} I_{3}
\end{array}\right\} \triangleright\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \mathrm{I}_{3} \\
\mathrm{NI}_{1} & \mathrm{NI}_{3}
\end{array}\right\}
\end{aligned}
$$

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$
\begin{aligned}
& \left\{\begin{array}{cc}
\left.\begin{array}{c}
\mathrm{I}_{3} \\
\mathrm{NI}_{3} \\
\mathrm{I}_{2} \\
\mathrm{NI}_{2} \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1}
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \\
& \mathrm{I}_{3} ;\left(\mathrm{I}_{2}\right) \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} & \mathrm{NI}_{3} \\
\mathrm{I}_{1} & \\
\mathrm{NI}_{1} &
\end{array}\right\} \\
\rightarrow \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) \\
\mathrm{I}_{1} & \mathrm{NI}_{3} ;\left(\mathrm{I}_{1}\right)
\end{array}\right\} \rightarrow^{*}\left\{\begin{array}{cc}
\mathrm{I}_{2} & \mathrm{I}_{3} \\
\mathrm{NI}_{2} ;\left(\mathrm{I}_{3}\right) \\
\mathrm{I}_{1} \\
\mathrm{NI}_{1} & \mathrm{NI} 3
\end{array}\right\} \triangleright\left\{\begin{array}{cc}
\mathrm{I}_{2} \\
\mathrm{NI}_{2} & \\
\mathrm{I}_{1} & \mathrm{I}_{3} \\
\mathrm{NI}_{1} & \mathrm{NI}_{3}
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

This is the heart of the correspondence with Sam Lindley's work

Contribution conclusion

Mf. Lin. Seq. Calc. (Chauduri, Miller, Saurin) --- Mf. Int. Seq. Calc. $\xrightarrow{\simeq}$ Mf. Int. Nat. Ded. let $\bar{x}=\bar{n}$ in $p^{?} t$

(Lindley)

