
Multi-focusing on extensional rewriting with sums
(introduction)

Gabriel Scherer

Gallium – INRIA

July 2, 2015

1



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

(t : A + B) =η δ(t, x1.σ1 x1, x2.σ2 x2)

(t, u)
?
= δ(t, x1.(σ1 x1, u), x2.(σ2 x2, u)) K = (�, u)

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

(t : A + B) =η δ(t, x1.σ1 x1, x2.σ2 x2)

(t, u)
?
= δ(t, x1.(σ1 x1, u), x2.(σ2 x2, u)) K = (�, u)

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

(t : A + B) =η δ(t, x1.σ1 x1, x2.σ2 x2)

(t, u)
?
= δ(t, x1.(σ1 x1, u), x2.(σ2 x2, u)) K = (�, u)

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

(t : A + B) =η δ(t, x1.σ1 x1, x2.σ2 x2)

(t, u)
?
= δ(t, x1.(σ1 x1, u), x2.(σ2 x2, u))

K = (�, u)

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

(t : A + B) =η δ(t, x1.σ1 x1, x2.σ2 x2)

(t, u)
?
= δ(t, x1.(σ1 x1, u), x2.(σ2 x2, u)) K = (�, u)

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

∀(K [A1 + A2] : B), K [t] =η δ(t, x1.K [σ1 x1], x2.K [σ2 x2])

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(λ(x) t) u →β t[u/x ] (t : A→ B) =η λ(x) t x

πi (t1, t2)→β ti (t : A ∗ B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui [t/xi ]

∀(K [A1 + A2] : B), K [t] =η δ(t, x1.K [σ1 x1], x2.K [σ2 x2])

Sum equivalence looks hard. Can we implement it?

Are there representations of programs (proofs) that quotient over
those equivalences?

2



My paper in one slide

The equivalence algorithm of

Sam Lindley.
Extensional rewriting with sums.
In TLCA, pages 255–271, 2007.

and the normalization of proof representations in

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin.
Canonical sequent proofs via multi-focusing.
In IFIP TCS , pages 383–396, 2008.

are doing (almost) the same thing
– and we had not noticed.

3



In this talk

Sam Lindley’s rewriting-based algorithm is the first simple solution (first
solution: Neil Ghani, 1995) to deciding sum equivalences.

It’s easy to understand and follow. But to me it felt a bit arbitrary.

On the other hand, (multi-)focusing is beautiful, but requires some
background knowledge.

Providing it is the purpose of this talk.

4



Sequent calculus
(Can be done in natural deduction, but less regular)

Γ ` A Γ,B ` C

Γ,A→ B ` C
–

Γ,A ` B

Γ ` A→ B

Γ,Ai ` C

Γ,A1 ∗ A2 ` C
–

Γ ` A1 Γ ` A2

Γ ` A1 ∗ A2

Γ,A1 ` C Γ,A2 ` C

Γ,A1 + A2 ` C

Γ ` Ai

Γ ` A1 + A2
+

Inversible vs. non-inversible rules.
Negatives (interesting on the left): products, arrow, atoms.
Positives (interesting on the right): sum, atoms (or products).

5



Inversible phase

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible
– and their order does not matter.

Imposing this restriction gives a single proof of (X → Y )→ (X → Y )
instead of two (λ(f ) f and λ(f )λ(x) f x).

6



Inversible phase

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible
– and their order does not matter.

Imposing this restriction gives a single proof of (X → Y )→ (X → Y )
instead of two (λ(f ) f and λ(f )λ(x) f x).

6



Non-inversible phases

After all inversible rules, Γn ` Ap

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

X2, Y1 ` A

X2 ∗ X3, Y1 ` A

X2 ∗ X3, Y1 ∗ Y2 ` A

X1 ∗ X2 ∗ X3,Y1 ∗ Y2 ` A

7



Non-inversible phases

After all inversible rules, Γn ` Ap

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

X2, Y1 ` A

X2 ∗ X3, Y1 ` A

X2 ∗ X3, Y1 ∗ Y2 ` A

X1 ∗ X2 ∗ X3,Y1 ∗ Y2 ` A

7



Non-inversible phases

After all inversible rules, Γn ` Ap

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

X2, Y1 ` A

X2 ∗ X3, Y1 ` A

X2 ∗ X3, Y1 ∗ Y2 ` A

X1 ∗ X2 ∗ X3,Y1 ∗ Y2 ` A

7



This was focusing

Focused proofs are structured in alternating phases,
inversible (boring) and non-inversible (focus).

Phases are forced to be as long as possible – to eliminate duplicate proofs.

The idea is independent from the proof system.
Applies to sequent calculus or natural deduction;
intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to βη-normal forms (for
products and arrows only). But the fun is in the search.

8



Restrictive syntax

So far we’ve defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

Γ,A ` C Γ,B ` C

Γ,A + B ` C

Γ ` A Γ ` B

Γ ` A× B

Γ,A ` B

Γ ` A→ B

X atomic

Γn,X ` X

Γna, [An] ` Bpa

Γna,An ` Bpa

Γna ` [Bpa]

Γna ` Bpa

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ, [Ai ] ` B

Γ, [A1 × A2] ` B

Γ ` [A] Γ, [B] ` C

Γ, [A→ B] ` C

Γ,Apa ` B

Γ, [Apa] ` B

Γ ` Bna

Γ ` [Bna]

9



Restrictive syntax

So far we’ve defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

Γ,A ` C Γ,B ` C

Γ,A + B ` C

Γ ` A Γ ` B

Γ ` A× B

Γ,A ` B

Γ ` A→ B

X atomic

Γn,X ` X

Γna, [An] ` Bpa

Γna,An ` Bpa

Γna ` [Bpa]

Γna ` Bpa

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ, [Ai ] ` B

Γ, [A1 × A2] ` B

Γ ` [A] Γ, [B] ` C

Γ, [A→ B] ` C

Γ,Apa ` B

Γ, [Apa] ` B

Γ ` Bna

Γ ` [Bna]

9



Restrictive syntax

So far we’ve defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

Γ,A ` C Γ,B ` C

Γ,A + B ` C

Γ ` A Γ ` B

Γ ` A× B

Γ,A ` B

Γ ` A→ B

X atomic

Γn,X ` X

Γna, [An] ` Bpa

Γna,An ` Bpa

Γna ` [Bpa]

Γna ` Bpa

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ, [Ai ] ` B

Γ, [A1 × A2] ` B

Γ ` [A] Γ, [B] ` C

Γ, [A→ B] ` C

Γ,Apa ` B

Γ, [Apa] ` B

Γ ` Bna

Γ ` [Bna]

9



Restrictive syntax

So far we’ve defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

Γ,A ` C Γ,B ` C

Γ,A + B ` C

Γ ` A Γ ` B

Γ ` A× B

Γ,A ` B

Γ ` A→ B

X atomic

Γn,X ` X

Γna, [An] ` Bpa

Γna,An ` Bpa

Γna ` [Bpa]

Γna ` Bpa

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ, [Ai ] ` B

Γ, [A1 × A2] ` B

Γ ` [A] Γ, [B] ` C

Γ, [A→ B] ` C

Γ,Apa ` B

Γ, [Apa] ` B

Γ ` Bna

Γ ` [Bna]

9



Restrictive syntax

So far we’ve defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

Γ,A ` C Γ,B ` C

Γ,A + B ` C

Γ ` A Γ ` B

Γ ` A× B

Γ,A ` B

Γ ` A→ B

X atomic

Γn,X ` X

Γna, [An] ` Bpa

Γna,An ` Bpa

Γna ` [Bpa]

Γna ` Bpa

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ, [Ai ] ` B

Γ, [A1 × A2] ` B

Γ ` [A] Γ, [B] ` C

Γ, [A→ B] ` C

Γ,Apa ` B

Γ, [Apa] ` B

Γ ` Bna

Γ ` [Bna]

9



Success stories

Focusing was introduced by Andreoli in 1992.
Revolution in logic programming.

Forward-chaining and backward-chaining expressed in a single system by
assigning polarities to atoms.

Syntethic connectives: state-of-the-art automated theorem proving for
non-classical logics
(+ Jumbo connectives, Paul Blain Levy, 2006)

Lazy vs. strict evaluation (Zeilberger 2008)

A sequent calculus with cut-free search bisimilar to DPLL (Lengrand,
2013).

10



This is not the end

(X + X )→ X

(1→ (X + X ))→ X

λ(f ) δ(f 1, x1.x1, x1.x1)

λ(f ) δ(f 1, x1.δ(f 1, x2.x2, x2.x2), x1.x1)

λ(f ) δ(f 1, x1.x1, x1.δ(f 1, x2.x1, x2.x2))

. . .

11



Multi-focusing

Sometimes several independent foci are possible to make progress in a
proof.

Multi-focusing (Miller and Saurin, 2007): do them all at once, in parallel.

X2, Y1 ` A

×X2X3, Y1 ` A

×X2X3, ×Y1Y2 ` A

×X1×X2X3,×Y1Y2 ` A
⇒

X2, Y1 ` A

×X2X3, Y1 ` A

×X2X3, ×Y1Y2 ` A

×X1×X2X3,×Y1Y2 ` A

Γna, [∆n] ` B?
pa | [C ?

pa]

Γna,∆n ` B?
pa | C ?

pa

12



Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism – without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for
proof.

linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)

first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller,
2013)

“Evolution rather than revolution” (Dale Miller)

13



Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism – without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for
proof.

linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)

first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller,
2013)

“Evolution rather than revolution” (Dale Miller)

13



Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism – without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for
proof.

linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)

first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller,
2013)

“Evolution rather than revolution” (Dale Miller)

13



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1



→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3



?


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1



→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3



?


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3



?


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1



→∗


i2 i3

ni2; (i3)
i1
ni1 ni3



?


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3

 ?


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3

 .


i2
ni2
i1 i3
ni1 ni3



This is the heart of the correspondence with Sam Lindley’s work

14



Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.



i3
ni3

i2
ni2
i1
ni1


→∗



i3
i2

ni3; (i2)
ni2
i1
ni1


→∗


i2 i3
ni2 ni3
i1
ni1



→∗


i2 i3

ni2; (i3)
i1

ni3; (i1)
ni1

 →
∗


i2 i3

ni2; (i3)
i1
ni1 ni3

 .


i2
ni2
i1 i3
ni1 ni3


This is the heart of the correspondence with Sam Lindley’s work

14



Contribution conclusion

Mf. Lin. Seq. Calc.
(Chauduri, Miller, Saurin)

Mf. Int. Seq. Calc. Mf. Int. Nat. Ded.

? Mf. λ-calculus terms

λ-calculus
(Lindley)

'

let x̄ = n̄ in p?t

let-subst

15


	Introduction

