Multi-focusing on extensional rewriting with sums
(introduction)

Gabriel Scherer

Gallium — INRIA

March 14, 2014

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx

i (tl,tg) —g ti (t:A*B) =y (7T1 t, mo t)

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx
i (tl,tg) —g ti (t:A*B) =y (7T1 t, mo t)

d(oi t, x1.u1, xo.up) =g ui[t/xi]

(t A+ B) =y (5(1‘, X1.01 X1, X2.02 X2)

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx
i (tl,tg) —g ti (t:A*B) =y (7T1 t, mo t)

d(oi t, x1.u1, xo.up) =g ui[t/xi]

(t A+ B) =y (5(1‘, X1.01 X1, X2.02 X2)

(t,u) = 5(t, x1.(o1 x1, u), x2.(02 x2, 1))

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx
i (tl,tg) —g ti (t:A*B) =y (7T1 t, mo t)

d(oi t, x1.u1, xo.up) =g ui[t/xi]

(t A+ B) =y (5(1‘, X1.01 X1, X2.02 X2)

(t,u) L o(t, x1.(o1 x1, u), x2.(02 x2, 1)) K= (0,u)

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx
i (tl,tg) —g ti (t:A*B) =y (7T1 t, mo t)

d(oi t, x1.u1, xo.up) =g ui[t/xi]

V(K[Al + A2] : B), K[t] =y (5(1‘, X1.K[0'1 X1], X2.K[O’2 X2])

... but why?
Current research topic: does a given type have a unique inhabitant
(modulo program equivalence)?

(A(x) t) u =g tlu/x] (t:A—= B) =y A\(x)tx
7'(','(1'1,1‘2) —g ti (t:A*B) =y (7T1 t, mo t)

d(oi t, x1.u1, xo.up) =g ui[t/xi]

V(K[Al + A2] : B), K[t] =y (5(1‘, X1.K[0'1 X1], X2.K[O’2 X2])

@ Sum equivalence looks hard. Can we implement it?
@ Are there representations of programs (proofs) that quotient over
those equivalences?

My paper in one slide

The equivalence algorithm of

@ Sam Lindley.
Extensional rewriting with sums.
In TLCA, pages 255-271, 2007.

and the normalization of proof representations in

[§] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin.
Canonical sequent proofs via multi-focusing.
In IFIP TCS, pages 383-396, 2008.

are doing (almost) the same thing
— and we had not noticed.

In this talk

Sam Lindley’'s rewriting-based algorithm is the first simple solution (first
solution: Neil Ghani, 1995) to deciding sum equivalences.

It's easy to understand and follow. But to me it felt a bit arbitrary.

On the other hand, (multi-)focusing is beautiful, but requires some
background knowledge.

Providing it is the purpose of this talk.

Sequent calculus
(Can be done in natural deduction, but less regular)

r-A NBEC NAFB
NNA—BFC rN-A—B

A FC TFAL TFA
F,Al*Agl—C FI—Al*A2
MNAEC MAEC [A; n
MNAL+AEC N AL+ A

Inversible vs. non-inversible rules.
Negatives (interesting on the left): products, arrow, atoms.

Positives (interesting on the right): sum, atoms (or products).
5

Inversible phase

?
X+YEX
X+YEX+Y

If applied too early, non-inversible rules can ruin your proof.

Inversible phase

?
X+YEX
X+YEX+Y

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible
— and their order does not matter.

Inversible phase

?
X+YEX
X+YEX+Y

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (X — Y) — (X — Y)
instead of two (A(f) f and A(f) A(x) f x).

Non-inversible phases

After all inversible rules, ', = A,

Only step forward: select a formula, apply some non-inversible rules on it.

Non-inversible phases
After all inversible rules, ', = A,
Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be
applied as long as possible — until its polarity changes.

Non-inversible phases

After all inversible rules, ', = A,

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

Xo, YiFA
X5 * X3, YiFA
Xox X3, YixYoEA

X1 Xox X3, YixYoFA

This was focusing

Focused proofs are structured in alternating phases,
inversible (boring) and non-inversible (focus).

Phases are forced to be as long as possible — to eliminate duplicate proofs.

The idea is independent from the proof system.
Applies to sequent calculus or natural deduction;
intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to Sn-normal forms (for
products and arrows only). But the fun is in the search.

Demo Time

F(1 - X =2(Y+Z)=> X =>(Y=>W)=(Z2+W)

inversible rules

Demo Time

(1 > X =2 (Y+Z)E X =>(Y = W)= (Z+W)

inversible rules

Demo Time

(1 > X > (Y+2Z)), XEFY->W)—=(Z+W)

inversible rules

Demo Time

(1 =X =(Y+Z), X, Y=>WF Z+W

inversible rules

Demo Time

(1 =X =(Y+Z), X, Y=>WF Z+W

choice of focus

Demo Time

(1 =X =(Y+2Z), X, Y=>WF Z+W

choice of focus

Demo Time

(1 =X =(Y+Z), X, Y=>WF Z+W

non-inversible rules

Demo Time

(1 =X =(Y+Z), X, Y=>WF Z+W

non-inversible rules

Demo Time

(1 =X =(Y+2Z), X, Y=>WF Z+W

inversible rules

Demo Time

Y)Y > WFZ + W ZFZ+W

(1 =X =>(Y+2Z), X, Y=WE Z4+W

inversible rules

Demo Time

Y)Y > WFZ + W ZFZ+W

(1 =X =>(Y+2Z), X, Y=WE Z4+W

choice of focus

Demo Time

Y)Y > WFZ + W ZF-Z+W

(1 =X =>(Y+2Z), X, Y=WE Z4+W

conclusion

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

MAFC T,BFC A TFB rAFB
A+BFC r-AxB r-A—B

10

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

NAEC TI,BEC r'-A IT'B NAEB
NA+BEC INFAx B r'FA— B
X atomic

M, XHX

10

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system.
We can give them a syntax that enforces their structure.

NAEC TI,BEC A IT'+B NAEB
NA+BEC INFAx B rI'FA— B
X atomic [nas [An] F Bpa na b= [Bpa]

M, XHX [has An = Bpa [ha = Bpa

10

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system.

We can give them a syntax that enforces their structure.

AFC TBFC A F+-B rAFB
NA+BEC NrN-Ax B rN-A— B
X atomic [nas [An] F Bpa [ha = [Bpal
M, XEX [has An = Bpa [ha = Bpa
I [Ai] r[Ail+FB r=[A] TI,[B]FC
IE[A1 + A M [AL x A+ B N[A—B]EC

10

Restrictive syntax

So far we've defined focused proofs as a subset of proofs in our system.

We can give them a syntax that enforces their structure.

AFC TBFC A F+-B rAFB
NA+BEC NrN-Ax B rN-A— B
X atomic [nas [An] F Bpa [ha = [Bpal
M, XEX [has An = Bpa [ha = Bpa
I [Ai] r[Ail+FB r=[A] TI,[B]FC
IE[A1 + A M [AL x A+ B N[A—B]EC
r,Apal—B I+ Bpa
r,[Apa]l—B FF[B,,Q]

10

Success stories

Focusing was introduced by Andreoli in 1992.
Revolution in logic programming.

Forward-chaining and backward-chaining expressed in a single system by
assigning polarities to atoms.

Syntethic connectives: state-of-the-art automated theorem proving for
non-classical logics
(+ Jumbo connectives, Paul Blain Levy, 2006)

Lazy vs. strict evaluation (Zeilberger 2008)

A sequent calculus with cut-free search bisimilar to DPLL (Lengrand,
2013).

11

This is not the end

(X+X)—=X

I=(X+X)—=X

/\(f) (5(f 1, X1.X1, X1.X1)
)\(f) (5(f]., X1.5(f 1, X2.X2, X2.X2), X1.X1)

)\(f) 5(f 1, X1.X1, X1.(5(f 1, X2.X1, X2.X2))

12

Multi-focusing

Sometimes several independent foci are possible to make progress in a
proof.

Multi-focusing (Miller and Saurin, 2007): do them all at once, in parallel

Xo, Y, A
% XoXz, YiF A
X XoXz, xYiYoF A
X X1 x Xo X3, x Y1 Yo - A -

Xo, Y, - A
xXoX3, YiF A
X XoXs, xYiYoF A

X X1 xXoX3, X Y1 Yo - A

[hay [An] - B?pa ’ [C?pa]
[hay Ap - B pa | Cpa

13

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism — without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

14

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism — without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

14

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to
exhibit some parallelism — without changing the operational meaning of
the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?
Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for
proof.

@ linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)

o first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller,
2013)

“Evolution rather than revolution” (Dale Miller)

14

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3
NI3
I>
NIp
I
\ NIz)

Iz
NI

ITh I3
NI; NI3

15

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3 I3
NI3 In
Io R NI3; (I2)
NIp NIp
I I
\ NIz) NI

Iz
NI

ITh I3
NI; NI3

15

Computing a maximal proof
Preemptive rewriting temporarily breaks the focused structure to move

foci as far down as possible.

I>
NIp
I
NIy

I3
NI3

I3
I
Ni3; (I2)
NIp
I
NI

15

Iz I3
NI> NI3
I
NIp
I
? NI
I I3

NI; NI3

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3 I3
NI3 In In I3
I NI3; (I NI» NI
2 ¥ 3 (2) ¥ 2 3
NIp NIp I1
17 I NIp
\ NIz) NI
I2 I3 |
2
NIp; (13) NIy
—* I ? X .
1 3
NI3; (1)
NI; NI3

NIz

15

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3 I3
NI3 In In I3
I NI3; (I NI NI
2 ¥ 3 (2) ¥ 2 3
NIp NIp I1
17 I NIp
\ NIz) NI
Iz I3
I> I3 I>
Niz; (13) NIg; (13) NI
—* I —* 1 ? X .
1 1 3
NI3; (11)
NIy NI3 NI; NI3

NIz

15

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3 I3
NI3 In In I3
I NI3; (I NI NI
2 ¥ 3 (2) ¥ 2 3
NIp NIp I1
17 I NIp
\ NIz) NI
I I3
I2 I3 I2
Niz; (13) NIg; (13) NI
—* I —* 1 >9 .
1 1 3
NI3; (1)
NIy NI3 NI; NI3

NIz

15

Computing a maximal proof

Preemptive rewriting temporarily breaks the focused structure to move
foci as far down as possible.

I3 3)
NI3 In In I3
I NI3; (I NI NI
2 ¥ 3 (2) ¥ 2 3
NIp NIp I1
17 I NIp
\ NIz) NI
I2 I3
2 I3 I2
Ni2; (1) NIg; (13) NIp
—* I —* 1 >9 .
1 1 3
NI3; (1)
NIy NI3 NI; NI3

NIz

This is the heart of the correspondence with Sam Lindley's work
15

Contribution conclusion

Mf. Lin. Seq. Calc.

(Chauduri, Miller, Saurin) ~~ " Mf. Int. Seq. Calc. —— Mf. Int. Nat. Ded.

let x =qin p't
? Mf. A-calculus terms

let-subst

A-calculus
(Lindley)

16

	Introduction

