Multi-focusing on extensional rewriting with sums (introduction)

Gabriel Scherer

Gallium – INRIA

March 14, 2014

$$(\lambda(x) t) u \rightarrow_{\beta} t[u/x]$$
 $(t : A \rightarrow B) =_{\eta} \lambda(x) t x$
 $\pi_i (t_1, t_2) \rightarrow_{\beta} t_i$ $(t : A * B) =_{\eta} (\pi_1 t, \pi_2 t)$

$$(\lambda(x) t) u \rightarrow_{\beta} t[u/x] \qquad (t : A \rightarrow B) =_{\eta} \lambda(x) t x$$

$$\pi_{i} (t_{1}, t_{2}) \rightarrow_{\beta} t_{i} \qquad (t : A * B) =_{\eta} (\pi_{1} t, \pi_{2} t)$$

$$\delta(\sigma_{i} t, x_{1}.u_{1}, x_{2}.u_{2}) \rightarrow_{\beta} u_{i}[t/x_{i}]$$

$$(t: A + B) =_{\eta} \delta(t, x_1.\sigma_1 x_1, x_2.\sigma_2 x_2)$$

$$(\lambda(x) t) u \to_{\beta} t[u/x] \qquad (t : A \to B) =_{\eta} \lambda(x) t x$$

$$\pi_{i} (t_{1}, t_{2}) \to_{\beta} t_{i} \qquad (t : A * B) =_{\eta} (\pi_{1} t, \pi_{2} t)$$

$$\delta(\sigma_{i} t, x_{1}.u_{1}, x_{2}.u_{2}) \to_{\beta} u_{i}[t/x_{i}]$$

$$(t : A + B) =_{\eta} \delta(t, x_{1}.\sigma_{1} x_{1}, x_{2}.\sigma_{2} x_{2})$$

$$(t, u) \stackrel{?}{=} \delta(t, x_{1}.(\sigma_{1} x_{1}, u), x_{2}.(\sigma_{2} x_{2}, u))$$

$$(\lambda(x) t) u \to_{\beta} t[u/x] \qquad (t : A \to B) =_{\eta} \lambda(x) t x$$

$$\pi_{i} (t_{1}, t_{2}) \to_{\beta} t_{i} \qquad (t : A * B) =_{\eta} (\pi_{1} t, \pi_{2} t)$$

$$\delta(\sigma_{i} t, x_{1}.u_{1}, x_{2}.u_{2}) \to_{\beta} u_{i}[t/x_{i}]$$

$$(t : A + B) =_{\eta} \delta(t, x_{1}.\sigma_{1} x_{1}, x_{2}.\sigma_{2} x_{2})$$

$$(t, u) \stackrel{?}{=} \delta(t, x_{1}.(\sigma_{1} x_{1}, u), x_{2}.(\sigma_{2} x_{2}, u)) \qquad K = (\Box, u)$$

$$(\lambda(x) t) u \to_{\beta} t[u/x] \qquad (t : A \to B) =_{\eta} \lambda(x) t x$$

$$\pi_{i} (t_{1}, t_{2}) \to_{\beta} t_{i} \qquad (t : A * B) =_{\eta} (\pi_{1} t, \pi_{2} t)$$

$$\delta(\sigma_{i} t, x_{1}.u_{1}, x_{2}.u_{2}) \to_{\beta} u_{i}[t/x_{i}]$$

$$\forall (K[A_1 + A_2] : B), \quad K[t] =_{\eta} \delta(t, x_1.K[\sigma_1 x_1], x_2.K[\sigma_2 x_2])$$

$$(\lambda(x) t) u \rightarrow_{\beta} t[u/x] \qquad (t : A \rightarrow B) =_{\eta} \lambda(x) t x$$

$$\pi_{i} (t_{1}, t_{2}) \rightarrow_{\beta} t_{i} \qquad (t : A * B) =_{\eta} (\pi_{1} t, \pi_{2} t)$$

$$\delta(\sigma_{i} t, x_{1}.u_{1}, x_{2}.u_{2}) \rightarrow_{\beta} u_{i}[t/x_{i}]$$

$$\forall (K[A_1 + A_2] : B), \quad K[t] =_{\eta} \delta(t, x_1.K[\sigma_1 x_1], x_2.K[\sigma_2 x_2])$$

- Sum equivalence looks hard. Can we implement it?
- Are there representations of programs (proofs) that quotient over those equivalences?

My paper in one slide

The equivalence algorithm of

Sam Lindley. Extensional rewriting with sums. In *TLCA*, pages 255–271, 2007.

and the normalization of proof representations in

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-focusing. In *IFIP TCS*, pages 383–396, 2008.

are doing (almost) the same thing – and we had not noticed.

In this talk

Sam Lindley's rewriting-based algorithm is the first **simple** solution (first solution: Neil Ghani, 1995) to deciding sum equivalences.

It's easy to understand and follow. But to me it felt a bit arbitrary.

On the other hand, (multi-)focusing is beautiful, but requires some background knowledge.

Providing it is the purpose of this talk.

Sequent calculus

(Can be done in natural deduction, but less regular)

$$\left[\begin{array}{c|c} \Gamma \vdash A & \Gamma, B \vdash C \\ \hline \Gamma, A \to B \vdash C \end{array} - \left[\begin{array}{c|c} \Gamma, A \vdash B \\ \hline \Gamma \vdash A \to B \end{array}\right]\right]$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{\Gamma, A_i \vdash C}{\Gamma, A_1 * A_2 \vdash C} -$$

$$\left[\begin{array}{c} \Gamma, A_i \vdash C \\ \overline{\Gamma, A_1 * A_2 \vdash C} \end{array}\right] \qquad \left[\begin{array}{cc} \Gamma \vdash A_1 & \Gamma \vdash A_2 \\ \overline{\Gamma} \vdash A_1 * A_2 \end{array}\right]$$

$$\left[\begin{array}{c|c}
\Gamma, A_1 \vdash C & \Gamma, A_2 \vdash C \\
\hline
\Gamma, A_1 + A_2 \vdash C & \\
\end{array}\right] \qquad \left[\begin{array}{c|c}
\Gamma \vdash A_i \\
\hline
\Gamma \vdash A_1 + A_2 & +
\end{array}\right]$$

$$\frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 + A_2} +$$

Inversible vs. non-inversible rules.

Negatives (interesting on the left): products, arrow, atoms.

Positives (interesting on the right): sum, atoms (or products).

Inversible phase

$$\frac{?}{X + Y \vdash X}$$
$$X + Y \vdash X + Y$$

If applied too early, non-inversible rules can ruin your proof.

Inversible phase

$$\frac{?}{X + Y \vdash X}$$
$$X + Y \vdash X + Y$$

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible – and their order does not matter.

Inversible phase

$$\frac{?}{X+Y\vdash X}$$
$$X+Y\vdash X+Y$$

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible – and their order does not matter.

Imposing this restriction gives a single proof of $(X \to Y) \to (X \to Y)$ instead of two $(\lambda(f) f$ and $\lambda(f) \lambda(x) f x$).

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be applied as long as possible – until its polarity changes.

7

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. **Non-trivial!** Example of removed redundancy:

$$\frac{X_{2}, \qquad Y_{1} \vdash A}{X_{2} * X_{3}, \qquad Y_{1} \vdash A}$$
$$\frac{X_{2} * X_{3}, \qquad Y_{1} * Y_{2} \vdash A}{X_{1} * X_{2} * X_{3}, \quad Y_{1} * Y_{2} \vdash A}$$

This was focusing

Focused proofs are structured in alternating phases, inversible (boring) and non-inversible (focus).

Phases are forced to be as long as possible – to eliminate duplicate proofs.

The idea is independent from the proof system. Applies to sequent calculus or natural deduction; intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to $\beta\eta$ -normal forms (for products and arrows only). But the fun is in the search.

$$\vdash (\ 1 \ \rightarrow \ X \ \rightarrow (\ Y+Z\)) \rightarrow X \ \rightarrow (Y \rightarrow W) \rightarrow (\ Z+W\)$$

$$(1 \rightarrow X \rightarrow (Y+Z)) \vdash X \rightarrow (Y \rightarrow W) \rightarrow (Z+W)$$

$$(1 \rightarrow X \rightarrow (Y+Z)), X \vdash (Y \rightarrow W) \rightarrow (Z+W)$$

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

choice of focus

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

choice of focus

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

non-inversible rules

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

non-inversible rules

$$(1 \rightarrow X \rightarrow (Y+Z)), X, Y \rightarrow W \vdash Z+W$$

$$Y,Y \rightarrow W \vdash Z + W \qquad Z \vdash Z + W$$

$$(1 \rightarrow X \rightarrow (Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z + W$$

$$Y,Y \rightarrow W \vdash Z + W \qquad Z \vdash Z + W$$

$$(1 \rightarrow X \rightarrow (Y+Z)), \quad X, \quad Y \rightarrow W \vdash Z+W$$

choice of focus

$$Y, Y \rightarrow W \vdash Z + W \qquad Z \vdash Z + W$$

$$(1 \rightarrow X \rightarrow (Y + Z)), \quad X, \quad Y \rightarrow W \vdash Z + W$$

conclusion

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{X \text{ atomic}}{\Gamma_n, X \vdash X}$$

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{X \text{ atomic}}{\Gamma_{n}, X \vdash X} \qquad \frac{\Gamma_{na}, [A_{n}] \vdash B_{pa}}{\Gamma_{na}, A_{n} \vdash B_{pa}} \qquad \frac{\Gamma_{na} \vdash [B_{pa}]}{\Gamma_{na} \vdash B_{pa}}$$

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{X \text{ atomic}}{\Gamma_{n}, X \vdash X} \qquad \frac{\Gamma_{na}, [A_{n}] \vdash B_{pa}}{\Gamma_{na}, A_{n} \vdash B_{pa}} \qquad \frac{\Gamma_{na} \vdash [B_{pa}]}{\Gamma_{na} \vdash B_{pa}}$$

$$\frac{\Gamma \vdash [A_{i}]}{\Gamma \vdash [A_{1} + A_{2}]} \qquad \frac{\Gamma, [A_{i}] \vdash B}{\Gamma, [A_{1} \times A_{2}] \vdash B} \qquad \frac{\Gamma \vdash [A] \quad \Gamma, [B] \vdash C}{\Gamma, [A \to B] \vdash C}$$

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{X \text{ atomic}}{\Gamma_{n}, X \vdash X} \qquad \frac{\Gamma_{na}, [A_{n}] \vdash B_{pa}}{\Gamma_{na}, A_{n} \vdash B_{pa}} \qquad \frac{\Gamma_{na} \vdash [B_{pa}]}{\Gamma_{na} \vdash B_{pa}}$$

$$\frac{\Gamma \vdash [A_{i}]}{\Gamma \vdash [A_{1} + A_{2}]} \qquad \frac{\Gamma, [A_{i}] \vdash B}{\Gamma, [A_{1} \times A_{2}] \vdash B} \qquad \frac{\Gamma \vdash [A] \quad \Gamma, [B] \vdash C}{\Gamma, [A \to B] \vdash C}$$

$$\frac{\Gamma, A_{pa} \vdash B}{\Gamma, [A_{pa}] \vdash B} \qquad \frac{\Gamma \vdash B_{na}}{\Gamma \vdash [B_{na}]}$$

Success stories

Focusing was introduced by Andreoli in 1992. Revolution in logic programming.

Forward-chaining and backward-chaining expressed in a single system by assigning polarities to atoms.

Syntethic connectives: state-of-the-art automated theorem proving for non-classical logics (+ Jumbo connectives, Paul Blain Levy, 2006)

Lazy vs. strict evaluation (Zeilberger 2008)

A sequent calculus with cut-free search bisimilar to DPLL (Lengrand, 2013).

This is **not** the end

$$(X + X) \to X$$

 $(1 \to (X + X)) \to X$
 $\lambda(f) \, \delta(f \, 1, \, x_1.x_1, \, x_1.x_1)$
 $\lambda(f) \, \delta(f \, 1, \, x_1.\delta(f \, 1, \, x_2.x_2, \, x_2.x_2), \, x_1.x_1)$
 $\lambda(f) \, \delta(f \, 1, \, x_1.x_1, \, x_1.\delta(f \, 1, \, x_2.x_1, \, x_2.x_2))$
...

Multi-focusing

Sometimes several independent foci are possible to make progress in a proof.

Multi-focusing (Miller and Saurin, 2007): do them all at once, in parallel.

$$\frac{X_2, \quad Y_1 \vdash A}{\times X_2 X_3, \quad Y_1 \vdash A} \\
\times X_2 X_3, \quad X_1 \vdash A \\
\times X_1 \times X_2 X_3, \quad X_1 Y_2 \vdash A$$

$$\Rightarrow \frac{X_2, \quad Y_1 \vdash A}{\times X_2 X_3, \quad Y_1 \vdash A} \\
\times X_2 X_3, \quad Y_1 \vdash A \\
\times X_2 X_3, \quad X_1 Y_2 \vdash A$$

$$\frac{\Gamma_{na}, [\Delta_n] \vdash B^?_{pa} \mid [C^?_{pa}]}{\Gamma_{na}, \Delta_n \vdash B^?_{pa} \mid C^?_{pa}}$$

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a **maximally parallel** multi-focused proof?

Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for proof.

- linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)
- first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller, 2013)

"Evolution rather than revolution" (Dale Miller)

$$\left\{\begin{array}{c} {\rm I}_{3} \\ {\rm NI}_{3} \\ {\rm I}_{2} \\ {\rm NI}_{2} \\ {\rm I}_{1} \\ {\rm NI}_{1} \end{array}\right\}$$

$$? \left\{ \begin{array}{ccc} I_{2} & & \\ NI_{2} & & \\ I_{1} & I_{3} & \\ NI_{1} & NI_{3} \end{array} \right\}$$

$$\left\{\begin{array}{c} {\rm I}_{3} \\ {\rm NI}_{3} \\ {\rm I}_{2} \\ {\rm NI}_{2} \\ {\rm I}_{1} \\ {\rm NI}_{1} \end{array}\right\} \rightarrow^{*} \left\{\begin{array}{c} {\rm I}_{3} \\ {\rm I}_{2} \\ {\rm NI}_{2} \\ {\rm I}_{1} \\ {\rm NI}_{1} \end{array}\right\}$$

$$? \left\{ \begin{array}{cc} I_{2} & & \\ NI_{2} & & \\ I_{1} & I_{3} & \\ NI_{1} & NI_{3} \end{array} \right\}$$

$$\left\{
\begin{array}{c}
I_{3} \\
NI_{3} \\
I_{2} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{3} \\
I_{2} \\
NI_{3}; (I_{2}) \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} & I_{3} \\
NI_{2} & NI_{3} \\
I_{1} \\
NI_{1}
\end{array}
\right\}$$

$$? \left\{ \begin{array}{cc} I_{2} & \\ NI_{2} & \\ I_{1} & I_{3} \\ NI_{1} & NI_{3} \end{array} \right\}$$

$$\left\{
\begin{array}{c}
I_{3} \\
NI_{3} \\
I_{2} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{3} \\
I_{2} \\
NI_{3}; (I_{2}) \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} & I_{3} \\
NI_{2} & NI_{3} \\
I_{1} \\
NI_{1}
\end{array}
\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} & I_{3} \\
NI_{1} & NI_{1}
\end{array}
\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} & I_{3} \\
NI_{1} & I_{3}
\end{array}
\right\}$$

$$\uparrow^{*} \left\{
\begin{array}{c}
I_{2} \\
NI_{2} \\
I_{1} & I_{3} \\
NI_{1} & NI_{3}
\end{array}
\right\}$$

$$\left\{
\begin{array}{c}
I_{3} \\
NI_{3} \\
I_{2} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
NI_{3}; (I_{2}) \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
I_{3} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{array}\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{1}
\end{array}\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{1}
\end{array}\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
I_{3} \\
NI_{2}; (I_{3}) \\
I_{1} \\
NI_{1}
\end{array}
\right\} \rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
I_{3} \\
NI_{2}; (I_{3}) \\
I_{1} \\
NI_{1}
\end{array}
\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
NI_{2}; (I_{3}) \\
I_{1} \\
NI_{1}
\end{array}
\right\}$$

$$\rightarrow^{*} \left\{
\begin{array}{c}
I_{2} \\
NI_{2} \\
I_{1} \\
I_{3} \\
NI_{1}
\end{array}
\right\}$$

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$\begin{cases}
I_{3} \\
NI_{3} \\
I_{2} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
NI_{3}; (I_{2}) \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{3} \\
NI_{2} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{2}; (I_{3}) \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{3} \\
I_{1} \\
NI_{2}; (I_{3}) \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1} \\
I_{1} \\
NI_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1} \\
I_{1} \\
I_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1} \\
I_{1} \\
I_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{2} \\
I_{1}
\end{cases}$$

$$\rightarrow^{*} \begin{cases}
I_{1}$$

This is the heart of the correspondence with Sam Lindley's work

Contribution conclusion

