Ambiguous pattern variables

Gabriel Scherer, Luc Maranget, Thomas Réfis

Northeastern University

September 22, 2016

The problem

```
type \alpha exp =
    | Const of \alpha
    | Mul of \alpha exp * \alpha exp
let is_neutral n = (n = 1)
let mul a b = match a, b with
| (Const n, v) | (v, Const n)
    when is_neutral n -> v
| a, b -> Mul (a, b)
```


The problem

$$
\begin{aligned}
& \text { type } \alpha \exp = \\
& \quad \text { | Const of } \alpha \\
& \text { | Mul of } \alpha \exp * \alpha \exp
\end{aligned}
$$

$$
\text { let is_neutral } \mathrm{n}=(\mathrm{n}=1)
$$

let mul a b = match a, b with
| (Const n, v) | (v, Const n) when is_neutral n -> v
| a, b -> Mul (a, b)
mul (Const 2) (Const 1)

The problem

```
type \alpha exp =
    | Const of \alpha
    | Mul of \alpha exp * \alpha exp
let is_neutral n = (n = 1)
let mul a b = match a, b with
| (Const n, v) | (v, Const n)
    when is_neutral n -> v
| a, b -> Mul (a, b)
mul (Const 2) (Const 1)
= Mul (Const 2, Const 1)
```


ML patterns (formally)

p	$:=$	pattern
	-	wildcard
	p as x	variable binding
$K\left(p_{1}, \ldots, p_{n}\right)$	constructor pattern	
$p \mid q$	or-pattern	

Variable patterns x are sugar for $(-\operatorname{as} x)$.
Pair patterns (p, q) are a special case of constructor pattern.

A clause of the form
| p when $g \rightarrow e$
matches p first, then test if g holds, and only then takes the branch to e.

The Clash

($p \mid q$) when $g \rightarrow e$
readers think the guard g will test both p and q - angelic choice.
The specification clearly says otherwise:
($p \mid q$) is left-to-right, and only then g is tried.

The Clash

($p \mid q$) when $g \rightarrow e$
readers think the guard g will test both p and q - angelic choice.
The specification clearly says otherwise:
($\mathrm{p} \mid \mathrm{q}$) is left-to-right, and only then g is tried.
Note: specifying evaluation order is not always good, after all...

The Clash

($p \mid q$) when $g \rightarrow e$ readers think the guard g will test both p and q - angelic choice.

The specification clearly says otherwise:
($\mathrm{p} \mid \mathrm{q}$) is left-to-right, and only then g is tried.
Note: specifying evaluation order is not always good, after all...
Note: automatically turning this into (p when g) | (q when g) does not work:

- changing the semantics of existing code: nope

The Clash

($p \mid q$) when $g \rightarrow e$ readers think the guard g will test both p and q - angelic choice.

The specification clearly says otherwise:
($\mathrm{p} \mid \mathrm{q}$) is left-to-right, and only then g is tried.
Note: specifying evaluation order is not always good, after all...
Note: automatically turning this into (p when g) | (q when g) does not work:

- changing the semantics of existing code: nope
- nested guards don't exist and would break exhaustivity checking, etc.

The Clash

($p \mid q$) when $g \rightarrow e$
readers think the guard g will test both p and q - angelic choice.
The specification clearly says otherwise:
($\mathrm{p} \mid \mathrm{q}$) is left-to-right, and only then g is tried.
Note: specifying evaluation order is not always good, after all...
Note: automatically turning this into (p when g) | (q when g) does not work:

- changing the semantics of existing code: nope
- nested guards don't exist and would break exhaustivity checking, etc.
- side-effects in g would be duplicated

The Clash

($p \mid q$) when $g \rightarrow e$
readers think the guard g will test both p and q - angelic choice.
The specification clearly says otherwise:
($p \mid q$) is left-to-right, and only then g is tried.
Note: specifying evaluation order is not always good, after all...
Note: automatically turning this into (p when g) | (q when g) does not work:

- changing the semantics of existing code: nope
- nested guards don't exist and would break exhaustivity checking, etc.
- side-effects in g would be duplicated
- what about nested or-patterns? (p | q) may be deep.

At least complain about it!

Warn when
p when $g \rightarrow e$
and

- a value may match p in several ways (or-patterns)
- the test g may depend on which choice is taken: it contains ambiguous pattern variables

At least complain about it!

Warn when

$$
p \text { when } g \rightarrow e
$$

and

- a value may match p in several ways (or-patterns)
- the test g may depend on which choice is taken: it contains ambiguous pattern variables
(a, $(p \mid q)$) when $\mathrm{a}<10 \rightarrow \ldots$

At least complain about it!

Warn when

$$
p \text { when } g \rightarrow e
$$

and

- a value may match p in several ways (or-patterns)
- the test g may depend on which choice is taken: it contains ambiguous pattern variables
(a, $(p \mid q)$) when $\mathrm{a}<10 \rightarrow \ldots$
$(a, p) \mid(a, q)$ when $a<10 \rightarrow \ldots$

At least complain about it!

Warn when

$$
p \text { when } g \rightarrow e
$$

and

- a value may match p in several ways (or-patterns)
- the test g may depend on which choice is taken: it contains ambiguous pattern variables
(a, $(p \mid q)$) when $\mathrm{a}<10 \rightarrow \ldots$
$(a, p) \mid(a, q)$ when $a<10 \rightarrow \ldots$
(Some v, e) | (e, Some v) when $v=0 \rightarrow \ldots$

At least complain about it!

Warn when

$$
p \text { when } g \rightarrow e
$$

and

- a value may match p in several ways (or-patterns)
- the test g may depend on which choice is taken: it contains ambiguous pattern variables
($\mathrm{a},(p \mid q)$) when $\mathrm{a}<10 \rightarrow \ldots$
$(a, p) \mid(a, q)$ when $a<10 \rightarrow \ldots$
(Some v, e) | (e, Some v) when $v=0 \rightarrow \ldots$
(Some v, None) | (None, Some v) when $\mathrm{v}=0 \rightarrow \ldots$

Our contribution

- an algorithm to detect ambiguous pattern variables
- implemented in OCaml 4.03 (released last April)

Demo

How to implement this warning? (Attempts.)

As for all pattern matching questions (compilation, exhaustivity, usefulness...):

pattern matrices

(the take-away of this talk)

Pattern matrix

A matrix: a space of matcheable values that share a common prefix.

$$
\begin{gathered}
C_{1}\left[\square_{1}, \ldots, \square_{n}\right] \\
C_{2}\left[\square_{1}, \ldots, \square_{n}\right] \\
\ldots \\
C_{n}\left[\square_{1}, \ldots, \square_{n}\right]
\end{gathered}\left[\begin{array}{cccc}
p_{1,1} & p_{1,2} & \cdots & p_{1, n} \\
p_{2,1} & p_{2,2} & \cdots & p_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m, 1} & p_{m, 2} & \cdots & p_{m, n}
\end{array}\right]
$$

- rows: disjunction, alternative
- columns: sub-patterns matched in parallel
- contexts: common prefix, possibly different bindings
$((\mathrm{S} \square)$ as $v, \square)$
$(\mathrm{S} \square,(\square$ as $v))$\(\left[\begin{array}{cc}true \& \mathrm{N}

- \& \mathrm{S} false\end{array}\right] \quad\) represents $\quad |$| $($ (S true) as $v, \mathrm{~N})$ |
| :--- |
| |
| |
| $\left(\mathrm{S}_{-}, \mathrm{S}\right.$ false as $\left.v\right)$ |

Matrix operation: splitting a row (1)

All head constructors.

$$
\begin{aligned}
& C_{1}[\square, \square] \\
& C_{2}[\square, \square] \\
& C_{3}[\square, \square]
\end{aligned}\left[\begin{array}{cc}
\mathrm{N} & p_{1,2} \\
\mathrm{~S} p_{2,1} & p_{2,2} \\
\mathrm{~S} p_{3,1} & p_{3,2}
\end{array}\right]
$$

Matrix operation: splitting a row (1)

All head constructors.

$$
\begin{gathered}
C_{1}[\square, \square] \\
C_{2}[\square, \square] \\
C_{3}[\square, \square]
\end{gathered}\left[\begin{array}{cc}
\mathrm{N} & p_{1,2} \\
\mathrm{~S} p_{2,1} & p_{2,2} \\
\mathrm{~S} p_{3,1} & p_{3,2}
\end{array}\right] .
$$

$$
\begin{array}{ll}
C_{1}[\mathrm{~N}, \square]\left[p_{1,2}\right] & C_{2}[\mathrm{~S} \square, \square]
\end{array} \quad \mathrm{C}_{3}[\mathrm{~S} \square, \square]\left[\begin{array}{ll}
p_{2,1} & p_{2,2} \\
p_{3,1} & p_{3,2}
\end{array}\right]
$$

Matrix operation: splitting a row (2)

Some head constructors.

$$
\begin{aligned}
& C_{1}[\square, \square] \\
& C_{2}[\square, \square] \\
& C_{3}[\square, \square]
\end{aligned}\left[\begin{array}{cc}
\mathrm{N} & p_{1,2} \\
\mathrm{x} & p_{2,2} \\
\mathrm{~S} p_{3,1} & p_{3,2}
\end{array}\right]
$$

$$
\begin{aligned}
& C_{1}[\square, \square] \\
& C_{2}[\square, \square] \\
& C_{3}[\square, \square]
\end{aligned}\left[\begin{array}{cc}
\mathrm{N} & p_{1,2} \\
\left.(\mathrm{~N} \mid \mathrm{S}-)_{2}\right) \text { as } \times & p_{2,2} \\
\mathrm{~S} p_{3,1} & p_{3,2}
\end{array}\right]
$$

$$
\begin{gathered}
C_{1}[\square, \square] \\
C_{2}[\square \text { as } x, \square] \\
C_{2}[\square \text { as } x, \square] \\
C_{3}[\square, \square]
\end{gathered}\left[\begin{array}{cc}
\mathrm{N} & p_{1,2} \\
\mathrm{~N} & p_{2,2} \\
\mathrm{~S}- & p_{2,2} \\
\mathrm{~S} p_{3,1} & p_{3,2}
\end{array}\right]
$$

Matrix operation: (3)

No head constructors.

$$
\begin{gathered}
C_{1}[\square, \square] \\
C_{2}[\square, \square] \\
C_{3}[\square, \square]
\end{gathered}\left[\begin{array}{cc}
- & p_{1,2} \\
\mathrm{x} & p_{2,2} \\
- & p_{3,2}
\end{array}\right]
$$

Matrix operation: (3)

No head constructors.

$$
\begin{aligned}
& C_{1}[-, \square] \\
& C_{2}[\mathrm{x}, \square] \\
& C_{3}[-, \square]
\end{aligned}\left[\begin{array}{l}
p_{1,2} \\
p_{2,2} \\
p_{3,2}
\end{array}\right]
$$

Typical matrix-based algorithm, simplified

Manipulate sets of matrices.

Start from a single matrix (single-element set).
Split matrices, repeat.
Stop when all matrices are empty.

Compute your answer from that.

Our algorithm, on an example (1)

(S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\square[(S v, a) \mid(a, S v)]
$$

Our algorithm, on an example (1) (S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\begin{gathered}
\square[(S v, a) \mid(a, S v)] \\
\square\left[\begin{array}{l}
(S v, a) \\
(a, S ~ v)
\end{array}\right]
\end{gathered}
$$

Our algorithm, on an example (1) (S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\begin{gathered}
\square[(S v, a) \mid(a, S v)] \\
\square\left[\begin{array}{cc}
(S v, a) \\
(a, S & v
\end{array}\right] \\
(\square, \square) \\
(\square, \square)\left[\begin{array}{cc}
S & v \\
a & a \\
a & S
\end{array}\right]
\end{gathered}
$$

Our algorithm, on an example (1) (S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\begin{aligned}
& \square[(S v, a) \mid(a, S v)] \\
& \square[(\mathrm{S} v, a)] \\
& \square(a, S v)] \\
& \left.\begin{array}{l}
(\square, \square) \\
(\square, \square)
\end{array}\right]\left[\begin{array}{cc}
S & v \\
a & S \\
a
\end{array}\right]
\end{aligned}
$$

Our algorithm, on an example (1) (S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\begin{aligned}
& \square[(S v, a) \mid(a, S v)] \\
& \square[(\mathrm{S} v, a)] \\
& \square(a, S v)] \\
& \left.\begin{array}{l}
(\square, \square) \\
(\square, \square)
\end{array}\right]\left[\begin{array}{cc}
S & v \\
a & S \\
a
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
(\mathrm{S} \square, \square) \\
(\mathrm{S} \square \text { as } a, \square)
\end{array}\left[\begin{array}{cc}
v & a \\
- & \mathrm{S}
\end{array}\right] \quad(\mathrm{N} \text { as } a, \square)[\mathrm{S} v]
\end{aligned}
$$

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral v $\rightarrow \ldots$

$$
\begin{gathered}
(\mathrm{S} v, \square) \\
(\mathrm{S}-\mathrm{as} a, \square)
\end{gathered}\left[\begin{array}{c}
a \\
\mathrm{~S} v
\end{array}\right] \quad(\mathrm{N} \text { as } a, \square)[\mathrm{S} v]
$$

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral $v \rightarrow \ldots$

$$
\begin{gathered}
(\mathrm{S} v, \square) \\
(\mathrm{S}-\mathrm{as} a, \square)
\end{gathered}\left[\begin{array}{c}
a \\
\mathrm{~S} v
\end{array}\right] \quad(\mathrm{N} \text { as } a, \square)[\mathrm{S} v]
$$

$$
\left.\begin{array}{c}
\left(\begin{array}{l}
\mathrm{S} v,(\square \mathrm{as} a)) \\
(\mathrm{S} v,(\square \mathrm{as} a)) \\
(\mathrm{S}-\mathrm{as} a, \square)
\end{array}\right]
\end{array} \begin{array}{c}
\mathrm{S}- \\
\mathrm{N} \\
\mathrm{~S} v
\end{array}\right]
$$

$$
(\mathrm{N} \text { as } a, \square)[\mathrm{S} v]
$$

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral v \rightarrow...

$$
\begin{aligned}
& \begin{array}{c}
(\mathrm{S} v, \square) \\
(\mathrm{S}-\mathrm{as} \mathrm{a,} \square)
\end{array}\left[\begin{array}{c}
a \\
\mathrm{~S} v
\end{array}\right] \quad(\mathrm{N} \text { as } a, \square)[\mathrm{S} v] \\
& (\mathrm{S} v,(\square \mathrm{as} a))[\mathrm{S}-7 \\
& \text { (S } v,(\square \text { as } a)) \quad N \\
& \text { (} S_{-} \text {as } a, \square \text {) }[\mathrm{S} v\rfloor \\
& \text { (} \mathrm{N} \text { as } a, \square \text {) }[\mathrm{S} v] \\
& \left.\begin{array}{c}
(S v,(S \square \text { as } a)) \\
\left(S_{-} \text {as } a, \square\right)
\end{array}\right]\left[\begin{array}{l}
- \\
v
\end{array}\right] \\
& (\mathrm{S} v, \mathrm{~N})[\cdot] \\
& (\mathrm{N} \text { as } a, \square)[\mathrm{S} v]
\end{aligned}
$$

Our algorithm, on an example (3)

(S v, a) | (a, S v) when is_neutral $\mathrm{v} \rightarrow \ldots$

$$
\left.\begin{array}{c}
(S v,(S-a s a)) \\
\left(S_{-} \text {as } a, v\right)
\end{array}\right] \cdot[\cdot]
$$

$(\mathrm{S} v, \mathrm{~N})[\cdot]$
(N as a, S v) [•]

Our algorithm, on an example (3)

$$
\left.\begin{array}{l}
(S v, a) \mid(a, S \text { v) when is_neutral } v \rightarrow \ldots \\
\left(\mathrm{S} v,\left(S_{-} \text {as } a\right)\right)[\cdot[\cdot] \\
\left(S_{-} \text {as } a, v\right)
\end{array} \quad(\mathrm{S} v, N)[\cdot] \quad(\mathrm{N} \text { as } a, S v)[\cdot] .\right] .
$$

Actual implementation

No need for sets of matrices: we recursively traverse the set/tree of splits. Long time, but short space.

Most algorithms don't keep contexts, they retain only what they need. In our case, variable bindings positions.

See the extended abstract for a more algorithmic presentation.

Conclusion

- Arthur Charguéraud, Martin Clochard and Claude Marché: a problem
- us: a solution

Future work: negative information.

