
Full reduction in the face of absurdity

Gabriel Scherer, Didier Rémy

Gallium – INRIA

October 28, 2014

(Version with notes, for remote reading of the slides.)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 1 / 13

“Well-typed programs do not go wrong”

Closed, well-typed terms never reduce to an error.

∅ ` a : τ =⇒ ∀b, a −→ b, b /∈ E

(π1 true) would raise a dynamic error,
and it is not well-typed (in OCaml, fst true).

Is this the only point of type systems?

λ(x) (π1 true) (λ(y) 2) (λ(x) (π1 true))

Those closed terms cannot evaluate to an error.
Should we improve our type systems to accept them?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 2 / 13

λ(x) (π1 true) (λ(y) 2) (λ(x) (π1 true))

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 3 / 13

λ(x) (π1 true) (λ(y) 2) (λ(x) (π1 true))

Our position: type errors are wrong even in not-yet-used parts of a
program.

We propose using full reduction when designing programming languages.
Try to evaluate open subterms, even under λ.

“Well-typed program fragments do not go wrong.”2
0
1
4
-1
0
-2
8

Full reduction in the face of absurdity

Keeping your type system sound for full reduction forces you to detect
errors in parts of the program that would not be reduced by a weak
reduction strategy. This makes error-checking modular: you are not
forced to use your functions to see errors in their bodies.
It’s hard to convince people with this argument because they’ve been
spoiled by decades of languages sound for full reduction: ML, System F,
etc. There’s a danger in assuming this just works, yet proving soundness
only for call-by-{name,value}. Maybe you let the wolves in without
noticing: GADTs break full reduction.

We have other arguments for full reduction. It’s a necessary first step

equational reasoning for your language. It subsumes soundness proof for

call-by-value and call-by-name (while you’ll usually only prove soundness

for your pet strategy), and it will also tell you whether you soundly

support non-deterministic reduction orders. See our paper for more.

http://gallium.inria.fr/~remy/coercions/

a, b ::= Terms
| x , y . . . variables
| λ(x) a λ-abstraction
| a b application
| (a, b) pair
| πi a projection

E ::= � | λ(x)E | E b | a E | (E , a) | (a,E) | πi E Contexts

(λ(x) a) b ◦→ a[b/x] πi (a1, a2) ◦→ ai
a ◦→ b

E [a] −→ E [b]

d ::= � a | πi � destructor contexts c ::= λ(x) a | (a, b) constructors

E 4
= {E [d [c]] | d [c] 6◦→} errors

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 4 / 13

a, b ::= Terms
| x , y . . . variables
| λ(x) a λ-abstraction
| a b application
| (a, b) pair
| πi a projection

E ::= � | λ(x)E | E b | a E | (E , a) | (a,E) | πi E Contexts

(λ(x) a) b ◦→ a[b/x] πi (a1, a2) ◦→ ai
a ◦→ b

E [a] −→ E [b]

d ::= � a | πi � destructor contexts c ::= λ(x) a | (a, b) constructors

E 4
= {E [d [c]] | d [c] 6◦→} errors

2
0
1
4
-1
0
-2
8

Full reduction in the face of absurdity

While usually reduction contexts are used to specify a restricted (often
deterministic) reduction strategy, we have every possible term-with-a-hole
in our context. That’s full reduction.

Notice in particular that we allow to reduce under λ (the main point),

and reduce non-deterministically on either sides of pairs or applications.

τ, σ ::= Types
| α, β . . . variables
| τ → σ function types
| τ ∗ σ product types
| ∀(α) τ polymorphism

Γ, x : τ ` x : τ
Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ ∗ σ
Γ ` a : τ1 ∗ τ2

Γ ` πi a : τi

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ
Γ ` a : τ [σ/α]

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 5 / 13

τ, σ ::= Types
| α, β . . . variables
| τ → σ function types
| τ ∗ σ product types
| ∀(α) τ polymorphism

Γ, x : τ ` x : τ
Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

Γ ` a : τ Γ ` b : σ

Γ ` (a, b) : τ ∗ σ
Γ ` a : τ1 ∗ τ2

Γ ` πi a : τi

Γ, α ` a : τ

Γ ` a : ∀(α) τ

Γ ` a : ∀(α) τ Γ ` σ
Γ ` a : τ [σ/α]2

0
1
4
-1
0
-2
8

Full reduction in the face of absurdity

Note that the rule for polymorphic generalisation Γ ` a : ∀(α) τ does not

change the term typed – this is a Curry-style presentation with no explicit

type abstraction in terms. This guarantees by construction that this

abstraction is erasable (does not interact with reduction), as reduction is

defined only on terms, not type derivations.

All the core calculi you know for programming languages work fine with
full reduction: simply-typed, ML, System F, F<:, MLF . . .
It’s fun when it breaks: adding logical propositions.

P,Q ::= > | P ∧ Q | τ ≤ σ | . . . Contexts

How can we add support for logical assumptions to our system?

τ +::= ∀(α | P) τ Γ ` P
Γ ` a : τ Γ ` τ ≤ σ

Γ ` a : σ
. . .

Γ, α,P ` a : τ

Γ ` a : ∀(α | P) τ

Γ ` a : ∀(α | P) τ Γ ` σ Γ ` P[σ/α]

Γ ` a : τ [σ/α]

Subsumes System F, F<: or GADTs:

∀(α | >) σ ∀(α | α ≤ τ) σ (σ ≤ τ) ∧ (τ ≤ σ)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 6 / 13

Problem: this is unsound.

α, (B ≤ B ∗ B) ` true : B ∗ B α, (B ≤ B ∗ B) ` B ≤ B ∗ B
α, (B ≤ B ∗ B) ` true : B ∗ B
α, (B ≤ B ∗ B) ` (π1 true) : B
∅ ` (π1 true) : ∀(α | B ≤ B ∗ B) B

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 7 / 13

Julien Crétin and Didier Rémy already understood this during Julien’s PhD
thesis.

An abstraction on (α | P) is consistent when P is satisfied by some α.
Only consistent abstractions are erasable. Others must block reduction.

Γ, α,P ` a : τ Γ ` P[σ/α]

Γ ` a : ∀(α | P) τ

If you cannot prove satisfiability (eg. B ≤ B ∗ B), you cannot use this rule.
Previous calculi still expressed: (α | α ≤ σ) always satisfiable (pick α = σ).

But then, what’s the right design for inconsistent abstraction?
This is our new work.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 8 / 13

Julien Crétin and Didier Rémy already understood this during Julien’s PhD
thesis.

An abstraction on (α | P) is consistent when P is satisfied by some α.
Only consistent abstractions are erasable. Others must block reduction.

Γ, α,P ` a : τ Γ ` P[σ/α]

Γ ` a : ∀(α | P) τ

If you cannot prove satisfiability (eg. B ≤ B ∗ B), you cannot use this rule.
Previous calculi still expressed: (α | α ≤ σ) always satisfiable (pick α = σ).

But then, what’s the right design for inconsistent abstraction?
This is our new work.

2
0
1
4
-1
0
-2
8

Full reduction in the face of absurdity

Note that not all inconsistent abstractions are absurd as in our example.
In fact we should think of them as potentially-inconsistent abstractions.
If you know a proposition will never be true, it makes little sense to
abstract on it, it’s dead code so the only reasonable thing to do is to
return an absurd value with eg. an assert false that can be accepted
by the type-system when the context is logically absurd.

The interesting cases are when:

we do not know whether the proposition is satisfiable; eg. making a
complexity argument assuming P 6= NP

checking satisfiability for the library declarations is too expensive/un-
decidable, but checking at call site for particular instances is easy

we want to make an assumption that is unprovable but admissible
in the current system, to axiomatize another concept (threads in a
programming language with a sequential semantics, excluded middle
in a proof system...)

Idea: “box” propositions as values. Unboxing blocks computation.

τ +::= [P] a +::= � | δ(a, φ.b)

Γ ` P

Γ ` � : [P]

Γ ` a : [P] Γ, φ : P ` b : τ

Γ ` δ(a, φ.b) : τ

E +::= δ(E , φ.Q) |�����δ(a, φ.E) δ(�, φ.b) ◦→ b

∅ ` λ(x) δ(x , φ.(π1 true)) : [B ≤ Z]→ Z

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 9 / 13

Problem: only doing this breaks confluence.

(λ(a) δ(y , φ.a)) (1 + 1) −→ (λ(a) δ(y , φ.a)) 2 −→ δ(y , φ.2)
(λ(a) δ(y , φ.a)) (1 + 1) −→ δ(y , φ.(1 + 1)) 6−→

(1 + 1) was reducible, but substituting under a δ breaks reducibility.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 10 / 13

The solution is to allow to unblock reduction of whole subterms by hiding
some logical assumptions.

a +::= hideφ in a
Γ ` ∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

To define reducibility in this setting, we reason about guards: sets of
logical assumptions, written S .

E +::= δ(a, φ.E) | hideφ inE
a ◦→ b guard∅(E) = ∅

E [a] −→ E [b]

guardS(λ(x)E)
4
= guardS(E)

guardS(�)
4
= S

guardS(δ(a, φ.E))
4
= guardS∪{φ}(E)

guardS(hideφ inE)
4
= guardS\{φ}(E)

δ(�, φ.b) ◦→ b[�/φ]
hide � in a ◦→ a

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 11 / 13

Finally, substitution must insert explicit weakenings as necessary – just as
De Bruijn shifts.

(λ(x) a) b ◦→ a[b/x]∅

(a a′)[b/x]S
4
= a[b/x]S a′[b/x]S

(λ(y) a)[b/x]S
4
= λ(y) a[b/x]S

δ(a, φ.a′)[b/x]S
4
= δ(a[b/x]S , φ.a

′[b/x]S∪{φ})

(hideφ in a)[b/x]S
4
= hideφ in a[b/x]S\{φ}

y [b/x]S
4
= y

x [b/x]S
4
= hideS in b

The resulting system is sound for full-reduction and confluent.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 12 / 13

Take away

Studying full reduction can tell us new and interesting things about
programming languages.

We should distinguish consistent and (possibly) inconsistent abstractions.

To support inconsistent abstraction, one must allow to block and unblock
reduction of subterms.

Thanks! Questions?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) Full reduction in the face of absurdity October 28, 2014 13 / 13

