Proof theory for type systems

Gabriel Scherer
Parsifal, INRIA Saclay (Paris area)

January 22, 2018
advanced questions

advanced questions

advanced questions

advanced questions

Section 1

Focusing

Focusing

Focusing is a technique from proof theory [Andreoli, 1992].

It studies invertibility of connectives
to structure the search space.

Type theory perspective: canonical representations.

$$
t \approx_{\beta \eta} u \quad \stackrel{?}{\Longrightarrow} \quad t \approx_{\alpha} u
$$

$$
\begin{array}{cc}
\begin{array}{|c}
\frac{\Gamma \vdash \underline{A} \Gamma, \underline{B} \vdash C}{\Gamma, \underline{A \rightarrow B} \vdash C}- \\
\frac{\Gamma, \underline{A_{i}} \vdash C}{\Gamma, A_{1} \times A_{2} \vdash C}- \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \\
\hline \frac{\Gamma, A_{1} \vdash C}{\Gamma, 0 \vdash C}+ \\
\frac{\Gamma \vdash A_{1}+A_{2} \vdash C}{\Gamma \vdash A_{1} \times A_{2}} \\
\frac{\Gamma \vdash A_{2}}{\Gamma \vdash \underline{A_{1}+A_{2}}}+ \\
\frac{\Gamma \vdash 1}{} \\
\hline
\end{array} & \begin{array}{|c}
\frac{\Gamma}{\Gamma, 0} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$
\begin{aligned}
& \frac{\Gamma \vdash \underline{A} \quad \Gamma, \underline{B} \vdash C}{\Gamma, \underline{A} \rightarrow \underline{B} \vdash C}- \\
& \frac{\Gamma, A_{i} \vdash C}{\Gamma, \underline{A_{1} \times A_{2}} \vdash C}- \\
& \frac{\Gamma, A_{1} \vdash C \quad \Gamma, A_{2} \vdash C}{\Gamma, A_{1}+A_{2} \vdash C} \\
& \overline{\Gamma, 0 \vdash C}+ \\
& \frac{\Gamma \vdash \underline{A_{i}}}{\Gamma \vdash \underline{A_{1}+A_{2}}}+ \\
& \overline{\Gamma \vdash 1}^{-}
\end{aligned}
$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$
\begin{aligned}
& N, M::=A \rightarrow B|A \times B| 1 \quad P, Q::=A+B \mid 0 \\
& A, B::=P|N| \alpha \quad P_{\mathrm{a}}, Q_{\mathrm{a}}::=P\left|\alpha \quad N_{\mathrm{a}}, M_{\mathrm{a}}::=N\right| \alpha
\end{aligned}
$$

Invertible phase

$$
\frac{\frac{?}{\alpha+\beta \vdash \alpha}}{\alpha+\beta \vdash \beta+\alpha}
$$

If applied too early, non-invertible rules can ruin your proof.
Focusing restriction 1: invertible phases
Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Invertible phase

$$
\frac{\frac{?}{\alpha+\beta \vdash \alpha}}{\alpha+\beta \vdash \beta+\alpha}
$$

If applied too early, non-invertible rules can ruin your proof.
Focusing restriction 1: invertible phases
Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Imposing this restriction gives a single proof of $(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ instead of two ($\lambda f . f$ and $\lambda f . \lambda x . f x)$.

After all invertible rules, negative context $\Gamma_{\text {na }}$, positive goal P_{a}.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.
Focusing restriction 2: non-invertible phase
When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial ! Example of removed redundancy:

$$
\begin{gathered}
\frac{\alpha_{2},}{} \quad \beta_{1} \vdash A \\
\hline \alpha_{2} \times \alpha_{3}, \quad \beta_{1} \vdash A \\
\hline \alpha_{2} \times \alpha_{3}, \quad \beta_{1} \times \beta_{2} \vdash A \\
\hline \alpha_{1} \times \alpha_{2} \times \alpha_{3}, \beta_{1} \times \beta_{2} \vdash A
\end{gathered}
$$

This was focusing:

- invertible as long as a rule matches, until $\Gamma_{\text {na }} \vdash P_{\mathrm{a}}$
- then pick a formula
- then non-invertible as long as a rule matches, until polarity change

Completeness:

$$
\Gamma \vdash A
$$

$\Gamma \vdash_{\text {foc }} A$

a focused natural deduction

$$
\begin{gathered}
N, M::=A \rightarrow B|A \times B| 1 \quad P, Q::=A+B \mid 0 \\
A, B::=P|N| \alpha \quad P_{\mathrm{a}}, Q_{\mathrm{a}}::=P\left|\alpha \quad N_{\mathrm{a}}, M_{\mathrm{a}}::=N\right| \alpha \\
\\
\Gamma_{\mathrm{na}}::=\emptyset \mid \Gamma_{\mathrm{na}}, N_{\mathrm{a}}
\end{gathered}
$$

$\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} A$ invertible phase (decomposes Δ, A)
$\Gamma_{\mathrm{na}} \vdash_{\text {foc }} P_{\mathrm{a}}$ choice of focus
$\Gamma_{\mathrm{na}} ; N \Downarrow M_{\mathrm{a}}$ non-invertible negative rules
$\Gamma_{\mathrm{na}} \Uparrow P$ non-invertible positive rules
(inspired by Brock-Nannestad and Schürmann [2010])

$$
\begin{aligned}
& \frac{\Gamma_{\text {na }} ; \Delta, P \vdash_{\text {inv }} N}{\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} P \rightarrow N} \quad \frac{\left(\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} N_{i}\right)^{i}}{\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} N_{1} \times N_{2}} \quad \frac{\left(\Gamma_{\text {na }} ; \Delta, Q_{i} \vdash_{\text {inv }} A\right)^{i}}{\Gamma_{\text {na }} ; \Delta, Q_{1}+Q_{2} \vdash_{\text {inv }} A} \\
& \overline{\Gamma_{\text {na }} ; \Delta, 0 \vdash_{\text {inv }} A} \quad \overline{\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} 1} \\
& \frac{\Gamma_{\text {na }}, \Gamma_{\text {na }}^{\prime} \vdash_{\text {foc }} P_{\mathrm{a}}}{\Gamma_{\text {na }} ; \Gamma_{\text {na }}^{\prime} \vdash_{\text {inv }} P_{\mathrm{a}}} \\
& \frac{\Gamma_{\mathrm{na}} \Uparrow P}{\Gamma_{\mathrm{na}} \vdash_{\mathrm{foc}} P} \quad \frac{\Gamma_{\mathrm{na}}, N ; N \Downarrow \alpha}{\Gamma_{\mathrm{na}}, N \vdash_{\text {foc }} \alpha} \quad \frac{\Gamma_{\mathrm{na}}, N ; N \Downarrow P}{\Gamma_{\mathrm{na}}, N \vdash_{\text {foc }} Q_{\mathrm{a}}} \\
& \frac{\Gamma_{\mathrm{na}} \Uparrow P_{i}}{\Gamma_{\mathrm{na}} \Uparrow P_{1}+P_{2}} \quad \overline{\Gamma_{\mathrm{na}}, \alpha \Uparrow \alpha} \quad \frac{\Gamma_{\mathrm{na}} ; \emptyset \vdash_{\text {inv }} N}{\Gamma_{\mathrm{na}} \Uparrow N} \\
& \frac{\Gamma_{\mathrm{na}} ; N \Downarrow M_{\mathrm{a} 1} \times M_{\mathrm{a} 2}}{\Gamma_{\mathrm{na}} ; N \Downarrow M_{\mathrm{a} i}} \quad \frac{\Gamma_{\mathrm{na}} ; N \Downarrow P \rightarrow M}{\Gamma_{\mathrm{na}} ; N \Downarrow M} \quad \Gamma_{\mathrm{na}} \Uparrow P
\end{aligned}
$$

Section 2

Focused λ-calculus

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-short η-long:

$$
(y: \alpha \rightarrow \beta)=\lambda x: \alpha \cdot(y x: \beta)
$$

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-short η-long:

$$
\begin{aligned}
& (y: \alpha \rightarrow \beta)=\lambda x: \alpha \cdot(y x: \beta) \\
& v, w::=\lambda x \cdot v|(v, w)|(n: \alpha) \\
& n, m::=\pi_{i} n|n v| x
\end{aligned}
$$

What about sums?

$$
\begin{aligned}
& v, w::=\lambda x . v|(v, w)| \sigma_{i} v \mid(n: \alpha) \\
& n, m:: \left.=\pi_{i} n|n v|\left(\begin{array}{l|l}
\text { match } n \text { with } & \begin{array}{l}
\sigma_{1} y_{1} \rightarrow v_{1} \\
\sigma_{2} y_{2} \rightarrow v_{2}
\end{array}
\end{array}\right) \right\rvert\, x
\end{aligned}
$$

Does not work:

$$
\binom{\text { match } n \text { with }}{\left\lvert\, \begin{aligned}
& \sigma_{1} y_{1} \rightarrow \lambda z . v_{1} \\
& \sigma_{2} y_{2} \rightarrow \lambda z . v_{2}
\end{aligned}\right.} v \quad \begin{aligned}
& \text { match } n \text { with } \\
& \left\lvert\, \begin{array}{l}
\sigma_{1} x \rightarrow \sigma_{2} x \\
\sigma_{2} x \rightarrow \sigma_{1} x
\end{array}\right.
\end{aligned}
$$

Focusing to the rescue

$$
\begin{gathered}
v, w::=\lambda x \cdot v|(v, w)|(n: \alpha) \\
n, m::=\pi_{i} n|n v| x \\
\Downarrow
\end{gathered}
$$

$$
\begin{aligned}
v, w::= & \lambda x . v|(v, w)|() \\
& |\operatorname{absurd}(x)|\left(\begin{array}{l|l}
\text { match } \left.x \text { with } \left\lvert\, \begin{array}{l}
\sigma_{1} y_{1} \rightarrow v_{1} \\
\sigma_{2} y_{2} \rightarrow v_{2}
\end{array}\right.\right) \\
& \mid\left(\Gamma_{\text {na }} \vdash f: P_{\mathrm{a}}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& n, m::=\pi_{i} n|n p| x \\
& p, q::=\sigma_{i} p \mid\left(v: N_{\mathrm{a}}\right)
\end{aligned}
$$

$$
f \quad::=(n: \alpha)|(p: P)| \text { let } x=(n: P) \text { in } v
$$

(See also Munch-Maccagnoni [2013])

Completeness of focusing

Logic:
$\Gamma \vdash A$
$\Longrightarrow \quad \Gamma \vdash_{f o c} A$

Completeness of focusing

Logic:

$$
\left\ulcorner\vdash A \quad \Longrightarrow \quad \Gamma \vdash_{\mathrm{foc}} A\right.
$$

Programming:

$$
\Gamma \vdash t: A \quad \Longrightarrow \quad \exists v, \stackrel{\Gamma \vdash \vdash_{f o c} v: A}{v \approx_{\beta \eta} t}
$$

Canonicity

Focused normal forms are canonical for the impure λ-calculus.
Proof in Zeilberger [2009], using ideas from Girard's ludics.

Canonicity

Focused normal forms are canonical for the impure λ-calculus.
Proof in Zeilberger [2009], using ideas from Girard's ludics.
Not canonical for the pure calculus.

$$
\begin{aligned}
& \text { let } x=n \text { in } C\left[\operatorname{let} x^{\prime}=n^{\prime} \text { in } v\right] \\
& \text { let } x^{\prime}=n^{\prime} \text { in } C[\text { let } x=n \text { in } v]
\end{aligned}
$$

Canonicity

Focused normal forms are canonical for the impure λ-calculus.
Proof in Zeilberger [2009], using ideas from Girard's ludics.
Not canonical for the pure calculus.

$$
\begin{aligned}
& \text { let } x=n \text { in } C\left[\operatorname{let} x^{\prime}=n^{\prime} \text { in } v\right] \\
& \text { let } x^{\prime}=n^{\prime} \text { in } C[\text { let } x=n \text { in } v]
\end{aligned}
$$

Solution: "saturation" [Scherer, 2017]

$$
f \quad::=\quad \text { let } \bar{x}=\bar{n} \text { in } v|(n: \alpha)|(p: P)
$$

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

Recap

$$
\begin{array}{rlrl}
\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} v: A \quad v, w::= & \lambda x . v|(v, w)|() \\
& |\operatorname{absurd}(x)| \text { match } x \text { with } & \\
& \mid\left(\Gamma_{\text {na }} \vdash f: P_{\mathrm{a}}\right) \\
\sigma_{1} y_{1} \rightarrow v_{1} \\
\sigma_{2} y_{2} \rightarrow v_{2}
\end{array},
$$

(plus saturation conditions)
(decision diagrams!
Altenkirch and Uustalu [2004], Ahmad, Licata, and Harper [2010])

Applications

A clean way to extend our understanding to positives $(+, 0)$.

- evaluation order in presence of effects
- which types have a unique inhabitant?
- decidability of equivalence
- Böhm separation results: contextual and $(\beta \eta)$ coincide
- λ-definability?
- (your result here!)

Section 3

Questions

Saturation for System F?

Termination of saturation: subformula property. Not in F!

$$
\frac{\Gamma, A[B / \alpha] \vdash C}{\Gamma \ni \forall \alpha . A \vdash C}
$$

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through proof search.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha}}
$$

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha$. A through proof search.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha}}
$$

$$
\frac{\frac{\Gamma \vdash A \quad \oplus \quad \Gamma \vdash B}{\Gamma \text { def }}=A \rightarrow \alpha, B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha .(A \rightarrow \alpha) \rightarrow(B \rightarrow \alpha) \rightarrow \alpha}
$$

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through proof search.
$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha} \vdash \forall \forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha, \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \stackrel{\text { def }}{=} A \rightarrow \alpha, B \rightarrow \alpha \vdash \alpha}$
(Ongoing discussions with Li-Yao Xia and Jean-Philippe Bernardy)

The place of bi-directional systems?

Bidirectional systems: natural fit for normal forms.

$$
\begin{gathered}
\frac{\Delta \in(x: T)}{\Delta \vdash x=x \in T} \quad \frac{\Delta \vdash n_{1}=n_{2} \in(T \rightarrow U) \quad \Delta \vdash T \ni v_{1}=v_{2}}{\Delta \vdash n_{1} v_{1}=n_{2} v_{2} \in U} \\
\frac{\Delta, x: T \vdash U \ni v_{1} x=v_{2} x}{\Delta \vdash T \rightarrow U \ni v_{1}=v_{2}} \quad \frac{\Delta \vdash n_{1}=n_{2} \in \alpha}{\Delta \vdash \alpha \ni n_{1}=n_{2}}
\end{gathered}
$$

General programs? Program equivalence? Type inference?

Saturation in practice?

Is it possible to be efficient?
(in presence of software libraries?)
relations to program synthesis

Positives in richer systems?

η for sums:
η for natural numbers sounds very difficult!

Positives in richer systems?

η for sums:

$$
C[\square: A+B]=\text { match } \square \text { with } \left\lvert\, \begin{aligned}
& \sigma_{1} x_{1} \rightarrow C\left[\begin{array}{ll}
\left.\sigma_{1} x_{1}\right] \\
\sigma_{2} x_{2} \rightarrow C\left[\begin{array}{ll}
\sigma_{2} & x_{2}
\end{array}\right]
\end{array}, ~\right.
\end{aligned}\right.
$$

η for natural numbers sounds very difficult!

$$
\begin{aligned}
C[\square: \mathbb{N}]= & \operatorname{rec}\left(\square, t_{0}, D_{1}\right) \\
& C \circ S=D_{1} \circ H \\
& C \circ 0=t_{0}
\end{aligned}
$$

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with focusing. Online draft, 2010.
Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for lambda ${ }^{-2}$. In FLOPS, 2004.
Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear Logic. Journal of Logic and Computation, 2(3), 1992.
Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction. In LPAR-17, 2010.
Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-focusing. In IFIP TCS, 2008.
Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.
Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program equivalence. PhD thesis, Université Paris-Diderot, 2016.

Gabriel Scherer. Deciding equivalence with sums and the empty type. In POPL, 2017.
Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University, 2009.

