
Internship report : ExtendingMLF with Higher-Order Types

Gabriel Scherer

2010

This thesis presents the context and nature of the work during a six-
month internship at Gallium, a research team of the Institut National de
Recherche en Informatique et en Automatique (INRIA) which is specialized
in the design, formalization and implementation of programming languages
and systems.

My advisor was Didier Rémy, a senior member of the team, which spe-
cializes, among other things, in type systems and type inference. The in-
ternship subject was MLF, a type system developped by Didier and two of
his former PhD students, Didier Le Botlan and Boris Yakobowksi.

MLF is a rich research topic which, despite interest and research by
other people and teams outside Gallium, has not yet been integrated in the
”mainstream” common knowledge of our discipline. A significant part of
the intership time was dedicated to the study of the subject bibliography,
and of the type system itself: despite very attractive properties, it is a com-
plex system that has not yet been presented in a way making possible to
thouroughly understand it in a calm afternoon of scholarly readings.

The first chapter of this document will be dedicated to an informal pre-
sentation of the MLF system. I’m not trying to be formal and exhaustive
(nor could I, given size limits), only to convey the necessary intuition to
understand the specific problematics of my internship subject. The reader
interested in a more complete description of the different part of MLF will
be redirected to the growing existing litterature.

The other parts of my internship dedicated to my work — Gallium team is
rich in distractions; I won’t describe here the quite enjoyable pauses café(s),
the very interesting research seminar, etc. —was dedicated to research and
implementation.

The research part was dedicated to an extension of MLF with explicit
polymorphism and higher-order types, which we could name MLFω. This
had already been the subject of an internship by Paolo Herm’s last year
[Her09], and we hoped to extend and improve the work done on several
points that I will explain in time.

The second and third chapters will be dedicated respectively to the ex-
tension of MLF with explicit polymorphism (à la System F), and higher-
order types (Fω).

The implementation part, supposed to correspond closely to the subject
of my internship, turned out to be of quite larger scope. Some of the latter
parts of Boris Yakobowski’s PhD thesis had not been translated into code,
and I was responsible for their integration in the current MLF typer proto-
type. I also tackled some other aspects of various natures — term and types
printing and display, built-in types and values, interactive toplevel — that
were present in the former prototypes of both Didier Le Botlan and Boris
Yakobowski, but were not up-to-date anymore with the latest presentation
of the MLF metatheory.

I will not insist here on the software development and the interesting but
delicate software engineering considerations that I had to handle duringmy
internship.

1 MLF and the context of my internship

This part is an informal introduction to the subject of mymaster thesis, MLF.
It is only intended to convey a good intuition of MLF and various related
formal type systems — eMLF, gMLF, xMLF — and its relation to the well-
known systems ML and System F.

1.1 ML, System F and MLF

1.1.1 ML as a type system

We’re interested in ML as a type system, so we will keep the term-level
complexity of the language minimal:

e ::= ML expressions

| x, y, z variables

| λ(x) e λ-abstraction

| e₁ e₂ application

| let x = e₁ in e₂ local definition

ML makes a distinction between two levels of types: monomorphic and
polymorphic types — usually named type schemes:

τ ::= ML monotypes

| α, β, γ type variables

| τ → τ function types

σ ::= ML polytypes

| τ monorphic type

| ∀(α) σ type quantification

For a formal description of the ML type system, typing judgments and
derivations, see [Mil78]. Informally, the crucial part of the type system is
let-polymorphism:

• λ-bound variables get assigned monomorphic types

• let-bound variables get assigned polymorphic types

In other words, let-definition are the only place in a ML program where
polymorphism is introduced, by generalizing the monorphic type of the
bound term. Of the two following expressions, only the second typechecks,
because (fun x -> x) carries a monorphic type of the form α→α, wich is dis-
tinct from the generalized type scheme ∀(α)α→α and cannot be used with
different values of α.

(fun id -> (id 1, id true)) (fun x -> x)

let id = (fun x -> x) in (id 1, id true)

In particular, the typing rule for application is monomorphic: when typ-
ing applications, both the left and right side are assigned monorphic types.
When using a let-bound variable in such a position — such as id in id 1

of the above example — we implicitly choose a monomorphic instance of
its polymorphic type, by replacing each ∀-quantified type variable with a
monomorphic type — here the constant type int.
More generally, there is an instance relation between polymorphic types:

σ₁ is an instance of σ₂ if we can transform σ₁ into σ₂ by replacing some
of its quantified variable by monomorphic types, possibly introducing new
free type variables, and finally quantifying over those free variables. For
exemple, ∀(β) (int→β) → (int→β) is an instance of ∀(α) α→α.
ML is a very succesful type system, used in practical languages, due to

the possibility of principal type inference. There are inference algorithms
for ML, based on first-order unification, which have the two desirable prop-
erties:

1

• They will decide a correct polymorphic type for every term typable in
ML.

• The chosen type is principal: every other valid ML type for that term
is an instance of this type.

In other words, it is possible to infer, for each typable term, a most gen-
eral polymorphic type.
Note that the term language of ML does not contain any syntactic con-

struct related to typability and polymorphism: type annotations, etc. ML
features implicit polymorphism.

1.1.2 Limitations of ML restricted polymorphism

After using the ML type systems for decades, programmers have become
quite accustomed to its limitations. For example, the following term is not
typable in ML:

λ(f) (f 0, f true)

(For that example, we have enriched our language with built-in constants
and types, and tuples.)
This is not typable because f cannot be a monorphic function, as it takes

input of different types, integers and booleans. f could be the identity func-
tion, of type ∀(α) α→α, but that would require assigning a polymorphic type
to a λ-parameter, which is not possible in ML. However, the following defi-
nition is correct:

let f = λ(x) x in (f 0, f true)

This artificial example is in fact representative a deep problem of soft-
ware engineering in languages using the ML type system. If a programmer
encounters a program expression e making heavy use of the variable f, he
cannot necessarily abstract over it: (λ(f) e) f. If f is used polymorphically
in e, this abstraction would break typability: we are not necessarily able to
factor out parts of the program.

1.1.3 System F

System F is a different type system featuring explicit polymorphism: the
System F term language contains explicit indications of which terms are
polymorphic and when we’re taking monomorphic instances of them.

e ::= system F expressions

| x, y, z variables

| λ(x:σ) e λ-abstraction

| e₁ e₂ application

| let x = e₁ in e₂ local definition

| Λ(α) e introduction

| e[σ] elimination

The following example declares the polymorphic identity function and
uses it on the constant 5, in ML and System F:

let id = λ(x) x in id 5 (* ML *)

let id : ∀(α)α→α = Λ(α) λ(x:α) x in id[int] 5 (* System F *)

System F terms, being fully explicit about polymorphism, are much heav-
ier to write and read. They can, however, express richer polymorphism than
ML:

λ(f : ∀(α) α→α) (f[int] 5, f[bool] true)

This function takes a polymorphic parameter: its type is
(∀(α) α→α) → (int*bool). This was not possible in ML, were the types on
both sides of an arrow had to be monotypes. System F has higher-ranked
types:

σ ::= System F types

| α, β, γ type variables

| σ → σ function types

| ∀(α) σ type quantification

let-bindings are usually not included in presentations of System F.
They’re useful here for homogeneity with the other term languages pre-
sented — ML and MLF. It is interesting to note that, similarly to ML, let
cannot be macro-expanded as in untyped λ-calculus. It would be possible
for an annotated let-binding:

let x:σ = e₁ in e₂ −→ (λ(x:σ) e₂) e₁

With the non-annotated let, however, the type σ is not syntaxically ap-
parent. Note that this doesn’t introduce any impliciteness or non-trivial
inference in System F type system: System F terms have unique types, and
σ can thus be uniquely determined from e₁.

1.1.4 Inference and System F

Is it possible to keep the expressivity of System F, while not being so explicit
about types and polymorphism?
If we drop type annotations completely from System F terms, including

type introduction and elimiation, we exactly get back the ML terms as de-
fined in subsection ML as a type system. But there are terms which have
a System F type, while they are not typable in ML. Is there an algorithm to
infer the System F type of a term? An easier question would be: given the
System F type of a term, can we automatically recover type annotations,
introductions and eliminations?
The answer to these questions is no. Those two questions — which are

confusingly named type reconstruction and type inference, or typability and
type checking — are undecidable [Wel94].
In other words, it is not possible to get the expressive power of System F

without using some type annotations. System F terms, using explicit poly-
morphism, use a lot of type annotations that often feel redundant. Is it
possible to do better?
This question is an active research topic. The programming languages

based on the ML type system have evolved and are looking for more ex-
pressivity. They have included extensions of the ML type system, allowing
some restricted forms of higher-order polymorphism, available to the user
that correctly inserts type annotations at dedicated places. The idea is to
bridge the gap between ML and System F, by finding the right compromise
between inference and polymorphism annotations.

1.1.5 Principality in rich type systems

Rich type systems make type inference harder: more program are typable,
which means more work to do for the inference algorithm. However, such a
monotonic relation does not hold for principality: enriching the type system
can make principality easier.
The simply typed λ-calculus — which is essentially our presentation of

ML, restricted to monotypes only — has an easy type inference algorithm
based on first-order unification, but does not benefit from principality. For
example, the identity function (λ(x) x) accepts any monotype (τ→τ), none of
them being more general than all others.
By enriching the type system with the polymorphic types of ML, we gain

principality: the new type scheme ∀(α) α→α is able to express the common-
ality in all the derivable monotypes. Type quantification is exactly what we
needed to express that, for a given term, some parts of the inferred types
do not matter.
In other words, principality of type inference requires expressiveness

at the type level. During the type inference process on a term, one often
encounters different possibilities. If you cannot express the alternatives in
their full generality in the result type, you cannot have principality.

2

1.1.6 From System F to MLF

MLF is not a possibility in a continuum from ML to System F. It is an exten-
sion of System F, that regains principality by enriching the expressiveness
of the type level.
Consider the following choose function:

choose := (λ(x) λ(y) if true then x else y)

choose : ∀(α) α→α→α

If we pass it the identity function as argument, what is the type of the
result?

id := λ(x) x

id : ∀(α) α

In ML, which does not allow polymorphism under arrows, the result has
type:

σ₁ := ∀(β) (β→β) → (β→β)

But in system as expressive as System F, there is a second possibility:

σ₂ := (∀(β) β→β) → (∀(β) β→β)

Those two types are admissible, and none of them is more general from
the other. We cannot have principality with System F type language.
It is quite clear than σ₂ is not an instance of σ₁: by going from an inner

quantification (σ₂) to an outer quantification (σ₁), we have lost the informa-
tion that the polymorphism is local.
What information have we lost in σ₂? It is sound to consider

(∀(β) β→β)→(int→int) as an instance of σ₂. It is not sound, however, for
(int→int)→(int→int). Indeed, terms with type σ₂ are functions that may use
their argument polymorphically, we cannot pass them a (int→int).
The information we have lost is the information that the argument and

the result types are equal. When the type was written ∀(α)α→α→α, that
equality was made explicit by the use of the same variable α for all compo-
nents of the type. If we knew, somehow, that the instance and argument
types of a term of type (∀(β) β→β) → (∀(β) β→β) are equal, then we could
soundly instantiate it to (int→int)→(int→int).
MLF provides a new way to express equality information inside types.

The most general type for choose id, expressing both local polymorphism
and subtypes equality, is written:

∀(α ≥ ∀(β)β→β) α → α

1.1.7 A high-level description of MLF types

Such quantification using a ≥-bound is called flexible quantification. We
can describe flexible MLF types with the following grammar:

σ ::= flexible MLF types

| α, β, γ type variables

| ⊥ bottom

| α → β function types (using only variables)

| ∀(α ≥ σ₁) σ₂ flexible quantification

Any type is an instance of ⊥, and instances of ∀(α≥σ₁)σ₂ may specialize
both σ₁ and σ₂. The usual ML schemes ∀(α)σ can be written ∀(α≥⊥)σ.
Note that the arrow type (and, more generally, any of the traditional con-

structors of monomorphic types such as tuples) are expressed monomor-
phically, using only variable. (α→β)→γ is written ∀(δ≥α→β)δ→γ. This pre-
sentation does not change expressivity, but helps separating the first-order
structure and the polymorphism structure of a term: the only parts relevant
for polymorphism are in quantifications, we do not have to look deep into
nested arrows to find instantiable subtypes.

This is only useful when the bound actually carry polymorphism. Syn-
tactic sugar can be defined so that ”inert” (not further instantiable) bounds
such as α→β can be inlined.
For example, we can express both System F types for choose id as in-

stances of ∀(α ≥ ∀(β) β→β) α→α:

∀(β) ∀(α≥β→β) α → α loss of local polymorphism

∀(α’≥∀(β)β→β) ∀(α≥∀(β)β→β) α’ → α loss of sharing information

The second type is actually not a faithful transcription of the System F
type (∀(β)β→β)→(∀(β)β→β). This System F type can represent terms where
the polymorphism of the left-hand side is required. Using MLF flexible
bound, we can only express types were polymorphism is available.
Therefore, we add a rigid binding to express required polymorphism:

σ ::= MLF types

| ... [MLF flexible types](def-mlf-flexible)

| ∀(α=σ₁) σ₂ rigid quantification

When instantiating a rigid quantification, we may not specialize the
bound type σ₁. The System F type can then be expressed:

∀(α’=∀(β)β→β) ∀(α≥∀(β)β→β) α’ → α restricted polymorphism

This type is an instance of the former one: ∀(α≥σ₁)σ₂ can be weakened
into ∀(α=σ₁)σ₂. So we have actually used two steps to the System F type:
first losing the equality information, then forgetting than the left hand side
can still be refined.

1.1.8 MLF and type annotations

As we have seen earlier, to construct terms using higher-order polymor-
phism, it is necessary to use a certain amount of type annotations in terms.
Where are the polymorphism annotations in MLF terms?
The answer is refreshingly simple: polymorphism ismade explicit inMLF

terms by using constants. Those constants introduce polymorphism in the
form of rigid bounds. For each (polymorphic) type σ, we introduce a con-
stant coerce{σ} with the following type:

∀(α=σ) ∀(β≥σ) α → β

Those constants can be considered as coercion functions. When applied
to a term, they force the inference algorithm to give a polymorphic type to
this term — exactly σ, and not one of its monomorphic instances: this is the
role of rigid quantification.
For example, the former type (∀(α=∀(β)β→β) ∀(α≥∀(β)β→β) α → α) can be

constructed with the following term:

λ(x) (coerce{∀(β) β→β} x)

In order to get more familiar-looking annotations, we define the following
syntactic sugar:

let x:σ = e₁ in e₂ −→ let x = coerce{σ} e₁ in e₂

λ(x:σ) e −→ λ(x) (let x = coerce{σ} x in e)

The former example can then be written simply

λ(x : ∀(β) β→β) x

3

1.1.9 The good properties of MLF

The coercion functions are actually the only part of the MLF type system
that introduce rigid quantifications. All types generated during the infer-
ence of let bounds, functions and applications use flexible quantification.
We have the two following properties:

1. The MLF typable terms that do not use coercions are exactly the ML

typable terms. In particular, all ML terms are typable in MLF without
requiring additional type annotations.

1. Terms admitting polymorphic types need not be annotated, only

function parameters that are used polymorphically need to.
Additionnally, typability of MLF terms is very stable, as it is preserved by

a large range of transformations. For example, the following two examples
of rewriting preserve the set of typable MLF terms:

e₁ e₂ −→ (λ(f) λ(x) f x) e₁ e₂

e₂[x←e₁] −→ let x = e₁ in e₂ (* provided x appears free in e₂ *)

f −→ λ(x) (f x) (* when f is a function *)

Note in particular that, in the latter example, no annotation is required
on x even if f requires a polymorphic type for its parameter: in that case, x
is polymorphic but not used polymorphically, it is only passed to a function.

1.2 gMLF: Graphical MLF types

The formal definition of MLF syntactic types, instance relations, unification
and inference algorithms are the main result of Didier Le Botlan’s PhD the-
sis. They have proved very technical and difficult to get right. Furthermore,
the resulting unification algorithm is not very efficient. Extending the type
system with richer features also involved a large amount of work.
Intuitively, one of the reason why the metatheory of syntactical MLF

types is so technical is the rich equivalence relation between types. For
example, ∀(α≥σ)α is equivalent to σ, and the syntactical unification algo-
rithm needs to be aware of it, burdening its description and correctness
proof.
Boris Yakobowski’s PhD thesis develops a new approach of MLF types.

The idea is that, as the MLF quantifications are used to represent shar-
ing information between subtypes, an appropriate representation for such
types may not be a syntactic tree, but a graph. The graphical representa-
tion was not new, as it is informally used in Didier Le Botlan’s thesis, but
Boris gave it a formal status that led to a new, simplified and more main-
tainable definition of the MLF type system, named gMLF, which enables an
efficient inference algorithm.

1.2.1 Graphic types

As we have noted earlier, MLF types provide a clean separation between
the monomorphic structure and the polymorphic binders of a type.
Graphic types preserve this separation. A graphic type is the superposi-

tion of two layers, the structure graph and the binder tree.
The structure graph is a tree with shared nodes, which describes the

monomorphic structure of the term.

..→

.α

.α → α ..→

.→

.α .β

.α → (α → β)

The binding tree is given by an arrow for each structure node, that goes
up in the structure graph. They correspond to the variable scope. It is a
tree because only one arrow can leave from a given node.

..→

.α

.∀(α)α → α ..→

.→

.α .β

.∀(α)α → (∀(β)α → β)

In syntaxic types, we need variables to express sharing. The rich quan-
tification of MLF was introduced to express sharing between arbitrary
types, not leaf type variables. In a gMLF graph, this is very naturally ex-
pressed:

..→

.→

.β

.∀(α ≥ ∀(β)β → β) α → α

..→
.→ .→

.⊥

.∀(α)(α → α) → (α → α)

Note that there are restrictions on the binding arrow positions. I will not
describe precisely the well-formedness condition, wich is too technical for
this document, but instead give two representative examples of ill-formed
graphs. In the first case, a binding arrow is ”too low” : must be higher
than any structure edge referring to the node content. In the second case,
a ”well-bracketing” condition is broken, as two binders ”intersect”.

..→

.→

.α .β

.? → (∀(α)∀(β)α → β)

..→

.→

.→

.α

.∀(α ≥ ?)α → α

Finally, we use another kind of binding arrow to represent rigid flags.

..→

.→ .→

.⊥ .⊥

As youmay have noticed, variable names are not useful anymore in gMLF
graphs : the binding arrow position is enough to indicate the scope of a
quantifier. Therefore, we use only (⊥).
We may also notice that the structure graph can be decomposed in two

separate components :

• a structure tree, without sharing

• a sharing relation between nodes

We can therefore present gMLF types on the base of the four following
components:

1. the structure tree

2. the sharing relation

3. the binding tree

4

4. the flag binding association

When transformed into a formal definition of gMLF types, this presenta-
tion allows to handle each aspect separately during formal developments.
It has been developped in more recent works, to appear.

1.2.2 Graphic types and the bound aliasing problem

It is interesting to compare syntactic and graphic types, and in particular
the differences between syntactic quantifiers and binding arrows. It is in-
teresting, because it is not a perfect fit : while we gained the ability to
express sharing, we also lost some precision : there are particularities of
syntactic types that cannot be expressed in the graph model.
For example, consider the type ∀(α) int: it has no direct graphical repre-

sentation. The problem is that we cannot represent the ∀(α) quantification
by a binding arrow, as we wouldn’t know where to place it: as α is not used
in the type, there is no structure node corresponding to α.
We also lost the ability to distinguish ∀(α)∀(β)σ₁→σ₂ and ∀(β)∀(α)σ₁→σ₂. In

both cases, the arrows for α and β will point to the (→) node at the top of the
graph. Binding arrows are unordered.
Those two differences can be seen as the strength of the graphic model.

When doing type inference, we do not care about unusued type variables
or quantifier ordering. In fact we do not want to care about it : the less the
inference algorithm is burdened with such details, the better.
However, we must keep in mind that there may be mismatch between

the syntactic and the graphic types. The user is familiar with the behavior
of syntactic types, and may be sadly surprised if she was confronted to such
differences.
There is a third important difference between syntactic and graphic

types, which is probably the most problematic. How is the type ∀(α≥⊥)

α → ∀(β≥α) σ represented ? In general, for example with the type ∀(α) α

→ ∀(β≥σ₁)σ₂, there is no specific difficulty : α is represented by a (⊥) node
bound to the top, and β is an arrow from the top node of (σ₁) to the (→) node
corresponding to α →

..→

.→

.? .int

.∀(α)α → ∀(β? ≥ α)β → int

But in the special case where σ₁ is itself a variable such as α, we have a
problem : how could we add a binding arrow from α to the (→) node, when
α is already bound at the top of the type ?
In other words, we have a problem because we have two different type

variables that denote exactly the same type. That makes two different bind-
ing arrows that want to have the same source node, which is not possible.
This is called the bound aliasing problem. There are two simple ways to

solve it, neither of them entirely satisfactory :

1. Raise a type error in case of bound aliasing: the user has to be careful.

2. Choose one of the arrows, and forget the other. For the result to be
well-formed, we must choose the arrow bound the highest. In our
example, it’s α. If we drop the β quantification, we get the following
type : ∀(α) α → σ[β←α]. The user may be surprised.

This bound alias problem is particularly frustrating because of the dis-
continuity it creates inside types : not all types are equal. We may be per-
fectly fine using unit → α in a quantification, but changing it to α instead
may deeply disturb the resulting type.
This bound alias problem has been constantly present during my intern-

ship. It can create special cases that can make reasoning, proofs, or even
direct intuition harder. Of course, the type inference engine will not be

concerned by the bound alias problem : it will infer correct types, without
aliased bounds. It becomes problematic when we give the user to express
some types herself, instead of letting the inference engine guess them: it
is dangerous for explicit polymorphism. Unfortunately, this is precisely the
subject of my internship.

1.2.3 Graphic instance relation

The instance relation is very important in a type system designed for type
inference. Given any value with type σ, what other types, less general than
σ, does it have ?
In the syntactic case, we have seen than the two main operations are :

• replacing a bound variable with some type structure: from ∀(α)α→α to
int→int

• extruding quantifiers to the outer scope of the type: from
int→(∀(α)α→α) to ∀(α) int→(α→α)

Note that, in the second case, not all extrusion are permitted. For exam-
ple we may not extrude the quantifier of (∀(α)α→α)→int : a value of that type
may expect a polymorphic function as parameter.
Graphical types are quite similar. The general instance relation can

be decomposed in small ”operations” that represent, in a sense, ”atomic”
moves from a type to a slightly less general one. There also are restric-
tions on which operations are allowed in which part of the types. Those
restrictions are specified by a permission system that we will describe.
For gMLF, we may describe four separate insantiation operations, one

for each ”component” of a gMLF type :

• On the structure tree, the graft operation, which replaces a (⊥) node
with any type.

• On the sharing relation, the (un)merge operation, which enrich the
sharing relation to consider two given nodes as equal, or a given node
with two different ancestors as two separate nodes.

• On the binding tree, the raise operation, that raise a binding arrow to
the (binding) ancestor of a given node.

• On the binding flags, the weaken operation, which change a flexible
flag into a rigid one.

We have already explained how, going from ∀(α≥⊥) α→α, we may obtain
either ∀(β) (β→β) → (β→β) or (∀(β)β→β)→(∀(β)β→β). It is instructive to review
the process as a series of gMLF instantiation operations.
In either case, the first operation is the grafting of ∀(β)β→β on α≥⊥, which

produces ∀(α≥∀(β)β→β) α→α, the most general type inferred for choose id.
Then :

∀(α≥∀(β)β→β) α→α

−→ ∀(β) ∀(α≥β→β) α→α raise

∀(α≥∀(β)β→β) α→α

−→ ∀(α₁≥∀(β)β→β) ∀(α₂≥∀(β)β→β) α₁→α₂ unmerge

−→ ∀(α₁=∀(β)β→β) ∀(α₂≥∀(β)β→β) α₁→α₂ weaken

Note : In fact, we will only consider the merge operation, not unmerge.
I will not discuss details, but the general idea is that, when we unify two
types σ₁ and σ₂, we do not want to know if one is an instance of the other,
but if they’re both instances of a common, less general type σ₃ — to be
determined by the unification process. It’s okay if the merging goes in only
one direction : we merge as much as possible on both sides, and check if
they can meet for some σ₃. A more detailed explanation can be found for
example in Boris Yakobowski’s thesis [Yak08].

5

1.2.4 Binding contexts and permission

The intuitive meaning of MLF flexible quantification is to permit instanti-
ation operations on a given subtyped (denoted by the quantification vari-
able). On the contrary, rigid quantification preserve polymorphism by for-
bidding instantiation operations on the rigid variable : ∀(α=⊥)α→α may not
be intantiated into int→int.
Therefore, if we want to modify a given part of a MLF type, we must

check if this subtype was introduced by a flexible or rigid quantification.
But this is not enough. For example, the β variable of ∀(α=∀(β≥⊥)β→β)α→int is
flexibly bound, but may not be changed into int nonetheless : it is restricted
by an outer rigid binding ∀(α=..).
In the general case, to know the permission of a given type variable —

and in MLF, every subpart of a type is a type variable — we must consider
its binding path, or binding context, the succession of bindings from that
variable to the top of the type.
There are three different situations :

• A node is flexible, or green, if its path to the root of the type has only
flexible bindings. As a regular expression on the flags path: ≥*.

• A node is rigid, or orange, if it is rigidly bound on a green node: = ≥*.

• A node is locked, or red, if it is flexibly bound to a rigid or locked node
: ≥ (≥|=)* = ≥*.

In a graphical representation, we may color each node according to its
context, uniquely determined from the graph :

..→

.→ .→

.⊥ .⊥

This graph uses a fourth context that we have already described : in-
ert nodes, in gray, are the nodes that carry no polymorphism: they’re not
(⊥) nodes and not flexibly bound to an inner (⊥) node. As we will see,
those nodes have liberal permission, independently of their context : with
no power, comes no responsibility.
We then give the following permissions :

• Only the green (⊥) nodes can be grafted.

• All green, orange and inert nodes can merge or raise their bound.

• Inert nodes may always weaken their binding. Green node may only
weaken if they’re bound on a green node.

• In particular, red nodes may not do anything.

1.2.5 Unification for gMLF types

The unification algorithm for gMLF is quite simple. First, we unify the graph
structures, using the usual first-order algorithm. Then, in a second pass,
we compute the new binder tree and flags, by computing the least common
ancestor of all nodes merged by the structure unification, and their weakest
flag. During this second pass, we check permissions for eachmodified node.
If a permission was not respected, the unification algorithm fails with a type
error.
I will describe the first-order unification part in more detail in the third

chapter of this document, as it had to be modified for higher-order types.

1.3 The gMLF inference process: solving graphic con-
straints

Similarly to virtually every modern type inference algorithm for ML [PR05],
the gMLF inference is constraint-based. The idea is to read the program of
the user, and translate it into a big graph using both gMLF type fragments,
and additional ”constraints” constructions. Then, we choose a resolution
strategy, that walks the graph and solves the constraints. When all con-
straints are solved, the result is a gMLF type representing the most general
type of the user input. If the resolution fails, the input was ill-typed.

1.3.1 Graphic constraints

Graphic constraints, also developed by Boris Yakobowski, extend gMLF
types with three additional constructs :

• unification edges, a constraint to unify two gMLF types

• instance edges, a constraint that force one gMLF types to be an in-
stance of another

• (G) nodes, a new kind a structure node with specific properties, useful
during constraint-solving.

I will not describe (G) nodes in depth. They’re actually a non-trivial part
of the gMLF theory. I was told by Boris that he and Didier spent months
trying to remove the (G) nodes from the gMLF theory, until they realized
they were absolutely necessary !
Vaguely, the (G) nodes form an inversed tree structure, on top of the

constraint graph, that mirrors the structure — Abstract Syntax Tree — of
the user input program. They’re always flexibly bound, and a (G) node is
always bound on a (G) node (or the root). They’re useful to guarantee that
every two nodes in the constraint graph, even if they were build from distant
part of the input program, have a common flexible ancestor. In a sense, they
enable non-local communication of type information.

1.3.2 Translating MLF terms into graphic constraints

We recursively translate a given MLF term by translating the head con-
struct, and recursively translating subterms as described by the following
translation rules. A square box with a (G) on top is the result of a recursive
call of the translation algorithm on the given subterm. Instance edges are
in red, unification edges in green.

..G
.λ(x)e

.→

.⊥ .⊥.G
.e.x

..G
.e1e2

.→

.⊥ .⊥

.G
.a1

.G
.a2

..G
.let x = e1 in e2

.⊥.G
.e2

.G
.e1

.x

There is an environment passing implicit to those figures. e in the λ-
abstraction case and e₂ in the let case are translated in an environment
were the variable x is bound. It is important to remember if a given variable
was bound by a let or a λ, because when we encounter a variable occurence
the behavior is different:

• if the variable is λ-bound, we just reuse the given node (this is the
meaning of the green unification constraint in the λ-case)

• if the variable is let-bound, we build a (⊥) node under a (G) node, and
add an instantiation constraint from the definition site (as depicted on
the figure) to the (G) node.

6

As a consequence, only let-bound variable behave polymorphically, that
is, can be reused with different types at different places.
Note : I did not describe the translation for coercion functions. There is

nothing very spectacular : they produce gMLF types with a main (→) node,
left child rigidly bound and right child flexibly bound.

1.3.3 Expansion and instantiation

The graph resolution process relies on two resolution procedures, for uni-
fication and instance constraint edges. I have already described the unifi-
cation algorithm.
The instantiation algorithm is based on an expansion procedure. Basi-

cally, when given the constraint that g₁ must be an instance of g₂, we make
a fresh copy of g₂ and unify it with g₁. This will modify g₁ to be less general
than g₂, or fail with a unification error.
Taking a fresh copy of a subgraph is the expansion procedure. There are

two important points that are the core of the MLF inference algorithm:

1. Only the interior of g₂ is copied. The interior is the subset of the
structural children of g₂ that are bound to g₂ or in its interior. In
other words, they’re the set of nodes in the scope of g₂. Other nodes,
outside g₂, are ”in the global environment” from g₂ point of view, and
may not be modified by the expansion procedure. In order to preserve
well-formedness of the graph, there is however a special case for fron-
tier nodes, the first structural descendant to be outside the interior :
they’re not copied like the interior, but a fresh (⊥) node is created for
each frontier node, and is unified to its corresponding frontier node
after the expansion. This frontier handling will be discussed in more
details in the third chapter.

2. During the expansion, a binding reset is performed. First, binding
arrows pointing to the (G) node directly above g₂ are lowered to g₂.
This is the only place in the gMLF routines where nodes get lowered.
The idea is that, when we take an instance of g₂, we generalize the
variables in the immediate environment: the binding reset creates
local polymorphism. We then examine the binding of the node g₂ itself
and, if it is a rigid binding, we strengthen it to a flexible binding.
Again, this is the only place where this is done. The idea is that rigid
bindings are there to preseve inner polymorphism, polymorphism in
the subtypes (argument type of a function, etc.). Once it is at the root
of the subgraph being expanded, it is no longer meaningful to block
instantiation.

1.4 xMLF: a Church-Style Intermediate Language for
MLF

MLF terms are implicitly polymorphic: types and polymorphism are not part
of the term syntax. What would an explicit language for MLF look like?
Boris Yakobowski answered this question in the end of his thesis, by pre-

senting xMLF, an explicitely typed language using MLF types. This lan-
guage is quite similar to System F, except that the quantifier introductions
are bounded (Λ(α≥σ) e), and the type eliminations are replaced by finer-
grained type computations that describe the delicate operations of an MLF
instance relation.
xMLF has a dynamic semantic given by rewrite rules which was proved

confluent, and preserve types — subject reduction and progress. Recent
work by Giulo Manzonetto and Paolo Tranquili [MT10] has also proved
xMLF strong normalization.
Boris Yakobowski finally presented an elaboration step that translated

solved gMLF constraints into xMLF terms. With that final stone, it was
possible to imagine a completeMLF implementation: code source is written
in the MLF term syntax, the typer build a gMLF constraint from the code,
solve it and infer types, and an xMLF term is elaborated from the solved
constraint, which is finally evaluated by reduction.

For a detailed presentation of the xMLF language and the translation
process, see [RY08].

1.4.1 Own implementation work

As the xMLF work came up late in Boris’s thesis, he did not have the time to
implement a prototype of translation from gMLF contraints to xMLF terms.
The first task of my internship was to implement gMLF to xMLF translations
on top of the most recent MLF prototype.
The translation is not direct: the constraint solving algorithm of gMLF do

not preserve an history of instantiation steps that would be needed to con-
struct the appropriate xMLF type computations. It is therefore necessary to
make a second pass on solved constraint edges, replaying an instrumented
resolution process to extract atomic instantiation steps. As ”atomic instan-
tiations steps” represent slightly different operations in the graph-driven
gMLF instantiation process and the syntax-oriented xMLF type computa-
tions, the last part of the translation is not direct either.
In retrospect, that was a much larger amount of work than expected.

gMLF implementations are quite delicate in that they handle graphs, with
possible cyclicity. While modern ML languages (all the implementation
work was done in OCaml) are well-equipped to deal with trees with rich
recursive structure, graph processing is not as happy and still often re-
quires effectful traversals and mutable structures. The rich invariants on
graphic constraints and subtle pre/post-conditions of graph manipulations
are delicate to maintain and debug.
For example, the gMLF unification algorithm is formulated in two parts:

first, a first-order unification is run on the concerned nodes, then a second
traversal checks that permission and binders were respected. The correct-
ness conditions of the verification traversal are expressed in terms of both
the old (pre-unification) graph state, and the new graph state. Maintaining
those two states available while representing sharing with an imperative
Union-find data structure is really tricky.
This work built upon an OCaml implementation of the xMLF language

itself, which I developped as a first step to get familiar with the type system.
It was the first time I used a De Bruijn based representation for binders,
which comes with its share of subtleties; maybe particularly so in xMLF,
which has two different kind of variables (type variables and term variables)
and five binding constructs. However, xMLF is still a reasonably simple
system based on usual syntactic rules, and its expliciteness make the typer
checker straightforward, so I could concentrate my efforts on the gMLF
system itself.

2 Mixing Implicit and Explicit polymorphism

MLF polymorphism is as powerful as System F polymorphism. However,
MLF only provides implicit polymorphism: it is not necessary to specify
where type introductions and elimination occurs, but it is not possible ei-
ther. For various reasons, it is desirable to add explicit polymorphism, ex-
actly as in System F, to MLF. It would make possible to embed a System F
term, as is, into a MLF program. More importantly, it is necessary for the
latter extension we have in sight, MLFω: as we will see, implicit polymor-
phism alone cannot handle higher-order types.
Designing an elaborate inference algorithm for an implicitly typed lan-

guage is hard. In contrast, checking explicit type introductions and elim-
inations is rather easy. It so seems that adding explicit polymorphism to
MLF, where the hard implicit work is already done, should be an easy task.
It turns out that it is actually a very subtle question, for two different

reasons:

1. While it is easy to consider explicit polymorphism in isolation, the dif-
ficulty is in designing how it interactswith implicit polymorphism. For
example, if we explicitly introduce a type variable to construct a poly-
morphic term, we expect, as in System F, to later explicitly instantiate
it using a type elimination. Surprisingly, it is difficult to ask the typer

7

not to instantiate it implicitly, as he would for implicit polymorphism
placed under its responsibility. « L’enfer est pavé de bonnes inten-
tions. »

2. In graphic types, there is no notion of type variable. The polymor-
phism is not directed by variables, but by the binding arrows. Type
introduction in System F is associated to a type variable binding, and
reproducing its behavior (lexical scope, etc.) requires a representa-
tion closer to ordinary expression variable binders already present in
MLF (let and λ), which are encoded using structure edges. There
is therefore a tension between polymorphism, which would suggest a
solution based on binding arrows, and lexical binding, which demands
structure edges; those two concepts are very different in nature.

2.0.2 Paolo Herms’s solution

My internship is actually the second internship on the same subject, MLFω:
the first internship was done last year — 2009, spring and summer — by
Paolo Herms. In his report [Her09], Paolo described his proposed solu-
tion to the present questions. He came up with a satisfying solution to the
implicit-explicit mix, which I will now describe, and an early prototype im-
plementation.
Paolo added one new type of structure nodes, forall nodes, which I will

depict (∀). They are used to represent explicit quantification: the left child
of a (∀) node represents a Λ-variable, and its right child the Λ-body.
He also added a new kind of binding, explicit bindings. This new binding

arrow has very restrictive permissions: it may not be grafted, weakened
or raised. Only merging is allowed. Additionally, it is possible to implicitly
weaken a flexible binding into an explicit one.
The next figure represents translation rules from an MLF syntax, ex-

tended with explicit introduction and elimination, to the extended graph
constraints. The similarity with the translations of λ-abstractions and func-
tion application is striking.

..G

.∀

.⊥ .⊥.G
.e

.α

..G
.e[σ]

.∀

.⊥ .⊥

.G

.a

.G
.σ

Note that, in the elimination case e[σ], the instantiation edge between e

and the (∀) node is not the usual instantiation constraint. It is a new kind
of constraint edge, explicit instance edges, added to handle explicit bind-
ings. The only difference with the usual instantiation edge is the following:
during resolution, after expanding the (G)-node e, we change the (∀)-node
that is at the top of the term by changing its left child (the Λ-variable) from
explicitly bound to flexibly bound.
This rule assumes that the translation of e always begins with a head

(∀)-node. If not, the constraint resolution fails with a typing error. This is
natural: it means that only explicitly quantified terms may be used in type
eliminations.
At the type level, we wish to distinguish implicit and explicit polymor-

phism. We therefore annotate ∀-types with their explicitness: ∀e(α) rep-
resents explicit polymorphism, and ∀i(α≥σ) is the usual implicit polymor-
phism.
From a high-level point of view, the life cycle of explicit polymorphism

during the gMLF typing process is the following: for each explicitly poly-
morphic term Λ(α)e, a (∀) node is created, with an explicitly bound variable
(left child). The explicit bound blocks implicit instantiation by the type in-
ference engine, until the polymorphism is explicitly eliminated: elimination
e[σ] is translated into an explicit instance edge, which removes the explicit

bound, in a sense unlocking the Λ-variable polymorphism. From that point,
the inference engine is free to instantiate the type of the bound (which was
initially forced by the elimination translation to be σ), as with any other
implicitly typed term.
Paolo also extended the prototype with those new structures.

2.0.3 Issues with Paolo solution: conversions between implicit and
explicit polymorphism.

While Paolo’s solution worked well, it also had drawbacks that Didier Rémy
hoped to overcome. It was only one point in a seemingly large design space,
and he asked me to reconsider other possibilities with the goal of improving
it.
The main issue with the solution was the use of (∀) nodes, a new kind of

structure nodes. Before that addition, polymorphism in MLF was handled
solely by binding arrows, giving the whole system a satisfying orthogonal
aspect. (∀) reintroduced polymorphism in the structure part of gMLF con-
straints.
This was not only a question of taste: Didier wanted implicit and explicit

polymorphism to be similarly represented, so that they could easily be con-
verted one into the other. We wished to be able to write a term in an explicit
or implicit manner and, by some kind of annotation, convert between the
two representations. For example, converting System F polymorphic iden-
tity into an implicitly typed equivalent would be written — introducing a
new :> keyword, different from the usual coercion functions:

(Λ(α) λ(x:α) x :> ∀i(α≥⊥) α→α)

Paolo’s solution allowed some form of conversion between the two poly-
morphisms... explicitly. For example, given the explicitly polymorphic type
(∀e(α)α→α), it is possible to write two conversion functions:

λ(x : ∀e(α)α→α) some β in x[β] : (∀e(α)α→α) → (∀i(α)α→α)

λ(x : ∀i(α)α→α) Λ(β) (x : β→β) : (∀i(α)α→α) → (∀e(α)α→α)

The first annotation on x can be moved inside the term:
λ(x) Λ(β) ((x : ∀i(α)α→α) : β→β). Note than in both cases, those anno-
tations on x, indicating the input type of the conversion, are mandatory:

• In the (explicit → implicit) direction, x needs to be annotated as ∀e(α)...
so that a (∀) node is generated for x. If it was a simple (⊥) node,
the explicit instance resolution, which expects a (∀), would fail with a
typing error.

• In the (implicit → explicit) direction, x is later given an explicitly poly-
morphic type. This means that x is used polymorphically and needs
an annotation. This is easy to see when considering the graph infer-
ence. Usual polymorphic functions usually need to be applied with
different input types; they are annotated so that their binding stay
in their scope instead of going up in the environment; they can be
later expanded at different place, with incompatible instantiations on
their input type. The present polymorphic function needs the bind-
ing to stay in the local scope so that it can be unified1 with bindings
coming from the Λ(β)... part of the term. If they were in the global en-
vironment, we would also need to raise the (β) binding for unification,
which is forbidden by the strict permissions of the explicit binding.

Those conversions, however, are manual and rather tedious, and will
only work for explicit polymorphism present at the root of the term. Di-
dier wished a stronger form of coercions that could change explicitness
deep inside types — but in instantiable locations. With Paolo’s explicit poly-
morphism representation, such a coercion would have to mutate the graph

1When unifying (x : ∀i(α)α→α) with the type β→β, we unify the implicit α with the explicit β.
It is correct because the implicit binding on α is first weakened into an explicit binding: this
is the use of the implicit→explicit weakening permission.

8

structure in depth, and we felt it was the wrong way to go: explicitness
coercions should only care about the graph bindings, which by nature are
much more dynamic during the inference process.
I was thus asked at the beginning of my internship — or rather, after

a month of implementation and extensive debugging of the gMLF→xMLF
translation — to explore the rest of the design space, in order to find a
presentation of explicit polymorphism that would only change the bindings
of graphs, not their structure. This mission came with a Pythian warning:
Paolo, said Didier, had already considered such a possibility, but stopped
exploring it for a reason that had been forgotten since.

2.0.4 Different attempts at a bindings-only representation of ex-
plicit polymorphism

My first attempt at the problem was to question the use of the new explicit
binding arrow: both the explicit binding and the rigid binding are used to
keep polymorphism local and block the inference process. Is it possible to
factor out this behavior in only one type of binding? We quickly realized that
this could not work: in the implicitly typed parts, we need the distinction
between ≥ and =. If we ask quantifier introductions to rigidify ≥ into =,
what happens at elimination sites? They are requested to unconditional
strengthen = into ≥, which is not semantically grounded. Another problem
with this idea is that explicit and rigid bindings do not exactly have the
same permissions: rigid bindings can be raised but not merged, and explicit
bindings can be merged but not raised.
From that first failed experiment, I kept the idea that explicit bindings

were of a different nature than rigid and flexible bindings. The second se-
rious attempt gave a richer structure to binding arrows: independently of
being a rigid or flexible, an arrow could be implicit or explicit. An explicitly
quantified term could therefore be rigid or flexible: we use the notation
Λ(α≥σ)e and Λ(α=σ)e instead of the simple Λ(α)e.
By considering explicit arrows as an compromise between pure implicit

arrows and structural edges, we could remove the need for (∀) node. See
the following figure for the proposed translation of quantifiers introduction
and elimination.

..G
.Λ(α ≥ σ) e

.σ .⊥.G
.e.α

..G
.e[σ]

.⊥ .⊥

.σ

.&
.G
.e

.≤

Proposed binding-only translations rules for Λ(α)e and e[σ].

This proposal had the notable feature that elimination e[σ] was split in
two parts:

• Bound instantiation, which we could note e[≤σ], was inspired by xMLF
type computations. The idea was that the gMLF typing engine would
infer the instantiation relation between the current bound and the
new imposed bound, and change the bound without removing the ex-
plicit polymorphism. For example, (Λ(α≥⊥→⊥)e)[≤(⊥→int)] would be
equivalent to Λ(α≥⊥→int)e.

• Bound elimination, which we could note e[&] in reference to xMLF,
would purely remove the explicit polymorphism by turning the explicit
binding back into an implicit arrow. The flexibility information for the
new flexible arrow is the same as the one carried by the explicit bound.

There was a first difficulty with this idea: as alreadymentioned, there is a
mismatch between the handling of binding arrows in a graph, and the struc-
ture of binders in syntactic terms. With this representation, ∀e(α)∀e(β)...
and ∀e(β)∀e(α) would be equivalent: two arrows pointing on the same node
are unordered. The proposed translation for elimination is meaningless as

well, unless we have a mean to specify which one, of the arrows bound on
the eliminated node, is concerned.
This issue is not specific to the described proposal, but applies to any

binding-based solution. There are basically two possibilities:

1. Bring the syntactic closer to the graphic, by breaking the usual con-
ventions on quantifiers ordering. For example, an explicit polymor-
phism construct based on named arguments may fit much better its
graphical counterpart.

2. Bring the graphic part closer to the syntactic, by imposing an order-
ing on explicit binders. As there are dependencies between explicit
and implicit bindings (∀e(α≥⊥)∀i(β≥α→α)∀e(γ≥β)...), special care is
required when defining the order and manipulating bindings.

It is important to notice that Paolo’s (∀) structure node didn’t have that
mismatch with the syntactic binders: structure edges are naturally ordered
by the father/child relation, and naive translation of a nested sequence of
implicit and explicit quantifiers would work just as expected.

2.0.5 A note on coercions

For every binding-based solutions we considered, we had a rather clear
idea of what explicitness coercions (e :> σ) (from implicit to explicit or in-
versely) would look like. It was actually a simple extension of the existing
MLF coercion (e : σ), which generate an arrow node with two copies of the
coerced types as children, with the left child rigidly bound.
We would reuse that simple schema, changing the explicitness status of

the bindings inside each type copy, according to the desired coercion se-
mantic. For example, asking for a coercion from ∀e(α)α to ∀i(α)(α) would
generate a (→) node with two (⊥) children, the left one explicitly (and
rigidly) bound, and the right one implicitly bound.
There was, however, a subtlety we initially missed. When encountering

the term (e :> ∀e(α)∀e(β)..), we know that the coercion must produce two
explicit bounds — on the right side of the coercion (→) — but we don’t know
the explicitness of the incoming type bound — on the left side. Should we
generate a coercion from ∀i(α)∀e(β).., ∀e(α)∀i(β)..?
We had the idea of using a third explicitness status, unknown explicit-

ness, that could be silently weakened into both explicit and implicit bounds.
In an explicitness coercion, the left copy of the type would use bindings of
unknown explicitness, to accommodate both explicitly and implicitly typed
input.
We realized quickly that this idea wouldn’t work in MLF: what should the

type of such a coercion function be? If we could instantiate it to different
input types (∀i(α)∀e(β)... and ∀e(α)∀i(β)... for example), what would the
most general type be? In the MLF type language extended with explicit
type, there is no way to express that a type can be either explicit or implicit.
Given this expressiveness limit, such coercions would break principality.
We could have considered richer types, for example using explicitness

variables ε that would range over {i,e}: the input type of the coercion
would be something like:

∀(ε₁)∀(ε₂) ∀ε₁(α)∀ε₂(β)...

We felt, however, that this was going too far away from the main inter-
ship topic, higher-order types. Without extending MLF type system, it is
necessary to be explicit about the input type of explicitness coercions, as
well as the output type. The syntactic construct needed would therefore be
(e : σ₁ :> σ₂), instead of the simple (e :> σ₂). The existing MLF coercions do
not need two types because they do not change from one type to another,
they only impose the presence of a given type.
With that heavier coercion construct, the justification for binding-only

explicit polymorphism decreased: once the coercion is parametrized by
both types, it is easy to build a generic coercion function that goes from
one type to the other, even if they don’t have the same graph structure. We

9

could, for example, introduce or remove (∀) nodes between the input and
output graph type, even in depth.
The only important aspect of this generalized coercion framework is the

choice of the allowed coercions: given two types σ₁ and σ₂, does a coercion
function going from σ₁ to σ₂ make sense? This is a reflexive relation be-
tween MLF types which, when specialized to the identity, provides exactly
the existing MLF coercions. The specifics of this coercion admissibility re-
lation are actually independent of the MLF inference machinery. This is
a parameter to the MLF type system, and different MLF-based languages
could make different choices.
With this realization, we stopped to focus on coercions. This was a topic

of larger scope than our MLF setting, and a different research subject —
on which work is now ongoing inside Gallium.

2.0.6 Implementing the generalized form of Paolo’s solution

We encountered important difficulties with the multiple bindings-only pro-
posals for explicit polymorphism. This made for a quite frustrating part of
the internship, where the proposed solutions fell down one after another for
seemingly innocuous reasons. During more than a month, we experienced
a long series of failures.
We were well aware that Paolo’s solution was significantly simpler to

implement, due to the binding ordering issues of non-structural solutions.
When our idea of light explicitness coercions fell down, there was little
motivation left for a bindings-only solution. We therefore decided to give
up and reuse Paolo’s structural solution.
We had however gained additional insight during the search process,

that allowed me to generalize and incrementally improve on Paolo’s solu-
tion: explicitness and flexibility of binders are orthogonal. We therefore
kept the Λ(α♢σ).. syntax instead of Paolo’s only Λ(α)... The explicit in-
stantiation constraint now change the binding from explicit to implicit, but
without mutating the ≥,= status of the binder. This improvement is non-
invasive, as only the introduction rule changed:

..G
.Λ(α ≥ σ) e

.∀

.σ

.♢

.⊥.G
.e.α

..G
.e[σ]

.∀

.⊥ .⊥

.G

.a

.G
.τ

Final translations rules for Λ(α♢σ)e and e[σ].

I implemented this generalized solution, inspired by Paolo’s first imple-
mentation. This was a bit of more work as the prototype had been signifi-
cantly expanded, in particular with xMLF elaboration.
The translation of explicit polymorphism to xMLF was not obvious to

get right, but was finally very simple. The idea is that, after the type in-
ference process, the ordering of quantifiers (both implicit and explicit) are
only determined from the binder structure. The translation process already
computes an ordering of binders, suitable for translation to syntactic quan-
tifiers: no extra work was needed for explicit bindings. The structural (∀)
node is only used to check whether an explicit bound really refers to a quan-
tifier introduction — it could result from a simple binder weakening. In a
sense, the xMLF translation layer act as if we had a binder-only solution.

A note on explicit bounds Changing the explicit bounds from a single
Λ(α) to Λ(α♢σ) is more than an aesthetic choice for homogeneity in the type
language.
Flexible explicit bounds have an interesting property: they allow partial

type specification for the abstracted type. For example, I may abstract over
a type, while keeping apparent that it is a function type that can be used as
such.

Λ(α ≥ ∀(β)∀(γ)β→γ) λ(f:α) λ(x)λ(y) (f x, f y)

Such partial specification was not possible in System F, where abstracted
variable must be used in a parametric, agnostic way. Of course, it is possible
to write instead

Λ(β)Λ(γ) λ(f:β→γ) λ(x)λ(y) (f x, f y)

but this approach may require an arbitrary number of type abstractions
were the more flexible bounded abstraction use only one.
Bounded explicit quantification gives a nice regularity property to MLF

type variable declarations: everywhere a some α in ... expression is used,
it may be replaced, if we know the type σ inferred for α, by the abstracted
program Λ(α≥σ) This wouldn’t hold with the less flexible Λ(α)... bound.
The case for explicit rigid bounds is, however, less clear: what is the use

of abstracting over a type variable if the elimination type is known in ad-
vance and cannot be instantiated even, after abstraction elimination? Rigid
explicit bounds act as local type definitions. More practical experience with
MLF-based languages may discover interesting use for this construction, or
confine them as merely anecdotal combination of orthogonal features.
There is also an issue with explicit rigid bound: they cannot be directly

translated in xMLF. Λ(α≥σ)... bounds are naturally translated into the xMLF
Λ(α≥σ)... construct. But xMLF does not have rigid bounds: as they do not
help typability in an explicitly typed language, they are not necessary and
can be inlined directly.
My proposed fix was to target a richer xMLF language, extended with

rigid quantifications. This language could anyway be translated back
into the simple ≥-only xMLF. An advantage of this extended language is
that it gives better complexity properties to the gMLF→xMLF elaboration:
presently, as rigid types must be inlined during translation, an xMLF term
may be exponentially larger than its MLF counterpart. When targetting
a language with rigid bindings we can estimate the translation cost more
precisely.
On the practical side, this proposed extension of xMLF was not imple-

mented during the internship, due to lack of time. Therefore, terms with
rigid explicit bound cannot be translated into xMLF for now; this is one of
the things that I will hopefully fix later.

3 Going to order ω

With the explicit polymorphism in place, we were ready to develop the
main motivation of my internship, MLFω. Due to the considerable (and un-
expected) difficulties encountered during the previous step, I didn’t have
much time left. The work presented happened during the last month of
my internship, and after the internship ended. There are rough edges and
remaining issues, and the implementation (in the developped prototype) is
marked experimental and disabled by default.
In this chapter, I will give an informal overview of System Fω, then

present the corresponding gMLF extensions, with a detailed description
of the β-reduction process, and finally present the remaining issues and
possible future developments.

3.1 System Fω

Simply typed λ-calculus is built on the λ abstraction construct, which is a
way to express terms ”parametrized” by other terms. System F polymor-
phism is a form of parametrization of terms by types: polymorphic terms
take a type variable as parameter. System Fω adds a parametrization of
types by types, allowing to abstract out parts of a type expression. [Gir72]
[Pie02]
Here is the type language of System Fω:

σ ::= System Fω types

| α,β,γ type variables

10

| σ₁ → σ₂ function type

| ∀(α:κ) σ type quantification

| λ(α:κ) σ type abstraction

| σ₁ σ₂ type application

The parametrization of types by types is represented by the λ(α:κ)σ ab-
straction construct, associated to a corresponding (σ₁ σ₂) type application.
In essence, it is an embedding of the simply typed λ-calculus (STλC) into
the type language of System F.
Exactly as in the STλC, variables are typed. What is the type of a type

variable ? It’s a kind, denoted by the metavariable κ. Here is the simple
kind language of Fω:

κ ::= System Fω kinds

| ⋆ star kind

| κ₁→κ₂ arrow kind

The ⋆ kind is a constant kind that classifies the types of the System F
terms (unit, int, function type...). The arrow kind κ₂→κ₂ classifies the type
operators that are parametrized by a type variable of kind κ₁, and return
a type of kind κ₂. For example, λ(α:⋆) α→α is a type operator of kind ⋆→⋆

returning, when given a ⋆-type, the type of the monomorphic identity on
that type. As kind ⋆ is often used, we conveniently write λ(α)σ instead of
λ(α:⋆)σ.
It is important to understand the difference between type quantifica-

tion ∀(α:κ)σ and type abstraction λ(α:κ)σ. Quantification is fundamentally a
first-order construct: it is used to classify terms that depend on a type. On
the contrary, λ(α)σ is a higher-order construct, specific to the type level:
there is no term of type λ(α)σ. Those two extensions of the STλC are ac-
tually orthogonal: it is possible to consider a λ-calculus with higher-order
types, but no term-level polymorphism: Fω, without the F part. This sim-
pler calculus is called λω, or λω̱, in the type system litterature [Bar91].
Note that System F type quantification was extended to higher-order

kinds: ∀(α:κ)σ. This allows a term to depend not only on ⋆-types, but on
higher-order type operators. This is matched in the term syntax: the type
introduction construct accepts higher-order kinds Λ(α:κ)e.
This is probably the most useful part of Fω for the working programmer.

In the following example, we express the twice function, which composes a
function with itself:

twice := Λ(F : ⋆→⋆) λ(f : ∀(α) α → F α) λ(x:α) f[F α] (f[α] x)

Given a (List:⋆→⋆) type with the usual nil and cons, we can write the
following (∀(α) α → List (List α)) function:

twice List (Λ(α) λ(x:α) cons[α] x nil[α])

In ML or System F, the only possible type for twice is ∀(α)α→α, which is
vastly less expressive.
System Fω is used as a core type system to express various features of

modern programming languages, such as Haskell, Scala, and ML higher-
order functors [RRD10].

3.1.1 Typing and β-reduction

In previous explicitely-typed systems such as System F, we only used equal-
ity between types up to substitution of type variables by their value in the
environment. With λ-terms inside types, we want a larger relation. Wewant
to accept, for example, (λ(α)α→α) int as a correct type for λ(x) x+1.
Formal presentations of Fω use an additional judgment of equivalence

between types, the important part being:

(λ(α)σ₁)σ₂ ≡ σ₁[α←σ₂]

The algorithmic way to test equivalence between two types is to reduce
all their redexes (reductible subterms of the form (λ(α)σ₁)σ₂) until they
reach a normal form, where no additionnal reduction is possible, and to
test equality on the two normal forms.

3.2 From MLF to MLFω

Type inference in Fω is undecidable. Partial type inference have given (par-
tially) satisfying results, but MLF design goal is rather to concentrate on
complete and principal type inference for first-order types. In the long term,
it may be interesting to try to go further and infer some higher-order types,
but this is not in the scope of the present work.
We therefore decided to make all higher-order aspects of the language

fully explicit. While explicit polymorphism at kind ⋆ — that is provided by
the MLF Λ(α♢σ) construct — was mostly a convenience, explicit polymor-
phism is absolutely necessary for MLFω, and this was the main justification
for adding explicit polymorphism to MLF: Fω expressivity is highly desir-
able.
MLFω, the extension of the MLF with Fω feature, is very similar to the

extension from F to Fω.

σ ::= MLFω types

| α, β, γ type variables

| ⊥ bottom

| α → β function types (using only variables)

| ∀(α♢σ₁) σ₂ bounded quantification (♢ ∈ {≥, =})
| λ(α:κ) σ type abstraction

| σ₁ @ σ₂ type application

Note : We used an explicit infix operator @ for type application, to make
more apparent the presence of a structural node in the gMLF translation.
There is a small specificity in the term language: the two abstractions

Λ(α♢σ) and Λ(α:κ) coexist separately.

e ::= MLFω expressions

| x, y, z variables

| λ(x) e λ-abstraction

| e₁ e₂ application

| let x = e₁ in e₂ local definition

| Λ(α♢σ) e first-order introduction

| Λ(α:κ) e higher-order introduction

| e[σ] elimination

The reason why we don’t use a combined construct Λ(α♢σ:κ) is that the
first-order bound (α♢σ) rely on the MLF instance relation which is based on
implicit polymorphism. We are very careful not to add any kind of implicit
inference to the higher-order part of gMLFω.
The implicit bound Λ(α) may refer similarly to Λ(α≥⊥) and Λ(α:⋆) which,

as we will see, have the same meaning in gMLFω.

3.2.1 From gMLF to gMLFω

For explicit polymorphism, we eventually added new structure nodes, (∀)
nodes. To add higher-order types, we introduce two new nodes of arity 2,
(@) application nodes and (λ) abstraction nodes.
The idea is that (σ₁ @ σ₂) will be translated to @((σ₁),(σ₂)), while λ(α:κ)σ

is represented by λ(⊥,(σ)), where α is translated in (σ) by the left-child (⊥)
node.

..λ

.⊥κ .σ

.λ(α : κ)σ
..@

.σ1 .σ2

.σ1@σ2 ..G
.Λ(α : κ) e

.∀

.⊥κ .⊥.G
.e

.α

Note : we can now verify that Λ(α≥⊥) and Λ(α:⋆) are equivalent : they
generate the same graph explicitly flexibly bound on Λ-var (⊥:⋆).

11

We do not want the inference process to try to infer the λ-variable or its
body: both structural child of a (λ) node are explicitely bound to this node.
Finally, we also added a kind information on each structure node of the

graph. This allows to check for well-kindedness. All the existing gMLF
structural nodes have kind ⋆, except for ⊥ nodes that may have any kind κ
(so that they can represent higher-order type variables), and the two new
structure nodes have kind:

• κ₁→κ₂ for a (λ) node of left child with kind κ₁ and right kind κ₂

• κ₂ for a (@) node of left kind κ₁→κ₂ and right kind κ₁

Most kind checking is done during the translation from syntactic terms
to graphic types. For example, when translating the (σ₁→σ₂) type, it is easy
to check that (σ₁) and (σ₂) graphic translations have kind ⋆.
There is one case, however, where kind checking must be delayed to

the constraint solving process: type elimination e[σ]. We can determine
the kind of σ, but the arity of the e node is unknown until its type is fully
resolved. We will therefore add a kind checking step to the unification pro-
cess.

3.3 Graphic β-reduction

The main component needed to extend the gMLF type system to gMLFω
is a β-reduction operation. The β-reduction should operate on a β-redex,
which is a (@) node whose left child is a (λ) node. It should return a new
graph constraint corresponding to the reduced type. Approximatively :

..@

.λ

.⊥ .τ

.τ1

• The λ-variable — left child of the (λ) node – should be replaced by the
@-argument — right child of the (@) node.

• The (@) node itself should be replaced by the λ-body – the right child
of the (λ) node.

How will we rigourously specify the graph β-reduction algorithm ? Paolo
Herms had already worked on the subject. He had noticed an important
distinction, that is one of the difficulties of the β-reduction process : we
should only reduce if the (λ)-node is local to the (@)-node, and otherwise
make a local copy of it before reducing.
The justification for this consideration is clear : if the (λ)-node is global

in the environment, it may be shared with other nodes. If we mutate the
(λ)-node during the reduction process, such changes may incorrectly affect
other uses of the node.
Taking a local copy is possible due to the very useful — and lucky —

property that (λ)-nodes are always inert : as both their children are ex-
plicitely bound, they carry no direct polymorphism (nothing is implicitly
instantiable). It is therefore sound to unmerge them, by copying them, and
then lowering the copy’s bound by (flexibly) fixing it on the (@) node. Low-
ering the binder cannot create an ill-formed graph, as the (@) node is (λ)
direct structural ancestor.

3.3.1 Implementation considerations : reusing expansion and uni-
fication ?

I tried to write a first prototype of the β-reduction process, using the low-
level ”replace” operation provided by the graph interface (the modification
happened at the level of the union-find tree used to merge nodes during
unification). The result was very fragile and raised lots of bugs, as the graph

butchery broke various graph invariants that must be preserved during the
graph constraint resolution process.
For my second attempt at implementation, I decided to reuse existing

code that was tested and efficient at preserving graph invariants. My
idea was to use the existing ”expansion” algorithm to do the subgraph
copying (unmerging the (λ)-node), and the ”unify” algorithm to do the re-
place/substitutions. The only unsafe operation needed was to atomically
replace the (@) node by a (⊥) node before unifying it with the λ-body.
It turned out that the result were ever worse than at the first try. There

were three main defects, in increasing order of importance :

• The (β)-reduction process used the graph expansion routine, while the
expansion routine used the unification routine (on the frontier nodes),
which itself used the (β)-reduction algorithm. I had created a cylic
dependency, which are always relatively painful on a software engi-
neering level (recursive modules, welcome).

• The unification routine was proved correct on the usual ⋆-kinded
nodes of gMLF, but I had no idea what might happen if a frontier
unification constraint happened on a higher-kinded node, which may
appear under a (λ) node.

• The idea of the gMLF binding permissions, which are carefully
checked during expansion and unification, is that instantiation hap-
pen from the root of the graph constraint. An operation on a node
is based on its binding path to the root. In contrast, he (β)-reduction
needed to operate at a local level. For example, the (β)-reduction im-
plementation completely failed if the (@) node was rigidly bound :
all nodes under it were considered locked, and expansion/unification
impossible.

Fundamentally, the intermediate steps (β)-reduction must not, contrarily
to unification steps, be considered as instantiation operations. (β)-reduction
needs to be a local process that changes the graph atomically, and is not
concerned with the permissions of the outer binding context. Clearly, the
unification and expansion algorithm were unsuited for such a task, and it
would be dangerous to try to extend them in this direction.
I therefore had to develop a new description of the (β)-reduction al-

gorithm, using only atomic, unsafe (no permission checking) operations.
Great care must be taken and the different changes must be meticulously
considered to answer two strongly correlated questions: Do they preserve
the graph invariants ? Are they semantically sound ?
In the following subsections, I will precisely describe the four different

steps of the (β)-reduction process.

3.3.2 Step 1. Taking a local copy of the (λ) node

If the (λ)-node of the redex is local to the (@)-node, nothing need to be done.
If it is bound higher in the graph, it is necessary, as Paolo noted, to take a
local copy of it, and (flexibly) bind that local copy to the (@) node.
To copy the (λ)-node, we copy the subgraph corresponding to its inte-

rior : all its structural children that are bound to it or in the interior. The
only difference with expansion is that frontier node, the first structural de-
scendants bound higher in the graph, are directly shared, instead of being
copied as fresh (⊥) nodes and unified after expansion — which is not possi-
ble as it would reuse unification.
Expansion moves subgraph ”horizontally” in the graph constraint. It

uses frontier unification to raise frontier binders to a common ancestor of
both the source and destination of the subgraph. In the present case, we
move the graph ”vertically”: the (λ)-node was bound on a structural ances-
tor of the (@) node, and we lower its copy’s bound to the (@) node. The
frontier nodes were bound on structural ancestors of the (λ) node, and still
are: the resulting graph is well-formed.

12

3.3.3 Step 2. Unfreezing both (λ) children nodes

We need to unfreeze both (λ) children nodes as a semantic justification to
further modification of those nodes. Unfreezing is sound as the (λ) node is
now local to the redex : this cannot affect outer nodes.
It is also important that the (λ) node, after unfreezing its children, is

never made accessible to the global graph constraint again : the gMLFω
type system relies on the invariant that (λ) nodes are always inert. The
unfrozen (λ) node must not leak to the outer graph. We will have to verify
this condition at the end of the β-reduction process.
The (λ) node was introduced by a graphic translation of a λ type. Both

its children — or its unique children, in the case of λ(α)α — are flexible.
There is an edge case were the λ-body, due to an aliasing problem, is

actually bound higher in the graph (λ(α)β). We cannot change its binder, but
this is not an issue : the final step concerned with the λ-body will consider
this possibility; see the ”Pathological case” subsection at the end of this
section.

3.3.4 Step 3. Replace the λ-var with the @-argument

In order to soundly replace the λ-var, which is a (⊥) node, with the @-
argument, we must first have both bindings bound on the same node, with
the same binding flags.
The λ-var is flexibly bound to the (λ) node. The @-argument is bound

higher in the tree – at least on the (@) node — with arbitrary flags. We can
soundly raise the λ-var binding to the @-arg’s bound, and weaken its flags
— both flexibility and expliciteness — to match the @-arg flags.
Once the two bindings are identical, we can merge the λ-var (⊥) node

with the @-arg without breaking well-formedness of the graph.

3.3.5 Step 4. Replace the (@) node with the λ-body

This is the last, and final step, of the graph β-reduction process. As in the
previous step, we must ensure bindings coincide (both in destination and
in flags) before merging the two nodes.
In most cases — see next section for the unusual case — the λ-body is

flexibly bound to the (λ) node. It happens exactly as in the previous step
: we raise this flexible binding and weaken it, before substituting (@) with
the λ-body. There is a special case where (@) is the root of the type graph,
instead of being bound to an ancestor. In this case, we make the λ-body a
root too before merging.
After the substitution, all structural information about the (@) node is

lost, replaced in the graph by the λ-body (in which the variable substitution
has been done). In particular, the (λ) node cannot be accessed anymore,
preserving the invariant that all accessible (λ) nodes are inert.

3.3.6 The pathological case

There is however a pathological edge case in the last step : the λ-body is
not necessarily flexibly bound to the (λ) node. It was true when the (λ) node
was unfrozen, but something has changed since then : the λ-var has been
substituted with the @-arg. There is a case where the λ-body and the λ-var
share the same (⊥) node : the identity λ(α)α.
In the identity case, the λ-body binding is now the @-arg binding. It

may, or may not, be compatible with the (@) node binding. Consider the
following example :

∀e(β≥⊥) ∀i(γ = (λ(α)α) @ β) γ→γ

In this example, the (@) node is rigidly bound by the γ type variable, but
the @-arg is flexibly implicitly bound.
This is actually an instance of the bound aliasing problem. We make a

lenient choice : in case of conflict between two binders, do not fail, but in-
stead give the priority to the binder bound higher. Potential disadvantages
of this choice will be discussed in the ”bound aliasing problem” section at
the end of this chapter.

3.4 Unification and reduction

We defined a graph β-reduction operation that reduces a graph redex. How
is that β-reduction operation integrated in the existing gMLF inference al-
gorithm? When should β-reduction happen?
The gMLF unification algorithm is split in two parts. First,

unify structure change the graph structure, doing first-order unification.
Then, rebind makes a second pass on the modified subgraph, compares the
differences between the old and the new structure, adjusts binders, and
checks that the changes are compatible with the binding permissions.
In a ML-inspired pseudocode, here is the algorithm for the first pas, first-

order unification of gMLF graphs :

unify structure(g₁, g₂) :=

match the constructors of g₁ and g₂ with

| ⊥, c₂ -> graft g₂ on g₁

| c₁, ⊥ -> graft g₁ on g₂

| c₁, c₂ when c₁ ≠ c₂ -> fail

| c₁, c₂ when c₁ = c₂ ->

for each n₁ child of g₁ and n₂ the corresponding child of g₂:

unify structure(n₁, n₂)

It is important that reduction happens before this unification. Indeed,
the constructor comparison is not correct on higher-order constructs, in
particular (@) nodes. Consider for example the following unification prob-
lem:

((λ(α) α→int) @ bool) ˜ ((λ(α) bool→α) @ int)

The given algorithm would check the two @ constructors for equality,
then try to recursively unify (λ(α)α→int) (λ(α)bool→α) and bool int. This is
clearly wrong : we have to reduce before unification.
There are several reduction strategies. For example, we could choose to

reduce as soon as a redex appear in our graph. We choosed instead a lazy2

strategy, where redexes are only β-reduced when it is necessary to do so :
just before unification.

3.4.1 Weak head normal form

In practice, it may not be the case that all (@)-nodes encountered during
unification are redexes. The left child is not necessarily a (λ) node. As it has
a higher-order kind, it cannot be a (→) node or a constant (int) node, but it
could be (@) or (⊥). In the first case, what we need is to recursively try to
reduce the inner (@) node, hoping reduction will yield a (λ)-node, forming
a complete β-redex.
To define that ”recursive reduction” process, we define a weak head re-

duction algorithm, that reduces a given node until the head constructor
cannot be reduced further. For notation convenience, we will express the
algorithm in term of the MLF syntactic types, but the reader must keep in
mind that it is actually a transformation on a gMLF graph.

whnf((λ(α)σ₁) @ σ₂) := whnf(σ₁[α←σ₂])

whnf(⊥ @ σ) := (⊥ @ σ)

whnf(σ₁ @ σ₂) := whnf(whnf(σ₁) @ σ₂) when σ₁ ∉ {⊥, (λ..)}
whnf(σ) := σ when σ ∉ {..@..}

3.4.2 Correction of the unification algorithm

The new algorithm for unification is exactly the previous one, where we
just reduced each graph before comparing first-order structure. Note that
it will recursively reduce children too.

2In reduction of λ-terms, there is an important distinction between ”lazy” and ”call by need”
evaluation strategies. As we are in a graph, such distinction is not very meaningful : nodes
are naturally shared and β-reduction does not duplicate its argument.

13

unify structure(g₁, g₂) :=

check that g₁ and g₂ have the same kind

g₁ ← whnf(g₁)

g₂ ← whnf(g₂)

match the constructors of g₁ and g₂ with

| ⊥, c₂ -> graft g₂ on g₁

| c₁, ⊥ -> graft g₁ on g₂

| c₁, c₂ when c₁ ≠ c₂ -> fail

| c₁, c₂ when c₁ = c₂ ->

for each n₁ child of g₁ and n₂ the corresponding child of g₂:

unify structure(n₁, n₂)

There is an important subtlety : after whnf reduction, the recursive
traversal is applied on all nodes, even higher-kinded nodes. As we have seen
before, recursively unifying (@) children is obviously wrong in the general
case. We will use unify structure nonetheless. In the following sections, I
will show that it is correct after whnf reduction.
Claim : The existing unification algorithm, as a combination of

unify structure and rebind, will not try to do any inference on higher-kinded
nodes. It will only succeed on unification problems where the given nodes
are either equal or — for (λ)-bindings — α-equivalent. The rebind pass will
fail on all other — unsound — transformations.
There are three cases to consider, corresponding to the tree possible

higher-order constructors : higher-order (⊥) nodes, (@) nodes and (λ)
nodes.

3.4.3 The higher-order (⊥) case

In the (⊥) case, my claim is that rebind will reject all modifications on a
higher-order (⊥) node : the only unification problems that won’t fail are
those where the two arguments are exactly the same node in the graph.
To prove this, I will first prove that all higher-order (⊥) nodes in a gMLFω
graph constraint are explicitely bound to a (∀) or (λ) node.
Where does a higher-kinded (⊥) node, of kind strictly bigger than ⋆, come

from ? For a graph generated by the gMLFω translation process, the only
possibility is: as a variable of some explicit abstraction – Λ(α) or ∀e(α) for (∀)
nodes, λ(α) for (λ) nodes. In particular, the type constant ⊥ in a MLF type
expression is always ⋆-kinded. And the higher-kinded variables of those
abstractions are never unfrozen — made implicit:

• To unfreeze a (∀)-var, one need to eliminate it with a same-kinded type
σ : e[σ]. But as the constant ⊥ is not higher-kinded, the only possible
well-kinded types σ are :

– higher-kinded variable explicitely bound higher in the environ-
ment : the result of elimination is still an explicitely bound (⊥)

– higher-kinder constructs with other whnf than (⊥)— (@) or (λ).
The result is no more a (⊥) node.

• Similarly, a (λ)-variable is replaced by a type application argument,
which may only be an other explicitely bound variable or a non-(⊥)
constructor.

Therefore, all higher-kinded (⊥) nodes are explicitely bound.
The permissions on explicit bounds tell us that such node cannot be

grafted, but it may be merged with an isomorphic cobound node. Can two
different explicit (⊥) nodes be cobound ? No: as explicit binding arrows
cannot be raised, a higher-order (⊥) is always bound to its original (∀) or
(λ) node. (∀) only have one explicit bound, so different cobound nodes are
impossible. (λ) nodes have two explicit bound children, but the λ-body can-
not be a different (⊥) node cobound to the λ-var:

• If the body is a type variable bound higher (λ(α) β), it is not bound to
the current (λ) node.

• If we are in the identity case (λ(α)α), the λ-var and λ-body are the
same (shared) node

In other words, the presence of a structural node ((∀) or (λ)) for each
higher-order (⊥) introduction ensure uniqueness : if two (⊥) are explicitely
bound on such a structural node, they must be equal. Therefore, allowing
the merge of cobound (⊥) nodes is equivalent to the correct identity test :
if the two arguments are equal, unification succeeds, otherwise it fails.

3.4.4 The (λ) case

Higher-kinded (λ) nodes cannot be grafted on a same-kinded (⊥) node : as
we have shown, such (⊥) node are explicitely bound, therefore any grafting
will be rejected by rebind.
As we have seen, when called recursively on the λ-var, which is an explicit

(⊥) node, unification will only succeed if the two λ-vars are equal. This is
correct. unify structure, however, could recursively unify the λ-body of two
(λ) nodes. This is only correct if the two (λ) nodes are α-equivalent.
My claim is that it is the only transformation that rebind will allow. In-

deed, λ-body being explicitely bound to the (λ) node, all flexible (⊥) nodes in
its body are red/locked. No instance operation on locked nodes is allowed
by rebind. Therefore, the only possible unification operation is the merging
of the two isomorphic inert (λ) nodes; but two (λ) nodes have isomorphic
interior if and only if they are α-equivalent !

3.4.5 The (@) case

In the (@) case, we make use of the fact that the (@) node is in weak head
normal form, which strongly restricts the left node: it is a (⊥), or a (@) node
itself in whnf.

• if the left child is a (⊥), we have already shown that it may only unify
with itself. In that case, any unification is correct on the right child :
when F is a higher-kinded variable, it is always sound to resolve (F σ)
(F σ) by σ σ

• if the left child is a (@)-whnf itself, a simple structural induction —
which we can use because gMLFω graphs are acyclic — show us
that the second-order parts of the two left child are not changed by
unify structure, only compared by equality and α-equivalence. De-
riving σ₁ σ₂ from (φ₁ σ₁) (φ₂ σ₂) is sound when φ₁ and φ₂ are α-
equivalent.

3.4.6 Conclusion

What we have shown in this possibly boring proof is that we do not have
to specify a separate unification algorithm for higher-kinded nodes. It may
seem rather surprising that the first-order unification algorithm, using the
existing permission handling, is actually fully correct on the new higher-
kinded terms.
A posteriori, this is actually not so surprising : the correctness proofs for

the three cases were all based on the strict permissions of the explicit bind-
ing. This brings a new point of view on the explicit binding : it has exactly
the permissions that force the unification algorithm to not infer anything in
higher-order kinds. In other words, the explicit binding is exactly the good
binding mode for higher-order types.
I believe this provides a good backwards validation of the explicit binding

design. It also provides an additional explanation of why only the left child
of (∀) is explicit, while both children of (λ) are : only the left child of a (∀)
node may be of kind higher than ⋆, while the two children of (λ) generally
are.
It is also a good sign for the extensibility of the higher-order features of

gMLFω. What we first thought was that we would need to carefully study
each new feature to design the right ”unification” (that is actually not uni-
fication on higher-order types) algorithm for it. This experience with (∀)
and (λ) nodes suggests that, with the right amount of explicit bindings, any

14

new non-first-order feature should ”just work” with respect to the existing
unification algorithm. Of course, correctness proofs are still needed.

3.5 Other considerations

3.5.1 η-reduction

We may also add a η-reduction rule :

whnf(λ(α) σ@α) := σ when α is free in σ

This rules is semantically sound and widen the equivalence relation be-
tween higher-order nodes. It is commonly found in presentations of the Fω
type system, and provides some additional flexibility.
I have concentrated my attention on the β-reduction, but I do believe η-

reduction can easily be added : just change the whnf algorithm. However,
extensions of gMLF have a repeated history of proving more delicate than
expected.

3.5.2 The bound aliasing problem

The attitude towards bound aliasing presented in this report is rather le-
nient : in case of aliasing, just give the priority to the higher bound. This
is a very recent (and quite daring) change to our perception of gMLF : our
first impulse was to forbid it entirely. Indeed, it seems very strange that
the explicit binding on β disappears in the following example :

Λ(α) Λ(β ≥ α) e

Is it really correct to simply forget the β≥α binding that the user ex-
plicitely specified ? We decided that it wasn’t, and raised a type error in
that case.
However, with the type-level abstraction constructs, life got harder for

bound alias detectors :

Λ(α) Λ(β ≥ (λ(γ) γ) α) e

In this case, the bound alias problem is only detected at β-reduction.
With our lazy β-reduction strategy, it wouldn’t raise an error unless the
bound was involved in an unification problem. And it is even worse :

delayed alias := Λ(F:⋆→⋆) Λ(α) Λ(β ≥ F α) e

This looks like a perfectly valid MLFω expression. Give it to the toplevel
and it will gladly accept it. Then, in the next phrase, try something with
delayed alias[λ(γ)γ], and you get a delayed bound alias error.
We looked for all sorts of solutions to this issue, including simply for-

bidding the use of the type-level identity, or equally dangerous (λ(α) β)

constant functions. The best solution so far is a kind system proposed by
Didier Rémy, that would use two kinds N and P instead of ⋆: Non-protected
(from bound alias) and Protected. The ”safe” types such as σ₁→σ₂ would be
kinded P, and the ”dangerous” type variables would have kind N. In binding
positions, we would only accept higher-kinded types with result kind P.
This solution can probably be hidden from the user by using some sort

of kind inference : MLF syntactical expression would only use the ⋆ kind,
and an analysis would infer if it really is N or P. However, that would only
give a conservative approximation, with false negatives : some type-level
functions would be rejected at elimination sites where they would actually
be ”bound alias safe”.
The present lenient solution is much simpler, but has potentially unde-

sirable side-effects. For example, the inferred type for fun x -> x[int] is,
surprisingly, ∀i(α)α→α. The gMLF inference result is really ∀i(α) (∀i(β)α)→α,
where the inner ∀i is the trace of an ”unlocked (∀) node”, but in gMLF un-
used bindings have no semantic meaning, so ∀i(β)α is equivalent to α.
The fact that the β binder comes from an unlocked explicit quantification

can be recovered from the complete type : we can detect the presence of the

(∀) node. This suggests that we may, in some cases, display those binders
differently to the user, and in particular avoid that they get erased when
they’re considered useless. We had no time to investigate further.
A promising approach to attenuate the sometime surprising effects of the

lenient rule, suggested by Didier, would be to still emit warnings in bound
aliasing situations. We would benefit from the two approaches at once :
the — necessarily approximative for higher-order types — warnings would
prevent user surprise at vanishing quantifiers, but the type system would
use the simpler, predictable and complete lenient strategy.
We’re not sure the ”bound alias” story is definitely closed yet. We may

discover new issues with the lenient approach, and search for a better so-
lution. In the software prototype, Fω features have been marked ”experi-
mental” and are disabled by default.

15

References

[Bar91] Henk Barendregt. Introduction to generalized type systems. J.
Funct. Program., 1(2):125–154, 1991.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’́etat, Uni-
versity of Paris VII, 1972.

[Her09] Paolo Herms. Partial Type Inference with Higher-Order Types.
Master thesis, University of Pisa and INRIA, 2009. Available from:
http://pauillac.inria.fr/~remy/mlf/Herms@master2009.pdf.

[Mil78] R. Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17:348–375, December
1978.

[MT10] Giulio Manzonetto and Paolo Tranquilli. Harnessing mlf with
the power of system f. In Mathematical Foundations of Com-
puter Science, volume 6281 of LNCS, pages 525–536, August
2010. Available from: http://perso.ens-lyon.fr/paolo.tranquilli/
content/docs/snmlf.pdf.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The
MIT Press, Massachusetts Institute of Technology Cambridge,
Massachusetts 02142, 2002. Available from: http://www.cis.

upenn.edu/~bcpierce/tapl/.

[PR05] François Pottier and Didier Rémy. The essence of ML type infer-
ence. In Benjamin C. Pierce, editor, Advanced Topics in Types
and Programming Languages, chapter 10, pages 389–489. MIT
Press, 2005. Available from: http://cristal.inria.fr/attapl/.

[RRD10] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-
ing modules. In TLDI ’10: Proceedings of the 5th ACM SIG-
PLAN workshop on Types in language design and implementa-
tion, pages 89–102, New York, NY, USA, 2010. ACM. Available
from: http://dx.doi.org/10.1145/1708016.1708028.

[RY08] Didier Rémy and Boris Yakobowski. A church-style intermedi-
ate language for MLF (extended version). Available at http:

//gallium.inria.fr/~remy/mlf/xmlf.pdf, September 2008. Avail-
able from: http://gallium.inria.fr/~remy/mlf/xmlf.pdf.

[Wel94] J. B. Wells. Typability and type checking in the second order λ-
calculus are equivalent and undecidable. In Ninth annual IEEE
Symposium on Logic in Computer Science, pages 176–185, July
1994.

[Yak08] Boris Yakobowski. Graphical types and constraints: second-order
polymorphism and inference. PhD thesis, University of Paris
7, December 2008. Available from: http://www.yakobowski.org/

phd-dissertation.html.

16

http://pauillac.inria.fr/~remy/mlf/Herms@master2009.pdf
http://perso.ens-lyon.fr/paolo.tranquilli/content/docs/snmlf.pdf
http://perso.ens-lyon.fr/paolo.tranquilli/content/docs/snmlf.pdf
http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cis.upenn.edu/~bcpierce/tapl/
http://cristal.inria.fr/attapl/
http://dx.doi.org/10.1145/1708016.1708028
http://gallium.inria.fr/~remy/mlf/xmlf.pdf
http://gallium.inria.fr/~remy/mlf/xmlf.pdf
http://gallium.inria.fr/~remy/mlf/xmlf.pdf
http://www.yakobowski.org/phd-dissertation.html
http://www.yakobowski.org/phd-dissertation.html

