Normalization by realizability

Pierre-Évariste Dagand, Lionel Rieg, Gabriel Scherer

April 30, 2021

In this work

We study the

> computational meaning
of the adequacy lemma of
classical realizability
without using extraction, but direct
dependently-typed programming
using Curien-Herbelin

$$
\mu \tilde{\mu}
$$

calculi as our realizer language.

Section 1

Classical realizability

Classical realizability: minimal history

Classical realizability is a realizability interpretation of logics where formulas are "realized" by λ-calculus abstract machines.

Introduced in the 1990s by Jean-Louis Krivine, providing a simple approach to "realize" classical axioms as control operators.

Later work focused on realizing more "classical" axioms, in particular the family of axioms of choice.

To a programming-language-research person, classical realizability looks like a unary logical relation defined in a systematic, symmetric way.

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t : A belong to a set of truth witnesses $|A|$
- well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines $\langle t \mid e\rangle$ belong to a pole \Perp.

Those sets capture good (sound) terms/coterms/machines.
Here, we define \Perp as the set of machines that reduce to a valid machine in normal form.

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t \mid e\rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t : A belong to a set of truth witnesses $|A|$
- well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines $\langle t \mid e\rangle$ belong to a pole \Perp.

Those sets capture good (sound) terms/coterms/machines.
Here, we define \Perp as the set of machines that reduce to a valid machine in normal form.

We will define $|A|$ and $\|A\|$ such that

$$
t \in|A| \text { and } e \in\|A\| \text { imply }\langle t \mid e\rangle \in \Perp .
$$

Orthogonality is central to this:

$$
\mathcal{T}^{\perp} \triangleq\{e \mid \forall t \in \mathcal{T},\langle t \mid e\rangle \in \Perp\} \quad \mathcal{E}^{\perp} \triangleq\{t \mid \forall e \in \mathcal{E},\langle t \mid e\rangle \in \Perp\}
$$

Classical realizability: abstract machines

λ-terms:

$$
t \triangleq x|\lambda x . t| t u \quad(\lambda x . t) u \rightsquigarrow t[u / x]
$$

Abstract machines (for now):

$$
\begin{aligned}
e & \triangleq \star \mid u \cdot e & \langle t u \mid e\rangle & \rightsquigarrow\langle t \mid u \cdot e\rangle \\
t & \triangleq x|\lambda x \cdot t| t u & \langle\lambda x \cdot t \mid u \cdot e\rangle & \rightsquigarrow\langle t[u / x] \mid e\rangle \\
m & \triangleq\langle t \mid e\rangle & &
\end{aligned}
$$

Simulation: if $\langle\lfloor t\rfloor \mid \star\rangle \rightsquigarrow^{*}\langle\lfloor u\rfloor \mid \star\rangle \nLeftarrow$ then $t \rightsquigarrow * u \nLeftarrow$.

Classical realizability: abstract machines

λ-terms:

$$
t \triangleq x|\lambda x . t| t u \quad(\lambda x . t) u \rightsquigarrow t[u / x]
$$

Abstract machines (for now):

$$
\begin{aligned}
e & \triangleq \star \mid u \cdot e & \langle t u \mid e\rangle & \rightsquigarrow\langle t \mid u \cdot e\rangle \\
t & \triangleq x|\lambda x \cdot t| t u & \langle\lambda x \cdot t \mid u \cdot e\rangle & \rightsquigarrow\langle t[u / x] \mid e\rangle \\
m & \triangleq\langle t \mid e\rangle & &
\end{aligned}
$$

Simulation: if $\langle\lfloor t\rfloor \mid \star\rangle \rightsquigarrow^{*}\langle\lfloor u\rfloor \mid \star\rangle \nLeftarrow$ then $t \rightsquigarrow^{*} u \nLeftarrow$.

$$
\begin{aligned}
\langle(\lambda x . t) u \mid \star\rangle & \rightsquigarrow\langle\lambda x \cdot t \mid u \cdot \star\rangle \\
& \rightsquigarrow\langle t[u / x] \mid \star\rangle
\end{aligned}
$$

Classical realizability: realizability structure

A realizability structure is a triple $(\mathbb{T}, \mathbb{E}, \Perp)$ where

- \mathbb{T} is a set of machine terms
- \mathbb{E} is a set of machine contexts
- \Perp is a set of machines

such that:

- \mathbb{T}, \mathbb{E} are closed by terms and context constructors, for example:

$$
\star \in \mathbb{E} \quad t \in \mathbb{T} \wedge e \in \mathbb{E} \Longrightarrow(t \cdot e) \in \mathbb{E}
$$

- \Perp is closed by anti-reduction:

$$
\left\langle t^{\prime} \mid e^{\prime}\right\rangle \in \Perp \quad \wedge\langle t \mid e\rangle \rightsquigarrow\left\langle t^{\prime} \mid e^{\prime}\right\rangle \quad \Longrightarrow \quad\langle t \mid e\rangle \in \Perp
$$

Classical realizability: truth and falsity witnesses

The function type $A \rightarrow B$ is a negative type.
It is determined by its falsity witnesses that are values: $\|A \rightarrow B\| v$. The rest follows by orthoginality. For example:

$$
\begin{aligned}
\|A \rightarrow B\|_{V} & \triangleq|A| \cdot\|B\|_{V} \\
|A \rightarrow B| & \triangleq\|A \rightarrow B\|_{V}^{\perp} \\
\|A \rightarrow B\| & \triangleq|A \rightarrow B|^{\perp}
\end{aligned}
$$

For a positive type we could have, for example:

$$
|A+B|_{v} \triangleq|A|_{v}+|B|_{v}
$$

In general, for positives P and negatives N we have:

$$
\begin{array}{rlrl}
\|P\| & \triangleq|P| \frac{\perp}{V} & |N| & \triangleq\|N\| \frac{\perp}{V} \\
|P| \triangleq|P| \stackrel{\perp}{V} & \|N\| & \triangleq N \| \frac{\perp}{V} \perp
\end{array}
$$

Reminder: $\mathcal{T}^{\perp} \triangleq\{e \mid \forall t \in \mathcal{T},\langle t \mid e\rangle \in \Perp\}$

Classical realizability: the adequacy lemma

$$
\begin{aligned}
\Gamma \vdash t: A & \Longrightarrow \quad \forall \rho \in|\Gamma|,\lfloor t\rfloor \in|A| \\
\text { where: } \rho \in|\Gamma| & \Longleftrightarrow \forall(x: A) \in \Gamma, \rho(x) \in|A|
\end{aligned}
$$

Example proof case:

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: A \rightarrow B}
$$

$$
(\lambda x . t)[\rho] \in|A \rightarrow B|=\|A \rightarrow B\| \frac{\perp}{V}
$$

$$
\Longleftrightarrow \quad \forall e^{\prime} \in\|A \rightarrow B\|_{V}, \quad\left\langle(\lambda x . t)[\rho] \mid e^{\prime}\right\rangle \in \Perp
$$

$$
\Longleftrightarrow \quad \forall u \in|A|, e \in\|B\| v, \quad\langle(\lambda x \cdot t)[\rho] \mid u \cdot e\rangle \in \Perp
$$

$$
\Leftarrow \quad \forall u \in|A|, e \in\|B\| v, \quad\langle t[\rho, u / x] \mid e\rangle \in \Perp
$$

$$
\Leftarrow \quad \forall u \in|A|, e \in\|B\| v, \quad t[\rho, u / x] \in|B|, \quad e \in\|B\|_{v}
$$

ind. hyp.

Classical realizability: weak normalization

Let us define:

- \mathbb{T} as the set of closed terms
- \mathbb{E} as the set of closed contexts (may contain \star)
- \Perp as the set of weakly-normalizing machines

$$
m \in \Perp \triangleq \exists m_{1}, \ldots, m_{n}, t, \quad m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}=\langle\lambda x . t \mid \star\rangle
$$

This forms a realizability structure (note: antireduction).
From the adequacy lemma we get weak normalization:

$$
\begin{array}{ll}
& \vdash t: A \\
\Longrightarrow & t \in|A| \\
\Longrightarrow & \langle t \mid \star\rangle \in \Perp \\
\Longrightarrow & t \text { normalizes }
\end{array}
$$

Section 2

Our work: computational content

General approach

To study the computational content of the proof, we implement it in a dependently-typed meta-language.

Note: not program extraction. (Various previous work.)

Relevant definitions

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
\end{gathered}
$$

Relevant definitions

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
\end{gathered}
$$

Truth and falsity value witnesses have specific shapes:

$$
\|A \rightarrow B\|_{V} \triangleq|A| \cdot\|B\|_{V}
$$

$$
\pi \in\|A \rightarrow B\| V \triangleq \left\lvert\, \begin{gathered}
u \cdot e \rightarrow u \in|A| \times e \in\|B\| \\
-\rightarrow \perp
\end{gathered}\right.
$$

Relevant definitions

We turn the proposition $\langle t \mid e\rangle \in \Perp$ into a datatype of concrete evidence:

$$
\begin{gathered}
(-\in \Perp): \mathbb{M} \rightarrow \text { Type } \\
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
\end{gathered}
$$

Truth and falsity value witnesses have specific shapes:

$$
\|A \rightarrow B\|_{v} \triangleq|A| \cdot\|B\|_{v}
$$

$$
\pi \in\|A \rightarrow B\|_{V} \triangleq \left\lvert\, \begin{gathered}
\text { match } \pi \text { with } \\
-\quad \rightarrow \perp \\
-u \in|A| \times e \in\|B\|
\end{gathered}\right.
$$

The notion of orthogonality is also made computational:

$$
\begin{aligned}
& \mathcal{T}^{\perp} \triangleq\{e \mid \forall t \in \mathcal{T},\langle t \mid e\rangle \in \Perp\} \\
& e \in|A|^{\perp} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
\end{aligned}
$$

Conclusion

We are done: the way we defined truth and value witnesses (the shape of values) completely determines the evaluation strategy and its implementation.

We found it rather fun - l'll try to show you a bit of it.

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by defining, for each predicate $\in T$, a non-dependent type $\mathcal{J}(T)$.

$$
\begin{gathered}
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\} \\
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N}
\end{gathered}
$$

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by defining, for each predicate $\in T$, a non-dependent type $\mathcal{J}(T)$.

$$
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
$$

$$
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N}
$$

$$
u \cdot e \in\|A \rightarrow B\|_{v} \triangleq u \in|A| \times e \in\|B\|
$$

$$
\mathcal{J}\left(\|A \rightarrow B\|_{v}\right) \triangleq \mathcal{J}(|A|) \times \mathcal{J}\left(\|B\|_{v}\right)
$$

Simplification

$m \in \Perp$ is dependent on the machine $m, t \in|A|$ on t, etc.
As a first step, we can remove this dependency by defining, for each predicate $\in T$, a non-dependent type $\mathcal{J}(T)$.

$$
\begin{gathered}
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\} \\
\mathcal{J}(\Perp) \triangleq \mathbb{M}_{N} \\
u \cdot e \in\|A \rightarrow B\|_{V} \triangleq u \in|A| \times e \in\|B\| \\
\mathcal{J}(\|A \rightarrow B\| v) \triangleq \mathcal{J}(|A|) \times \mathcal{J}(\|B\| v) \\
t \in\|A\|^{\perp} \triangleq \forall\{e: \mathbb{E}\} . e \in\|A\| \rightarrow\langle t \mid e\rangle \in \Perp \\
\mathcal{J}\left(\|A\|^{\perp}\right) \triangleq \mathcal{J}(\|A\|) \rightarrow \mathcal{J}(\Perp)
\end{gathered}
$$

Adequacy, computationally

$$
\begin{aligned}
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }:\forall \Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq ?: \mathcal{J}(|B|)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\lceil\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. ? : $\mathcal{J}(\Perp)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v} . ?: \mathcal{J}(|A \rightarrow B|) \quad\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)\right)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v} . ?: \mathcal{J}(|A \rightarrow B|) \quad\left(?: \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)\right)$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\lceil\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

$\operatorname{rea}\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{V}$. rea $t \bar{\rho}$
$(?: \mathcal{J}(\|A \rightarrow B\| V))$
$\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp)$

Adequacy, computationally

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

```
rea (t A->B}\mp@subsup{u}{}{A})\mp@subsup{\overline{\rho}}{}{I\Gamma|}\triangleq\quad\lambda\overline{\pi}|B\mp@subsup{|}{v}{\prime}\mathrm{ .rea t }\overline{\rho}\quad(?:\mathcal{J}(|A->B|v))
```

$$
\mathcal{J}(|B|)=\mathcal{J}\left(\|B\|_{v}\right) \rightarrow \mathcal{J}(\Perp) \quad \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)=\mathcal{J}(|A|) \times \mathcal{J}\left(\|B\|_{v}\right)
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho} \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
\mathcal{J}(|B|)=\mathcal{J}(\|B\| v) \rightarrow \mathcal{J}(\Perp) \quad \mathcal{J}\left(\|A \rightarrow B\|_{v}\right)=\mathcal{J}(|A|) \times \mathcal{J}\left(\|B\|_{v}\right)
$$

Adequacy, computationally

$$
\begin{aligned}
& \text { rea }: \forall\lceil\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A| \\
& \text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
\end{aligned}
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$. rea $t \bar{\rho} \quad($ rea $u \bar{\rho}, \bar{\pi})$
(now let's un-simplify things)

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$.rea $t \bar{\rho} \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \frac{1}{V} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \quad \lambda \bar{\pi} \quad\|B\|_{v}$.rea $t \bar{\rho} \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \frac{1}{V} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda\{\pi\} \lambda \bar{\pi}^{\pi \in\|B\|_{V}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \frac{1}{V} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda\{\pi\} \lambda \bar{\pi}^{\pi \in\|B\|_{V}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$

$$
t \in\|B\| \frac{1}{V} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda\{\pi\} \lambda \bar{\pi}^{\pi \epsilon\|B\|_{V}}$. rea $t \bar{\rho}$
$($ rea $u \bar{\rho}, \bar{\pi})$
$\langle t u \mid \pi\rangle \in \Perp$

$$
t \in\|B\| \frac{1}{V} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea }: \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda\{\pi\} \lambda \bar{\pi}^{\pi \in\|B\| v}$. rea $t \bar{\rho} \quad \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
\langle t u \mid \pi\rangle \in \Perp \quad\langle t \mid u \cdot \pi\rangle \in \Perp
$$

$$
t \in\|B\|_{V}^{\perp} \triangleq \forall\{t: \mathbb{T}\} . t \in|A| \rightarrow\langle t \mid e\rangle \in \Perp
$$

Adequacy, computationally

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \rho \in|\Gamma| \rightarrow t[\rho] \in|A|
$$

$$
\text { rea : } \forall\{\Gamma\} t\{A\}\{\rho\} .\{\Gamma \vdash t: A\} \rightarrow \mathcal{J}(|\Gamma|) \rightarrow \mathcal{J}(|A|)
$$

rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho}^{|\Gamma|} \triangleq \lambda\{\pi\} \lambda \bar{\pi}^{\pi \in\|B\|_{V}}$. rea $t \bar{\rho} \quad($ rea $u \bar{\rho}, \bar{\pi})$

$$
\langle t u \mid \pi\rangle \in \Perp \quad \leadsto \quad\langle t \mid u \cdot \pi\rangle \in \Perp
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:

$$
\text { (old) }\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V} \quad \text { (new) } \quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} \times\|B\|_{V}
$$

$$
|A \times B|_{V} \triangleq|A| \times|B| \quad|A \times B|_{V} \triangleq|A|_{V} \times|B|_{V}
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:

$$
\text { (old) }\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V} \quad \text { (new) } \quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} \times\|B\|_{V}
$$

$$
|A \times B|_{V} \triangleq|A| \times|B| \quad|A \times B|_{V} \triangleq|A|_{V} \times|B|_{V}
$$

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
(old) $\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V} \quad$ (new) $\quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} \times\|B\|_{V}$

$$
|A \times B|_{V} \triangleq|A| \times|B| \quad|A \times B|_{v} \triangleq|A|_{v} \times|B|_{v}
$$

It gives us different evaluation strategies: (new) call-by-value arrow. They are forced by the typing obligations of the dependent version.

(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
(old) $\|A \rightarrow B\|_{V} \triangleq|A| \times\|B\|_{V} \quad$ (new) $\quad\|A \rightarrow B\|_{V} \triangleq|A|_{V} \times\|B\|_{V}$

$$
|A \times B|_{v} \triangleq|A| \times|B| \quad|A \times B|_{v} \triangleq|A|_{v} \times|B|_{v}
$$

It gives us different evaluation strategies: (new) call-by-value arrow.
They are forced by the typing obligations of the dependent version.

When we have both positive and negative types, some definitions are by case-distinction on the polarity. Hints of a polarized evaluation order.

CBN version

$$
\begin{array}{lll}
\left\langle{ }_{-} \mid-\right\rangle_{A} & : & \mathcal{J}(|A|) \rightarrow \mathcal{J}(\|A\|) \rightarrow \mathcal{J}(\Perp) \\
\langle\bar{t} \mid \bar{e}\rangle_{P} & \triangleq \bar{t} \bar{e} \\
\langle\bar{t} \mid \bar{e}\rangle_{N} & \triangleq \bar{e} \bar{t}
\end{array}
$$

rea $x^{A} \quad \bar{\rho} \triangleq \bar{\rho}(x)$
rea $\left(\lambda x^{A} \cdot t^{B}\right) \quad \bar{\rho} \triangleq \lambda\left(\bar{u}^{|A|}, \bar{e}^{\|B\|}\right) \cdot\langle\operatorname{rea} t \bar{\rho}[x \mapsto \bar{u}] \mid \bar{e}\rangle_{B}$
rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho} \triangleq \lambda \bar{\pi}^{\|B\| \|_{v}}$. rea $t \bar{\rho}\left(\right.$ rea $\left.u \bar{\rho}, \bar{\pi}^{\perp \perp}\right)$
rea $\left(t^{A}, u^{B}\right) \quad \bar{\rho} \triangleq(\text { rea } t \bar{\rho} \text {, rea } u \bar{\rho})^{\perp \perp}$

$$
\begin{gathered}
\text { rea }\left(\operatorname{let}(x, y)=t^{A \times B} \text { in } u^{C}\right) \bar{\rho} \triangleq \\
\left.\lambda \bar{\pi}^{\|C\|_{v}} .\langle\text { rea } t \bar{\rho}| \lambda(\bar{x}, \bar{y}) . \text { rea } u \bar{\rho}[x \mapsto \bar{x}, y \mapsto \bar{y}] \bar{\pi}\right\rangle_{A \times B}
\end{gathered}
$$

CBV version

rea $x^{A} \quad \bar{\rho} \triangleq \bar{\rho}(x)^{\perp \perp}$
rea $\left(\lambda x^{A} \cdot t^{B}\right) \quad \bar{\rho} \triangleq \lambda\left(\bar{v}^{|A| v}, \bar{e}^{\|B\|}\right) \cdot\langle\text { rea } t \bar{\rho}[x \mapsto \bar{v}] \mid \bar{e}\rangle_{B}$
rea $\left(t^{A \rightarrow B} u^{A}\right) \bar{\rho} \triangleq \lambda \bar{\pi}^{\|B\|_{v}}$. \langle rea $u \bar{\rho}| \lambda \bar{v}_{u}^{|A|_{v}}$. rea $\left.t \bar{\rho}\left(\bar{v}_{u}, \bar{\pi}^{\perp \perp}\right)\right\rangle_{A}$

$$
\operatorname{rea}\left(t^{A}, u^{B}\right) \bar{\rho} \triangleq
$$

$$
\left.\lambda \bar{\pi}^{\|A \times B\|} \cdot\langle\text { rea } t \bar{\rho}| \lambda \bar{v}_{t}^{|A|_{V}} \cdot\left\langle\text { rea } u \bar{\rho} \mid \lambda \bar{v}_{u}^{|B|_{V}} \cdot \bar{\pi}\left(\bar{v}_{t}, \bar{v}_{u}\right)\right\rangle_{B}\right\rangle_{A}
$$

$$
\text { rea }\left(\operatorname{let}(x, y)=t^{A \times B} \text { in } u^{C}\right) \bar{\rho} \triangleq
$$

$$
\left.\lambda \bar{\pi}^{\|C\|_{v}} .\langle\text { rea } t \bar{\rho}| \lambda(\bar{x}, \bar{y}) . \text { rea } u \bar{\rho}[x \mapsto \bar{x}, y \mapsto \bar{y}] \bar{\pi}\right\rangle_{A \times B}
$$

Extraction

(Years) after writing all this on paper, we implemented it in Coq mechanized type-checking.
We hoped that extraction would return the "simplified" code back.

$$
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
$$

Extraction

(Years) after writing all this on paper, we implemented it in Coq mechanized type-checking.
We hoped that extraction would return the "simplified" code back.

$$
m \in \Perp \triangleq\left\{m_{n} \in \mathbb{M}_{N} \mid m \rightsquigarrow m_{1} \rightsquigarrow \ldots \rightsquigarrow m_{n}\right\}
$$

Record FamR (A : Type) : Type := In \{ J: Type ;

$$
\mathrm{R}: \mathrm{A} \rightarrow \mathrm{~J} \rightarrow \text { Prop }\} .
$$

Definition belong $\{\mathrm{A}\}:$ FamR $\mathrm{A} \rightarrow \mathrm{A} \rightarrow$ Type $:=$ fun $\mathrm{T} t \Rightarrow\{\mathrm{t} 0: \mathrm{J}(\mathrm{T}) \mid R(\mathrm{~T}) \mathrm{t} \mathrm{t} 0\}$.
Definition pole : FamR machine $:=$ In machine
(fun $m m^{\prime} \Rightarrow$ Util.many red $m \mathrm{~m}^{\prime} \wedge \neg$ (exists $\mathrm{m}^{\prime \prime}$, red $\mathrm{m}^{\prime} \mathrm{m}^{\prime \prime}$).
Definition orthT (P : FamR term): FamR stack :=
In (forall t : term, belong $\mathrm{t} P \rightarrow \mathrm{~J}($ pole $)$)
(fun $\mathrm{e} k \Rightarrow$ forall $\mathrm{t}_{\mathrm{p}}, \mathrm{R}$ (pole) $(\mathrm{t}, \mathrm{e})\left(\mathrm{k} \mathrm{t}_{\mathrm{t}}\right)$).

Related work: NbE

Hugo Herbelin (informally) explains that realizability and normalization-by-evaluation (NbE) are two sides of the same coin.

$$
\begin{gathered}
(r e a) \quad \vdash t: A \rightarrow t \in|A| \\
(N b E) \quad(\vdash t: A \rightarrow \Vdash A) \wedge(\Vdash A \rightarrow\{v \mathrm{NF} \mid \vdash v: A\})
\end{gathered}
$$

The computational aspect of NbE was already obvious - duh!

The end.

Thanks!

Any questions?

Auxiliary definitions

$$
\begin{aligned}
& { }_{-}^{\perp \perp} \quad: \quad \mathcal{J}(|P| v) \rightarrow \mathcal{J}(|P|) \\
& \left(\bar{v}^{|P| v}\right)^{\perp \perp} \triangleq \lambda \bar{e}^{\|P\|} . \bar{e} \bar{v} \\
& { }_{-}^{\perp \perp} \quad: \quad \mathcal{J}\left(\|N\|_{V}\right) \rightarrow \mathcal{J}\left(\|N\|_{V}\right) \\
& \left(\bar{\pi}^{\|N\|}\right)^{\perp \perp} \triangleq \lambda \bar{t}^{|N|} \cdot \bar{t} \bar{\pi} \\
& { }_{-}^{\perp \perp} \quad: \quad \mathcal{J}(|A| v) \rightarrow \mathcal{J}(|A|) \\
& \left(\bar{v}^{|P| v}\right)^{\perp \perp} \triangleq \bar{v}^{\perp \perp} \\
& \left(\bar{t}^{|N|}\right)^{\perp \perp} \triangleq \bar{t} \\
& \stackrel{\perp \perp}{-} \quad: \quad \mathcal{J}\left(\|A\|_{V}\right) \rightarrow \mathcal{J}(\|A\|) \\
& (\bar{e}\|P\| v)^{\perp \perp} \triangleq \bar{e} \\
& \left(\bar{\pi}^{\|N\|}\right)^{\perp \perp} \triangleq \bar{\pi}^{\perp \perp}
\end{aligned}
$$

