
On the Relevance of Programming Language Theory

Gabriel Scherer

Gallium – INRIA

Feburary 16th, 2013

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 1 / 16



What programming language researchers do

Our goal: help people design programming languages that help people
write better programs.

In a good programming language:

We understand well what the programs mean.

Meaningless programs are rejected.

Meaningful things we want to do can be expressed in the language.

Researchers use mathematics to define meaning, and study programs as
mathematical objects.
They write papers about:

how to better define some programming constructs

how to reject more meaningless programs

how to express more meanings as programs

how to prove that all the above works (better proof techniques)

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 2 / 16



What programming language researchers do

Our goal: help people design programming languages that help people
write better programs.

In a good programming language:

We understand well what the programs mean.

Meaningless programs are rejected.

Meaningful things we want to do can be expressed in the language.

Researchers use mathematics to define meaning, and study programs as
mathematical objects.
They write papers about:

how to better define some programming constructs

how to reject more meaningless programs

how to express more meanings as programs

how to prove that all the above works (better proof techniques)

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 2 / 16



What programming language researchers do

Our goal: help people design programming languages that help people
write better programs.

In a good programming language:

We understand well what the programs mean.

Meaningless programs are rejected.

Meaningful things we want to do can be expressed in the language.

Researchers use mathematics to define meaning, and study programs as
mathematical objects.
They write papers about:

how to better define some programming constructs

how to reject more meaningless programs

how to express more meanings as programs

how to prove that all the above works (better proof techniques)

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 2 / 16



Motivation of this talk

Unfortunately, programming language research is often considered
disconnected from the industrial practice. Does it really help people that
we write papers about formal toy languages?

Technology can change fast, research moves slowly.

Researchers are not interested in design patterns, agile programming
or XML.

Who cares about typed λ-calculi?

Thesis of this talk

Programming Language Theory (PLT) is relevant to real world practices.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 3 / 16



Motivation of this talk

Unfortunately, programming language research is often considered
disconnected from the industrial practice. Does it really help people that
we write papers about formal toy languages?

Technology can change fast, research moves slowly.

Researchers are not interested in design patterns, agile programming
or XML.

Who cares about typed λ-calculi?

Thesis of this talk

Programming Language Theory (PLT) is relevant to real world practices.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 3 / 16



What we cannot do

Produce industrial-strengh programming languages to sweep industrial
practices. It is not a research problem: you need tools, libraries, good
documentation, marketing/buzz efforts, etc. etc.

“ Social factors influence language adoption decisions more than
intrinsic features do. Libraries, legacy code, and developer familiarity
are the most important factors. ”

Leo Meyerovitch and Ariel Rabkin, “Social Influences on Language Adoption”

“ We are not fashion designers. ”

Tony Hoare

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 4 / 16



What can we do?

Not sure if there really is a link between our maths and your programming?

Just look at the (cool?) things we can do:

Explain mistakes
breaking mathematical properties also hurts usability

Inspire new features
once a concept is expressed in elegant maths, it Just Works

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 5 / 16



Variable scoping examples

Functions are a central concept to most programming language.

They allow to define a meaning somewhere, and use it somewhere else.

Transforming a complex expression in a call to a function (defined in the
same environment) is a valid transformation.

Conversely, we can replace such a function by its definition to understand
the program.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 6 / 16



Getting scope wrong

def sum(seq):

result = 0

for x in seq:

result = result + x

return result

def sum(seq):

result = 0

def handle(x):

result = result + x

for x in seq:

handle(x)

return result

“ [The well-known, elegant solution] yields a simple and consistent
model, but it would be incompatible with all existing Python code. ”

Ka-Ping Yee, PEP 3104

def handle(x):

nonlocal result

result = result + x

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 7 / 16



Getting scope wrong

def sum(seq):

result = 0

for x in seq:

result = result + x

return result

def sum(seq):

result = 0

def handle(x):

result = result + x

for x in seq:

handle(x)

return result

“ [The well-known, elegant solution] yields a simple and consistent
model, but it would be incompatible with all existing Python code. ”

Ka-Ping Yee, PEP 3104

def handle(x):

nonlocal result

result = result + x

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 7 / 16



Getting scope wrong again

def fact(m):

result = 1

for i in range(1,m+1):

result = result * i

return result

def sum_facts(n):

result = 0

def handle(x):

nonlocal result

result = result + x

for i in range(1,n+1):

handle(fact(i))

return result

def sum_facts(n):

result = 0

def handle(x):

nonlocal result

result = result + x

for i in range(1,n+1):

result = 1

for i in range(1,m+1):

result = result * i

handle(result)

return result

Failure: no way to define local variables.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 8 / 16



Getting scope wrong again

def fact(m):

result = 1

for i in range(1,m+1):

result = result * i

return result

def sum_facts(n):

result = 0

def handle(x):

nonlocal result

result = result + x

for i in range(1,n+1):

handle(fact(i))

return result

def sum_facts(n):

result = 0

def handle(x):

nonlocal result

result = result + x

for i in range(1,n+1):

result = 1

for i in range(1,m+1):

result = result * i

handle(result)

return result

Failure: no way to define local variables.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 8 / 16



Inclusion (subtyping)

Natural refinement relation: A ⊆ B when

all values at type A also have type B

you can always use an A when a B is expected

class Animal:

get_older: time -> Animal

class Snake:

get_older: time -> Snake

Animal a = new Bear

a.get_older(5 years)

Animal a = new Snake

a.get_older(5 years)

class Animal:

meet: Animal -> Reaction

class Snake:

meet: Snake -> Reaction

Animal a = new Bear

react = a.meet(new Mouse)

Animal a = new Snake

react = a.meet(new Mouse)

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 9 / 16



Inclusion (subtyping)

Natural refinement relation: A ⊆ B when

all values at type A also have type B

you can always use an A when a B is expected

class Animal:

get_older: time -> Animal

class Snake:

get_older: time -> Snake

Animal a = new Bear

a.get_older(5 years)

Animal a = new Snake

a.get_older(5 years)

class Animal:

meet: Animal -> Reaction

class Snake:

meet: Snake -> Reaction

Animal a = new Bear

react = a.meet(new Mouse)

Animal a = new Snake

react = a.meet(new Mouse)

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 9 / 16



Another example: numerical hierarchies

N ⊆ R

All functions N→ N are also functions N→ R. You may safely widen the
return type of a function.

But all functions N→ R are not functions R→ R. It’s the other way
around. You can only narrow the input type of a function.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 10 / 16



Getting function inclusion right

Argument type inclusion goes “in the other direction”. This is
contravariance. Well-understood in the research community since the
eighties.

Programming language designers repeatedly got this wrong: they assume
that everythings can be widened.

Java (199x) made this mistake for mutable arrays. This lead to user bugs
and performance issues.

Still considered too complex for practitioners. Dart (2011) willingly gives
up on (generics) variance.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 11 / 16



More positive interactions

Programming language researchers hired by the industry to work on:

specifying the meaning of language constructs

improving performance

adding important but complex features (eg. generics/templates)

language evolution: evolve an ugly language into something
reasonable – while preserving compatibility

Prominent examples:

Java (Sun/Oracle)

C] (Microsoft)

JavaScript (Mozilla, Google...)

Promising research/community/industry interaction: Rust at Mozilla.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 12 / 16



More positive interactions

Programming language researchers hired by the industry to work on:

specifying the meaning of language constructs

improving performance

adding important but complex features (eg. generics/templates)

language evolution: evolve an ugly language into something
reasonable – while preserving compatibility

Prominent examples:

Java (Sun/Oracle)

C] (Microsoft)

JavaScript (Mozilla, Google...)

Promising research/community/industry interaction: Rust at Mozilla.

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 12 / 16



The subject of my talk
Type systems: the static semantics of programming languages.
Weird math-looking formal syntax.

Lambda
Γ, x : σ ` t : τ

Γ ` λx .t : σ → τ

Some example:

α, x : α ` x : α

α ` (λx .x) : α→ α

` (λx .x) : ∀α.α→ α

Beautiful formal properties: strong normalization, hierarchies of increasing
logical power.

div2 : ∀n,∃k , {2 ∗ k = n} ⊕ {2 ∗ k + 1 = n}
Difficult practical questions: type inference (principality?), type erasure...
Type systems for fine-grained properties: termination, resource analysis,
time and memory complexity...Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 13 / 16



Thanks!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 14 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Some success stories of research ideas

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 15 / 16



Bonus Slide: Examples of challenges ahead

Constant push for static typing and analyses to be more expressive and
simpler, less invasive at the same time.

Theoretical difficulties with modularity (we don’t really know how to build
large-scale systems).

Subtle cohabitation of proofs, static analyses and dynamic checks.

Lack of understanding of the long-term tradeoffs of concurrency models.

Under-represented areas: tooling, live programming/prototyping...

Gabriel Scherer (Gallium – INRIA) Relevance of PL theory Feburary 16th, 2013 16 / 16


