Focusing on program representations

Gabriel Scherer
Partout, INRIA Saclay (Paris area)

September 28, 2022

Intro

"Are these two proofs the same?"
"Are these two programs the same?"
(In this talk: propositional / simply typed setting.)

Section 1

Focusing

Focusing

Focusing is a technique from proof theory [Andreoli, 1992].

It studies invertibility of connectives
to structure the search space.

Type theory perspective: canonical representations.

$$
t \approx_{\beta \eta} u \quad \stackrel{?}{\Longrightarrow} \quad t \approx_{\alpha} u
$$

$$
\frac{\Gamma \vdash \underline{A} \quad \Gamma, \underline{B} \vdash C}{\Gamma, \underline{A \rightarrow B} \vdash C}-
$$

$$
\frac{\Gamma, \underline{A_{i}} \vdash C}{\Gamma, \underline{A_{1} \times A_{2}} \vdash C}-
$$

$$
\frac{\Gamma, A_{1} \vdash C \quad \Gamma, A_{2} \vdash C}{\Gamma, A_{1}+A_{2} \vdash C}
$$

$$
\overline{\Gamma, 0 \vdash C}+
$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$
\frac{\Gamma \vdash \underline{A} \quad \Gamma, \underline{B} \vdash C}{\Gamma, \underline{A \rightarrow B} \vdash C}-
$$

$$
\frac{\Gamma, \underline{A_{i}} \vdash C}{\Gamma, \underline{A_{1} \times A_{2}} \vdash C}-
$$

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \times A_{2}}
$$

$$
\frac{\Gamma, A_{1} \vdash C \quad \Gamma, A_{2} \vdash C}{\Gamma, A_{1}+A_{2} \vdash C}
$$

$$
\overline{\Gamma, 0 \vdash C}+
$$

$$
\frac{\frac{\Gamma \vdash \underline{A_{i}}}{\Gamma \vdash \underline{A_{1}+A_{2}}}+}{\sqrt{\Gamma \vdash 1}-}
$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$
\begin{aligned}
& N, M::=A \rightarrow B|A \times B| 1 \quad P, Q::=A+B \mid 0 \\
& A, B::=P|N| \alpha \quad P_{\mathrm{a}}, Q_{\mathrm{a}}::=P\left|\alpha \quad N_{\mathrm{a}}, M_{\mathrm{a}}::=N\right| \alpha
\end{aligned}
$$

Invertible phase

$$
\frac{\frac{?}{\alpha+\beta \vdash \alpha}}{\alpha+\beta \vdash \beta+\alpha}
$$

If applied too early, non-invertible rules can ruin your proof.
Focusing restriction 1: invertible phases
Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Invertible phase

$$
\frac{\frac{?}{\alpha+\beta \vdash \alpha}}{\alpha+\beta \vdash \beta+\alpha}
$$

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible

- and their order does not matter.

Imposing this restriction gives a single proof of $(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ instead of two ($\lambda f . f$ and $\lambda f . \lambda x . f x)$.

After all invertible rules, negative context $\Gamma_{\text {na }}$, positive goal P_{a}.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Non-invertible phases

After all invertible rules, negative context, positive goal.
Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible - until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial ! Example of removed redundancy:

$$
\begin{gathered}
\frac{\alpha_{2},}{} \quad \beta_{1} \vdash A \\
\hline \alpha_{2} \times \alpha_{3}, \quad \beta_{1} \vdash A \\
\hline \alpha_{2} \times \alpha_{3}, \quad \beta_{1} \times \beta_{2} \vdash A \\
\hline \alpha_{1} \times \alpha_{2} \times \alpha_{3}, \beta_{1} \times \beta_{2} \vdash A
\end{gathered}
$$

This was focusing:

- invertible as long as a rule matches, until $\Gamma_{\mathrm{na}} \vdash P_{\mathrm{a}}$
- then pick a formula
- then non-invertible as long as a rule matches, until polarity change

Completeness:

$$
\Gamma \vdash A
$$

$\Gamma \vdash_{\text {foc }} A$

a focused natural deduction

$$
\begin{gathered}
N, M::=A \rightarrow B|A \times B| 1 \quad P, Q::=A+B \mid 0 \\
A, B:=P|N| \alpha \quad P_{\mathrm{a}}, Q_{\mathrm{a}}::=P\left|\alpha \quad N_{\mathrm{a}}, M_{\mathrm{a}}::=N\right| \alpha \\
\\
\\
\Gamma_{\mathrm{na}}::=\emptyset \mid \Gamma_{\mathrm{na}}, N_{\mathrm{a}}
\end{gathered}
$$

$\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} A$ invertible phase (decomposes Δ, A)
$\Gamma_{\mathrm{na}} \vdash_{\text {foc }} P_{\mathrm{a}}$ choice of focus
$\Gamma_{\text {na }} ; N \Downarrow M_{\mathrm{a}}$ non-invertible negative rules
$\Gamma_{\mathrm{na}} \Uparrow P$ non-invertible positive rules
(inspired by Brock-Nannestad and Schürmann [2010])

$$
\begin{aligned}
& \Gamma_{\mathrm{na}} ; \Delta, A \vdash_{\mathrm{inv}} B \\
& \frac{\left(\Gamma_{\mathrm{na}} ; \Delta \vdash_{\mathrm{inv}} A_{i}\right)^{i}}{\Gamma_{\mathrm{na}} ; \Delta \vdash_{\mathrm{inv}} A_{1} \times A_{2}} \\
& \frac{\left(\Gamma_{\mathrm{na}} ; \Delta, A_{i} \vdash_{\mathrm{inv}} B\right)^{i}}{\Gamma_{\mathrm{na}} ; \Delta, A_{1}+A_{2} \vdash_{\mathrm{inv}} B} \\
& \overline{\Gamma_{\text {na }} ; \Delta, 0 \vdash_{\text {inv }} A} \\
& \overline{\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} 1} \\
& \frac{\Gamma_{\mathrm{na}}, \Gamma_{\mathrm{na}}^{\prime} \vdash_{\mathrm{foc}} P_{\mathrm{a}}}{\Gamma_{\mathrm{na}} ; \Gamma_{\mathrm{na}}^{\prime} \vdash_{\mathrm{inv}} P_{\mathrm{a}}} \\
& \frac{\Gamma_{\mathrm{na}} \Uparrow P}{\Gamma_{\mathrm{na}} \vdash_{\mathrm{foc}} P} \quad \frac{\Gamma_{\mathrm{na}}, N ; N \Downarrow \alpha}{\Gamma_{\mathrm{na}}, N \vdash_{\mathrm{foc}} \alpha} \quad \frac{\Gamma_{\mathrm{na}}, N ; N \Downarrow P}{\Gamma_{\mathrm{na}}, N \vdash_{\mathrm{foc}} Q_{\mathrm{a}}} \\
& \frac{\Gamma_{\text {na }} \Uparrow A_{i}}{\Gamma_{\text {na }} \Uparrow A_{1}+A_{2}} \\
& \overline{\Gamma_{\text {na }}, \alpha \Uparrow \alpha} \\
& \frac{\Gamma_{\text {na }} ; \emptyset \vdash_{\text {inv }} N}{\Gamma_{\text {na }} \Uparrow N} \\
& \frac{\Gamma_{\mathrm{na}} ; N \Downarrow A_{1} \times A_{2}}{\Gamma_{\mathrm{na}} ; N \Downarrow A_{i}} \quad \frac{\Gamma_{\mathrm{na}} ; N \Downarrow A \rightarrow B \quad \Gamma_{\mathrm{na}} \Uparrow A}{\Gamma_{\mathrm{na}} ; N \Downarrow B}
\end{aligned}
$$

Section 2

Focused λ-calculus

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-short η-long:

$$
(y: \alpha \rightarrow \beta)=\lambda x: \alpha \cdot(y x: \beta)
$$

β-normal forms (negative)

β-short normal forms:

$$
\begin{gathered}
\pi_{1}(t, u)=t \\
v, w::=\lambda x \cdot v|(v, w)| n \\
n, m::=\pi_{i} n|n v| x
\end{gathered}
$$

β-short η-long:

$$
\begin{aligned}
& (y: \alpha \rightarrow \beta)=\lambda x: \alpha \cdot(y x: \beta) \\
& v, w::=\lambda x \cdot v|(v, w)|(n: \alpha) \\
& n, m::=\pi_{i} n|n v| x
\end{aligned}
$$

What about sums?

$$
\begin{aligned}
& v, w::=\lambda x . v|(v, w)| \sigma_{i} v \mid(n: \alpha) \\
& n, m:: \left.=\pi_{i} n|n v|\left(\begin{array}{l|l}
\text { match } n \text { with } & \begin{array}{l}
\sigma_{1} y_{1} \rightarrow v_{1} \\
\sigma_{2} y_{2} \rightarrow v_{2}
\end{array}
\end{array}\right) \right\rvert\, x
\end{aligned}
$$

Does not work:

$$
\binom{\text { match } n \text { with }}{\left\lvert\, \begin{aligned}
& \sigma_{1} y_{1} \rightarrow \lambda z . v_{1} \\
& \sigma_{2} y_{2} \rightarrow \lambda z . v_{2}
\end{aligned}\right.} v \quad \begin{aligned}
& \text { match } n \text { with } \\
& \left\lvert\, \begin{array}{l}
\sigma_{1} x \rightarrow \sigma_{2} x \\
\sigma_{2} x \rightarrow \sigma_{1} x
\end{array}\right.
\end{aligned}
$$

Focusing to the rescue

$$
\begin{gathered}
v, w::=\lambda x \cdot v|(v, w)|(n: \alpha) \\
n, m::=\pi_{i} n|n v| x \\
\Downarrow
\end{gathered}
$$

$\Gamma_{\text {na }} ; \Delta \vdash_{\text {inv }} v: A$

$$
v, w::=\lambda x \cdot v|(v, w)|()
$$

$$
|\operatorname{absurd}(x)| \text { match } x \text { with } \left\lvert\, \begin{aligned}
& \sigma_{1} y_{1} \rightarrow v_{1} \\
& \sigma_{2} y_{2} \rightarrow v_{2}
\end{aligned}\right.
$$

$$
\left(\Gamma_{\mathrm{na}} \vdash f: P_{\mathrm{a}}\right)
$$

$\Gamma_{\mathrm{na}} \vdash n \Downarrow N_{\mathrm{a}}$
$n, m::=\pi_{i} n|n p| x$
$\Gamma_{\mathrm{na}} \vdash p \Uparrow P_{\mathrm{a}}$
$p, q::=\sigma_{i} p \mid\left(v: N_{a}\right)$
$\Gamma_{\text {na }} \vdash_{\text {fac }} f: A$
$f \quad::=$ let $x=(n: P)$ in v $|(n: \alpha)|(p: P)$
$(\text { See also Munch-Maccagnoni [2013] })^{4}$

Completeness of focusing

Logic:
$\Gamma \vdash A$
\Longrightarrow
$\Gamma \vdash_{f o c} A$

Completeness of focusing

Logic:

$$
\left\ulcorner\vdash A \quad \Longrightarrow \quad \Gamma \vdash_{\mathrm{foc}} A\right.
$$

Programming:

$$
\Gamma \vdash t: A \quad \Longrightarrow \quad \exists v, \stackrel{\Gamma \vdash \vdash_{f o c} v: A}{v \approx_{\beta \eta} t}
$$

Canonicity

Focused normal forms are canonical for the impure λ-calculus. Proof in Zeilberger [2009], using ideas from Girard's ludics.

Canonicity

Focused normal forms are canonical for the impure λ-calculus.
Proof in Zeilberger [2009], using ideas from Girard's ludics.
Not canonical for the pure calculus.

$$
\begin{aligned}
& \text { let } x=n \text { in } C\left[\operatorname{let} x^{\prime}=n^{\prime} \text { in } v\right] \\
& \text { let } x^{\prime}=n^{\prime} \text { in } C[\text { let } x=n \text { in } v]
\end{aligned}
$$

Canonicity

Focused normal forms are canonical for the impure λ-calculus.
Proof in Zeilberger [2009], using ideas from Girard's ludics.
Not canonical for the pure calculus.

$$
\begin{aligned}
& \text { let } x=n \text { in } C\left[\operatorname{let} x^{\prime}=n^{\prime} \text { in } v\right] \\
& \text { let } x^{\prime}=n^{\prime} \text { in } C[\text { let } x=n \text { in } v]
\end{aligned}
$$

Solution: "saturation" [Scherer, 2017]

$$
f \quad::=\quad \text { let } \bar{x}=\bar{n} \text { in } v|(n: \alpha)|(p: P)
$$

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

Multi-focusing in one slide

if C does not depend on B...

Multi-focusing in one slide

if C does not depend on $B \ldots$

Applications of focusing and canonicity

A clean way to extend our understanding to positives $(+, 0)$.

- evaluation order in presence of effects
- which types have a unique inhabitant?
- decidability of equivalence
- Böhm separation results: contextual and $(\beta \eta)$ coincide
- λ-definability?
- (your result here!)

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with focusing. Online draft, 2010.
Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for lambda ${ }^{-2}$. In FLOPS, 2004.

Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear Logic. Journal of Logic and Computation, 2(3), 1992.
Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction. In LPAR-17, 2010.
Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-focusing. In IFIP TCS, 2008.
Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.

Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program equivalence. PhD thesis, Université Paris-Diderot, 2016.
Gabriel Scherer. Deciding equivalence with sums and the empty type. In POPL, 2017.
Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University, 2009.

