### Focusing on program representations

Gabriel Scherer

Partout, INRIA Saclay (Paris area)

September 28, 2022

Intro

#### "Are these two proofs the same?"

 $\simeq$ 

"Are these two programs the same?"

(In this talk: propositional / simply typed setting.)

# Section 1

Focusing

## Focusing

Focusing is a technique from proof theory [Andreoli, 1992].

It studies **invertibility** of connectives to structure the search space.

Type theory perspective: canonical representations.

$$t \approx_{\beta \eta} u \qquad \stackrel{?}{\Longrightarrow} \qquad t \approx_{\alpha} u$$

$$\begin{array}{cccc}
\Gamma \vdash \underline{A} & \Gamma, \underline{B} \vdash C \\
\overline{\Gamma, \underline{A} \to \underline{B}} \vdash C \\
\hline \hline{\Gamma, \underline{A}, \underline{+} \vdash C} \\
\hline \overline{\Gamma, \underline{A}_1 \times \underline{A}_2} \vdash C \\
\hline \hline{\Gamma, \underline{A}_1 + A_2} + \\
\hline \hline{\Gamma \vdash \underline{A}_1 + \underline{A}_2} + \\
\hline \hline{\Gamma \vdash \underline{A}_1 - } \\
\hline \hline{\Gamma \vdash 1} \\
\hline
\end{array}$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$\begin{array}{cccc}
\frac{\Gamma \vdash \underline{A} & \Gamma, \underline{B} \vdash C}{\Gamma, \underline{A} \to \underline{B} \vdash C} & & & \\
\hline \\ \hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline$$

Invertible vs. non-invertible rules. Positives vs. negatives.

$$\begin{split} N, M &::= A \to B \mid A \times B \mid 1 \qquad P, Q &::= A + B \mid 0 \\ A, B &::= P \mid N \mid \alpha \qquad P_{\mathsf{a}}, Q_{\mathsf{a}} &::= P \mid \alpha \qquad N_{\mathsf{a}}, M_{\mathsf{a}} &::= N \mid \alpha \end{split}$$

#### Invertible phase

$$\frac{\frac{?}{\alpha + \beta \vdash \alpha}}{\alpha + \beta \vdash \beta + \alpha}$$

If applied too early, non-invertible rules can ruin your proof.

#### Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible – and their order does not matter.

#### Invertible phase

$$\frac{\frac{?}{\alpha + \beta \vdash \alpha}}{\alpha + \beta \vdash \beta + \alpha}$$

If applied too early, non-invertible rules can ruin your proof.

#### Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible - and their order does not matter.

Imposing this restriction gives a single proof of  $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$  instead of two  $(\lambda f. f \text{ and } \lambda f. \lambda x. f x)$ .

After all invertible rules, negative context  $\Gamma_{na}$ , positive goal  $P_{a}$ .

### Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

### Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

#### Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible – until its polarity changes.

### Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

#### Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. **Non-trivial !** Example of removed redundancy:

$$\frac{\alpha_{2}, \qquad \beta_{1} \vdash A}{\alpha_{2} \times \alpha_{3}, \qquad \beta_{1} \vdash A} \\
\frac{\alpha_{2} \times \alpha_{3}, \qquad \beta_{1} \times \beta_{2} \vdash A}{\alpha_{1} \times \alpha_{2} \times \alpha_{3}, \qquad \beta_{1} \times \beta_{2} \vdash A}$$

This was focusing:

- invertible as long as a rule matches, until  $\Gamma_{na} \vdash P_{a}$
- then pick a formula
- then non-invertible as long as a rule matches, until polarity change

Completeness:

$$\Gamma \vdash A \implies \Gamma \vdash_{foc} A$$

#### a focused natural deduction

$$N, M ::= A \rightarrow B \mid A \times B \mid 1 \qquad P, Q ::= A + B \mid 0$$
$$A, B ::= P \mid N \mid \alpha \qquad P_{a}, Q_{a} ::= P \mid \alpha \qquad N_{a}, M_{a} ::= N \mid \alpha$$
$$\Gamma_{na} ::= \emptyset \mid \Gamma_{na}, N_{a}$$

 $\Gamma_{na}$ ;  $\Delta \vdash_{inv} A$  invertible phase (decomposes  $\Delta$ , A)

 $\Gamma_{na} \vdash_{foc} P_a$  choice of focus

 $\Gamma_{na}$ ;  $N \Downarrow M_a$  non-invertible negative rules

 $\Gamma_{na} \Uparrow P$  non-invertible positive rules

(inspired by Brock-Nannestad and Schürmann [2010])

$$\frac{\Gamma_{na}; \Delta, A \vdash_{inv} B}{\Gamma_{na}; \Delta \vdash_{inv} A \to B} \qquad \frac{(\Gamma_{na}; \Delta \vdash_{inv} A_{i})^{i}}{\Gamma_{na}; \Delta \vdash_{inv} A_{1} \times A_{2}} \qquad \frac{(\Gamma_{na}; \Delta, A_{i} \vdash_{inv} B)^{i}}{\Gamma_{na}; \Delta, A_{1} + A_{2} \vdash_{inv} B} \\
\frac{\overline{\Gamma_{na}; \Delta, A_{1} + A_{2} \vdash_{inv} B}}{\overline{\Gamma_{na}; \Delta, A_{1} + A_{2} \vdash_{inv} A_{2}} \qquad \frac{\Gamma_{na}; \Gamma_{na}; \Delta, A_{1} + A_{2} \vdash_{inv} B}{\overline{\Gamma_{na}; \Delta, A_{1} + A_{2} \vdash_{inv} B_{a}} \\
\frac{\overline{\Gamma_{na}; \Delta, 0 \vdash_{inv} A}}{\overline{\Gamma_{na}; \Delta, 0 \vdash_{inv} A} \qquad \overline{\overline{\Gamma_{na}; \Delta \vdash_{inv} 1}} \qquad \frac{\Gamma_{na}, \Gamma_{na}' \vdash_{foc} P_{a}}{\overline{\Gamma_{na}; \Gamma_{na}' \vdash_{inv} P_{a}} \\
\frac{\overline{\Gamma_{na}; A, 0 \vdash_{inv} A}}{\overline{\Gamma_{na} + \Gamma_{no}} \qquad \overline{\Gamma_{na}; N \Downarrow A_{1}} \qquad \frac{\Gamma_{na}, N; N \Downarrow P}{\overline{\Gamma_{na}; N \vdash_{inv} A_{a}}} \qquad \frac{\Gamma_{na}; N \vdash_{inv} A_{a}}{\overline{\Gamma_{na}; N \vdash_{foc} Q_{a}}} \\
\frac{\overline{\Gamma_{na}; A_{1} + A_{2}}}{\overline{\Gamma_{na}; N \downarrow A_{1}}} \qquad \frac{\overline{\Gamma_{na}; N \Downarrow A \to B}}{\overline{\Gamma_{na}; N \downarrow B}} \qquad \overline{\Gamma_{na}; N \Downarrow B}$$

(some simplifications, see Scherer [2016] for full details)

# Section 2

## Focused $\lambda$ -calculus

# $\beta$ -normal forms (negative)

 $\beta$ -short normal forms:

 $\pi_1 (t, u) = t$   $v, w ::= \lambda x. v | (v, w) | n$   $n, m ::= \pi_i n | n v | x$ 

## $\beta$ -normal forms (negative)

 $\beta$ -short normal forms:

 $\pi_1 (t, u) = t$   $v, w ::= \lambda x. v | (v, w) | n$   $n, m ::= \pi_i n | n v | x$ 

 $\beta$ -short  $\eta$ -long:

$$(\mathbf{y}: \alpha \to \beta) = \lambda \mathbf{x} : \alpha. (\mathbf{y} \ \mathbf{x} : \beta)$$

### $\beta$ -normal forms (negative)

 $\beta$ -short normal forms:

 $\pi_1 (t, u) = t$   $v, w ::= \lambda x. v | (v, w) | n$   $n, m ::= \pi_i n | n v | x$ 

 $\beta$ -short  $\eta$ -long:

$$(y: \alpha \to \beta) = \lambda x : \alpha. (y x : \beta)$$
  

$$v, w ::= \lambda x. v | (v, w) | (n : \alpha)$$
  

$$n, m ::= \pi_i n | n v | x$$

### What about sums?

$$v, w ::= \lambda x. v \mid (v, w) \mid \sigma_i v \mid (n : \alpha)$$
  
$$n, m ::= \pi_i n \mid n v \mid \left( \text{match } n \text{ with } \mid \begin{array}{c} \sigma_1 y_1 \rightarrow v_1 \\ \sigma_2 y_2 \rightarrow v_2 \end{array} \right) \mid x$$

Does not work:

$$\begin{pmatrix} \text{match } n \text{ with} \\ \mid \sigma_1 \ y_1 \to \lambda z. \ v_1 \\ \sigma_2 \ y_2 \to \lambda z. \ v_2 \end{pmatrix} v \qquad \qquad \begin{array}{c} \text{match } n \text{ with} \\ \mid \sigma_1 \ x \to \sigma_2 \ x \\ \sigma_2 \ x \to \sigma_1 \ x \end{array}$$

#### Focusing to the rescue

$$v, w ::= \lambda x. v | (v, w) | (n : \alpha)$$
  

$$n, m ::= \pi_i n | n v | x$$
  

$$\Downarrow$$

$$\begin{split} \Gamma_{\mathsf{na}}; \Delta \vdash_{\mathsf{inv}} v : A & v, w ::= \lambda x. \, v \mid (v, w) \mid () \\ & | \operatorname{absurd}(x) \mid \operatorname{match} x \text{ with } \left| \begin{array}{c} \sigma_1 \, y_1 \to v_1 \\ \sigma_2 \, y_2 \to v_2 \\ & | \left( \Gamma_{\mathsf{na}} \vdash f : P_{\mathsf{a}} \right) \end{split} \right. \end{split}$$

$$\begin{split} & \Gamma_{na} \vdash n \Downarrow N_{a} & n, m ::= \pi_{i} \ n \mid n p \mid x \\ & \Gamma_{na} \vdash p \Uparrow P_{a} & p, q \ ::= \sigma_{i} \ p \mid (v : N_{a}) \\ & \Gamma_{na} \vdash_{foc} f : A & f \ ::= let \ x = (n : P) \ in \ v \\ & \mid (n : \alpha) \mid (p : P) \end{split}$$

#### (See also Munch-Maccagnoni [2013])<sup>4</sup>

Completeness of focusing

Logic:



Completeness of focusing

Logic:  $\Gamma \vdash A \implies \Gamma \vdash_{foc} A$ Programming:  $\Gamma \vdash t : A \implies \exists v, \ \begin{array}{c} \Gamma \vdash_{foc} v : A \\ v \approx_{\beta\eta} t \end{array}$ 

## Canonicity

Focused normal forms are canonical for the impure  $\lambda\text{-calculus}.$ 

Proof in Zeilberger [2009], using ideas from Girard's ludics.

## Canonicity

Focused normal forms are canonical for the impure  $\lambda$ -calculus. Proof in Zeilberger [2009], using ideas from Girard's ludics. Not canonical for the **pure** calculus.

> let x = n in C [let x' = n' in v] let x' = n' in C [let x = n in v]

## Canonicity

Focused normal forms are canonical for the impure  $\lambda$ -calculus. Proof in Zeilberger [2009], using ideas from Girard's ludics. Not canonical for the **pure** calculus.

let x = n in C [let x' = n' in v]let x' = n' in C [let x = n in v]

Solution: "saturation" [Scherer, 2017]

$$f \qquad ::= \qquad \frac{|\operatorname{let} \overline{x} = \overline{n} \operatorname{in} v|}{|(n:\alpha)|(p:P)|}$$

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

# Multi-focusing in one slide



if C does not depend on B...

# Multi-focusing in one slide





if C does not depend on B...

# Applications of focusing and canonicity

A clean way to extend our understanding to positives (+, 0).

- evaluation order in presence of effects
- which types have a unique inhabitant?
- decidability of equivalence
- Böhm separation results: contextual and  $(\beta\eta)$  coincide
- $\lambda$ -definability?
- (your result here!)

- Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with focusing. Online draft, 2010.
- Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for lambda<sup>-2</sup>. In **FLOPS**, 2004.
- Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear Logic. Journal of Logic and Computation, 2(3), 1992.
- Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction. In LPAR-17, 2010.
- Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-focusing. In **IFIP TCS**, 2008.
- Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.
- Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program equivalence. PhD thesis, Université Paris-Diderot, 2016.

Gabriel Scherer. Deciding equivalence with sums and the empty type. In POPL, 2017.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University, 2009.