Programming language research
meets new architectures

Gabriel Scherer

Parsifal, INRIA Saclay
OCaml

March 30, 2021


https://github.com/ocaml/ocaml/

Programming languages as mathematical objects
(set of programs, source-level execution function).

@ Clear setting to study program properties.
@ Can compare to real implementations.

@ Can prove properties of implementations.

Proof assistants: automated checking of large-scale human-written proofs
about maths or software.

Success stories: selL4, Compcert.

Today: programming language theory to define, design specifications.



Formal proofs guarantee the absence of bugs... within the specification.
We need tools to specify properties clearly.

Example: “the compiler is correct”. What does that mean, precisely?



Formal proofs guarantee the absence of bugs... within the specification.
We need tools to specify properties clearly.

Example: “the compiler is correct”. What does that mean, precisely?

char *decrypt_using_key(char *msg) {
char key[KEY_SIZE];
read_secret_key(key) ;
char *plaintext = decrypt(msg, key);
zero_out (key) ;
return plaintext;



A compiler comp(_) : S — T is fully abstract if

Vp1,p2 €S, p1~s p2 <=  comp(p1) =1 comp(pz)

(p1 =~ p2: indistinguishable by a reference/idealized interpreter for L)

Very simple statement.

Very strong property!



Vp1,p2 €S, p1~s p2 <=  comp(p1) =1 comp(pz)

char *decrypt_using_secret_1(char *msg) {
char key[KEY_SIZE]; read_secret_key(key) ;
char *plaintext = decrypt(msg, key);
zero_out (key) ;
return plaintext;

}

char *decrypt_using_secret_2(char *msg) {
char key[KEY_SIZE]; read_secret_key(key);
char *plaintext = decrypt(msg, key);
free(key);
return plaintext;

}



Vp1,p2 €S, p1~s p2 <=  comp(p1) =1 comp(pz)

char *decrypt_using_secret_1(char *msg) {
char key[KEY_SIZE]; read_secret_key(key) ;
char *plaintext = decrypt(msg, key);
zero_out (key) ;
return plaintext;

}

char *decrypt_using_secret_2(char *msg) {
char key[KEY_SIZE]; read_secret_key(key);
char *plaintext = decrypt(msg, key);
free(key);
return plaintext;

}

Full abstraction = enforced privacy.
5



Vp1,p2 €S, p1~sp2 <  comp(p1) =1 comp(p2)

Example of properties preserved by a full-abstraction compiler:

@ immutability guarantees
= memory access protection

@ privacy/encapsulation: data not reachable from the outside
= enclaves

@ preservation of control flow, even when calling user code/callbacks
= control-flow integrity

Most compilers are not fully-abstract,
their target lacks runtime protection features.



Full abstraction: summary

Simple, interesting property to think about.

Especially for designers of instruction-set-level features!

Possible in some cases: Javascript
Fully-Abstract Compilation to Javascript,
Fournet, Swamy, Chen, Dagand, Strub, and Livshits [2013].



Programming Language Theory research brings formal tools

relevant to study low-level systems as well.

Specify properties of interest, prove them.

Thanks!



Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves Strub,
and Benjamin Livshits. Fully Abstract Compilation to JavaScript. 2013. URL
https://hal.inria.fr/hal-00780803.

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu,
Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. Efficient and provable
local capability revocation using uninitialized capabilities. 2021.

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning about a machine
with local capabilities: Provably safe stack and return pointer management. 2018.

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Stktokens: Enforcing
well-bracketed control flow and stack encapsulation using linear capabilities. 2019.


https://hal.inria.fr/hal-00780803

	Full abstraction
	References

