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Programming languages as mathematical objects
(set of programs, source-level execution function).

@ Clear setting to study program properties.
@ Can compare to real implementations.

@ Can prove properties of implementations.

Proof assistants: automated checking of large-scale human-written proofs
about maths or software.

Success stories: selL4, Compcert.

Today: programming language theory to define, design specifications.



Formal proofs guarantee the absence of bugs... within the specification.
We need tools to specify properties clearly.

Example: “the compiler is correct”. What does that mean, precisely?
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char *decrypt_using_key(char *msg) {
char key[KEY_SIZE];
read_secret_key(key) ;
char *plaintext = decrypt(msg, key);
zero_out (key) ;
return plaintext;



A compiler comp(_) : S — T is fully abstract if

Vp1,p2 €S, p1~s p2 <=  comp(p1) =1 comp(pz)

(p1 =~ p2: indistinguishable by a reference/idealized interpreter for L)

Very simple statement.

Very strong property!
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char *decrypt_using_secret_1(char *msg) {
char key[KEY_SIZE]; read_secret_key(key) ;
char *plaintext = decrypt(msg, key);
zero_out (key) ;
return plaintext;

}

char *decrypt_using_secret_2(char *msg) {
char key[KEY_SIZE]; read_secret_key(key);
char *plaintext = decrypt(msg, key);
free(key);
return plaintext;

}
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Full abstraction = enforced privacy.
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Vp1,p2 €S, p1~sp2 <  comp(p1) =1 comp(p2)

Example of properties preserved by a full-abstraction compiler:

@ immutability guarantees
= memory access protection

@ privacy/encapsulation: data not reachable from the outside
= enclaves

@ preservation of control flow, even when calling user code/callbacks
= control-flow integrity

Most compilers are not fully-abstract,
their target lacks runtime protection features.



Full abstraction: summary

Simple, interesting property to think about.

Especially for designers of instruction-set-level features!

Possible in some cases: Javascript
Fully-Abstract Compilation to Javascript,
Fournet, Swamy, Chen, Dagand, Strub, and Livshits [2013].



Programming Language Theory research brings formal tools

relevant to study low-level systems as well.

Specify properties of interest, prove them.

Thanks!
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