Balance in programming research

Gabriel Scherer

Parsifal, INRIA Saclay

March 21, 2019
hard questions
$\left\{\begin{array}{l}\text { unsolvable terms } \\
\text { complexity of } \\
\beta \text {-reduction }\end{array}\right.$

untyped (pure)

λ-calculus	simply-typed System F

decidable checking? consistency?
hard questions

unsolvable terms complexity of β-reduction	binders effects
untyped (pure)	simply-typed System F
λ-calculus	

decidable checking? consistency?
hard systems
(MLTT, Iris...)
hard questions

hard questions

hard questions

hard questions

hard questions

unsolvable terms complexity of β-reduction	binders effects proof nets equivalence canonicity	term search pragmatics	
			decidable checking? consistency?
untyped (pure) λ-calculus	simply-typed	Prog. Lang.	hard systems
	System F	(OCaml)	(MLTT, Iris...)

OCaml

Strongly typed functional language - ML family.
Widely used in our research communities, niche outside.

Research successes: Coq, Why3, Frama-C, HOL-light, CIL, slam/sdv, F*...

Industrial successes: languages (Rust, Webassembly), finance (at Jane Street), program analysis (at Facebook), blockchain (Tezos), unikernels (at Docker).

Important common infrastructure.

Free Software project, maintained by a distributed group of 17 volunteers. (France, UK, Japan)
I'm one of the most active maintainers.

OCaml research

Active project: more applied research for OCaml. (Inspiration: what SPJ does beautifully for Haskell)

Last year:

- internship: safely unboxing mutually-recursive declarations
- internship: a type system for recursive value declarations
- collaboration: a paper on Merlin (ICFP Experience Report)

Focus: recursive value declarations
let $r e c x(t)=x(t)$
let $r e c x=1+x$
let rec $x=1:: x$

Focus: recursive value declarations

$$
\begin{aligned}
& \text { let } r e c x(t)=x(t) \\
& \text { let } r e c x=1+x \\
& \text { let } r e c x=1: x \\
& \text { fun } t->\text { (} x: \text { Delay) (} t \text {) } \\
& 1 \text { :: (x : Guard) } \\
& 1+\text { (x : Dereference) }
\end{aligned}
$$

Focus: recursive value declarations

$$
\begin{array}{ll}
\text { let } r e c ~ \\
\text { let }(t)=x(t) & \text { fun } t->(x: D e l a y)(t) \\
\text { let } r e c x=1+x & 1::(x: \text { Guard) } \\
\text { rec }:: x & 1+(x: \text { Dereference })
\end{array}
$$

$m::=$ Ignore \mid Delay \mid Guard \mid Return | Dereference $\quad \Gamma::=(x \mapsto m)^{*}$

$$
\Gamma \vdash t: m
$$

How to check a declaration?
let $\mathrm{rec} x_{1}=e_{1} \ldots$ and $x_{n}=e_{n}$ in body

Focus: recursive value declarations

$$
\begin{aligned}
& \text { let rec } x(t)=x(t) \quad \text { fun } t \rightarrow \text { (} x \text { :Delay) (} t \text {) } \\
& \text { let } r e c x=1+x \\
& \text { let rec } x=1:: x
\end{aligned}
$$

$$
\Gamma \vdash t: m
$$

How to check a declaration?
let $\mathrm{rec} x_{1}=e_{1} \ldots$ and $x_{n}=e_{n}$ in body

$$
? \vdash e_{i}: \text { Return }
$$

Focus: recursive value declarations

$$
\begin{array}{ll}
\text { let } r e c x(t)=x(t) & \text { fun } t->(x: \text { Delay })(t) \\
\text { let } r e c x=1+x & 1::(x: \text { Guard) } \\
\text { let } r e c x=1:: x & 1+(x: \text { Dereference })
\end{array}
$$

$m::=$ Ignore \mid Delay \mid Guard \mid Return | Dereference $\quad \Gamma::=(x \mapsto m)^{*}$

$$
\Gamma \vdash t: m
$$

How to check a declaration?
let rec $x_{1}=e_{1} \ldots$ and $x_{n}=e_{n}$ in body

$$
\begin{gathered}
? \vdash e_{i}: \text { Return } \\
\Gamma_{i} \vdash e_{i}: \text { Return }
\end{gathered}
$$

Focus: recursive value declarations

$$
\begin{array}{ll}
\text { let } \mathrm{rec} \mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}) & \text { fun } \mathrm{t}-\mathrm{>}(\mathrm{x}: \text { Delay })(\mathrm{t}) \\
\text { let } \mathrm{rec} \mathrm{x}=1+\mathrm{x} & 1::(\mathrm{x}: \text { Guard) } \\
\text { let } \mathrm{rec} \mathrm{x}=1:: \mathrm{x} & 1+(\mathrm{x}: \text { Dereference) } \\
m::=\text { Ignore | Delay | Guard | Return | Dereference } \quad \Gamma::=(x \mapsto m)^{*} \\
& \Gamma \vdash t: m
\end{array}
$$

How to check a declaration?
let rec $x_{1}=e_{1} \ldots$ and $x_{n}=e_{n}$ in body

$$
\begin{gathered}
? \vdash e_{i}: \text { Return } \\
\Gamma_{i} \vdash e_{i}: \text { Return } \\
\forall \Gamma_{i}, \forall x_{j}, \quad \Gamma_{i}\left(x_{j}\right) \leq \text { Guard }
\end{gathered}
$$

Transition slide.

Canonicity

What is the identity of programs (λ-terms)?
Canonical representation: a syntactic description of the representatives of the (contextual) equivalence classes.

$$
t, u \text { canonical } \Longrightarrow t \neq \alpha u \Longrightarrow t \neq \mathrm{ctx} u
$$

Application: deciding equivalence, program synthesis (maybe?). Just darn interesting.

Canonicity

What is the identity of programs (λ-terms)?
Canonical representation: a syntactic description of the representatives of the (contextual) equivalence classes.

$$
t, u \text { canonical } \Longrightarrow t \neq \alpha u \Longrightarrow t \neq \mathrm{ctx} u
$$

Application: deciding equivalence, program synthesis (maybe?). Just darn interesting.

$$
\begin{aligned}
& \wedge C(\alpha, \rightarrow, \times): \beta \text {-short } \eta \text {-long normal forms. } \\
& \wedge C(\alpha, \rightarrow, \times,+): \ldots \\
& \wedge C(\alpha, \rightarrow, \times, 1,+, 0): ?
\end{aligned}
$$

Solution proposed in 2017 using (maximal multi-)focusing.

Canonicity

What is the identity of programs (λ-terms)?
Canonical representation: a syntactic description of the representatives of the (contextual) equivalence classes.

$$
t, u \text { canonical } \Longrightarrow t \neq \alpha u \Longrightarrow t \neq \mathrm{ctx} u
$$

Application: deciding equivalence, program synthesis (maybe?). Just darn interesting.

$$
\begin{aligned}
& \wedge C(\alpha, \rightarrow, \times): \beta \text {-short } \eta \text {-long normal forms. } \\
& \wedge C(\alpha, \rightarrow, \times,+): \ldots \\
& \wedge C(\alpha, \rightarrow, \times, 1,+, 0): ?
\end{aligned}
$$

Solution proposed in 2017 using (maximal multi-)focusing.
Goal: richer types.

Canonicity: future work

System F: no subformula property.

$$
\frac{\Gamma, A[B / \alpha] \vdash C}{\Gamma \ni \forall \alpha . A \vdash C}
$$

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through (canonical) proof search.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha \cdot(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha}}
$$

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through (canonical) proof search.
$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha}}$

$$
\frac{\frac{\Gamma \vdash A \quad \oplus \quad \Gamma \vdash B}{\Gamma \stackrel{\text { def }}{=} A \rightarrow \alpha, B \rightarrow \alpha \vdash \alpha}}{\vdash \forall \alpha \cdot(A \rightarrow \alpha) \rightarrow(B \rightarrow \alpha) \rightarrow \alpha}
$$

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through (canonical) proof search.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\frac{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha \cdot(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha}}
$$

$$
\frac{\Gamma \vdash A \quad \oplus \quad \Gamma \stackrel{ }{\Gamma} \stackrel{\text { def }}{=} A \rightarrow \alpha, B \rightarrow \alpha \vdash \alpha}{\vdash \forall \alpha \cdot(A \rightarrow \alpha) \rightarrow(B \rightarrow \alpha) \rightarrow \alpha}
$$

$$
\frac{\frac{\overline{\Gamma \vdash \alpha} \quad \oplus \frac{\overline{\Gamma \vdash \alpha \rightarrow \alpha} \quad \Gamma \vdash \alpha}{\Gamma \vdash \alpha}}{\qquad \stackrel{\text { def }}{=} \alpha \rightarrow \alpha, \alpha \vdash \alpha}}{\vdash \forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha}
$$

Eliminating polymorphism

Idea: probe the structure of $\forall \alpha . A$ through (canonical) proof search.
$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \stackrel{\text { def }}{=} A \rightarrow B \rightarrow \alpha \vdash \alpha}$
$\vdash \forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha$
$\vdash \forall \alpha .(A \rightarrow \alpha) \rightarrow(B \rightarrow \alpha) \rightarrow \alpha$

On which fragments can this idea work?

Zooming out

Goal: balance between applied and theoretical research.

Zooming out

Goal: balance between applied and theoretical research.

