
Balance in programming research

Gabriel Scherer

Parsifal, INRIA Saclay

March 21, 2019

1

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F

?

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F

binders
effects

proof nets
term equivalence

canonicity

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F
linear logic

binders
effects

proof nets
term equivalence

canonicity

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F
linear logic

binders
effects

proof nets
equivalence
canonicity

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F
linear logic

binders
effects

proof nets
equivalence
canonicity

?

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F
linear logic

binders
effects

proof nets
equivalence
canonicity

Prog. Lang.
(OCaml)

decidable checking?
consistency?

2

hard questions

hard systems
(MLTT, Iris...)

untyped (pure)
λ-calculus

unsolvable terms

complexity of
β-reduction

simply-typed
System F
linear logic

binders
effects

proof nets
equivalence
canonicity

Prog. Lang.
(OCaml)

term search
pragmatics

decidable checking?
consistency?

2

OCaml

Strongly typed functional language – ML family.
Widely used in our research communities, niche outside.

Research successes: Coq, Why3, Frama-C, HOL-light, CIL, slam/sdv, F?...

Industrial successes: languages (Rust, Webassembly), finance (at Jane
Street), program analysis (at Facebook), blockchain (Tezos), unikernels
(at Docker).

Important common infrastructure.

Free Software project, maintained by a distributed group of 17 volunteers.
(France, UK, Japan)
I’m one of the most active maintainers.

3

OCaml research

Active project: more applied research for OCaml.
(Inspiration: what SPJ does beautifully for Haskell)

Last year:

internship: safely unboxing mutually-recursive declarations

internship: a type system for recursive value declarations

collaboration: a paper on Merlin (ICFP Experience Report)

4

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Focus: recursive value declarations
let rec x(t) = x(t)

let rec x = 1 + x

let rec x = 1 :: x

fun t -> (x:Delay)(t)

1 :: (x : Guard)

1 + (x : Dereference)

m ::= Ignore | Delay | Guard | Return | Dereference Γ ::= (x 7→ m)∗

Γ ` t : m

How to check a declaration?
let rec x1 = e1 ... and xn = en in body

? ` ei : Return

Γi ` ei : Return

∀Γi , ∀xj , Γi (xj) ≤ Guard

5

Transition slide.

6

Canonicity

What is the identity of programs (λ-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t, u canonical =⇒ t 6=α u =⇒ t 6=ctx u

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

ΛC (α,→,×): β-short η-long normal forms.
ΛC (α,→,×,+): ...
ΛC (α,→,×, 1,+, 0): ?

Solution proposed in 2017 using (maximal multi-)focusing.

Goal: richer types.

7

Canonicity

What is the identity of programs (λ-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t, u canonical =⇒ t 6=α u =⇒ t 6=ctx u

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

ΛC (α,→,×): β-short η-long normal forms.
ΛC (α,→,×,+): ...
ΛC (α,→,×, 1,+, 0): ?

Solution proposed in 2017 using (maximal multi-)focusing.

Goal: richer types.

7

Canonicity

What is the identity of programs (λ-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t, u canonical =⇒ t 6=α u =⇒ t 6=ctx u

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

ΛC (α,→,×): β-short η-long normal forms.
ΛC (α,→,×,+): ...
ΛC (α,→,×, 1,+, 0): ?

Solution proposed in 2017 using (maximal multi-)focusing.

Goal: richer types.

7

Canonicity: future work

System F: no subformula property.

Γ,A[B/α] ` C

Γ 3 ∀α.A ` C

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

8

Eliminating polymorphism

Idea: probe the structure of ∀α.A through (canonical) proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

On which fragments can this idea work?

9

Eliminating polymorphism

Idea: probe the structure of ∀α.A through (canonical) proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

On which fragments can this idea work?

9

Eliminating polymorphism

Idea: probe the structure of ∀α.A through (canonical) proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

On which fragments can this idea work?

9

Eliminating polymorphism

Idea: probe the structure of ∀α.A through (canonical) proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

On which fragments can this idea work?

9

Zooming out

Goal: balance between applied and theoretical research.

Theory

Practice
OCaml

STLC

Types
Implicits
EffectsF μ Π

?

10

Zooming out

Goal: balance between applied and theoretical research.

Theory

Practice
OCaml

STLC

Types
Implicits
EffectsF μ Π

?

10

