Balance in programming research

Gabriel Scherer

Parsifal, INRIA Saclay

March 21, 2019

hard questions

unsolvable terms
complexity of
[B-reduction
decidable checking’
consistency?
untyped (pure) simply-typed hard systems

A-calculus System F (MLTT, lIris...)

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
decidable checking’
consistency?
untyped (pure) simply-typed hard systems

A-calculus System F (MLTT, lIris...)

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
proof nets
decidable checking’
consistency?
untyped (pure) simply-typed hard systems
A-calculus System F (MLTT, lIris...)

linear logic,

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
proof nets
equivalence
canonicity
decidable checking’
consistency?
untyped (pure) simply-typed hard systems
A-calculus System F (MLTT, lIris...)

linear logic,

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
proof nets
equivalence
canonicity
decidable checking’
consistency?
untyped (pure) simply-typed ? hard systems
A-calculus System F) (MLTT, Iris...)

linear logic,

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
proof nets

equivalence
canonicity

decidable checking’
consistency?

untyped (pure) simply-typed Prog. Lang. hard systems
A-calculus System F (OCaml) (MLTT, Iris...)
linear logic,

hard questions

unsolvable terms
complexity of
[B-reduction binders
effects
proof nets
equivalence
canonicity

term search
pragmatics

decidable checking’
consistency?

untyped (pure) simply-typed Prog. Lang. hard systems
A-calculus System F (OCaml) (MLTT, Iris...)
linear logic,

Strongly typed functional language — ML family.
Widely used in our research communities, niche outside.

Research successes: Coq, Why3, Frama-C, HOL-light, CIL, slam/sdv, F*...

Industrial successes: languages (Rust, Webassembly), finance (at Jane
Street), program analysis (at Facebook), blockchain (Tezos), unikernels
(at Docker).

Important common infrastructure.
Free Software project, maintained by a distributed group of 17 volunteers.

(France, UK, Japan)
I'm one of the most active maintainers.

Active project: more applied research for OCaml.
(Inspiration: what SPJ does beautifully for Haskell)

Last year:
@ internship: safely unboxing mutually-recursive declarations
@ internship: a type system for recursive value declarations

@ collaboration: a paper on Merlin (ICFP Experience Report)

Focus: recursive value declarations
let rec x(t) = x(%)
let rec x =1 + x
let rec x =1 :: x

Focus: recursive value declarations
let rec x(t) = x(t) fun t -> (x:Delay) (t)
let rec x = 1 + x 1 :: (x : Guard)
let rec x =1 :: x 1 + (x : Dereference)

Focus: recursive value declarations

let rec x(t) = x(t) fun t -> (x:Delay) (t)
let rec x =1 + x 1 :: (x : Guard)
let rec x = 1 :: x 1 + (x : Dereference)
m ::= Ignore | Delay | Guard | Return | Dereference M= ((x—m’
N=t:m

How to check a declaration?
let rec xy = €1 ... and X, = €, in body

Focus: recursive value declarations

let rec x(t) = x(t) fun t -> (x:Delay) (t)
let rec x =1 + x 1 :: (x : Guard)
let rec x = 1 :: x 1 + (x : Dereference)
m ::= Ignore | Delay | Guard | Return | Dereference M= ((x—m’
N=t:m

How to check a declaration?
let rec xy = €1 ... and X, = €, in body

7+ e : Return

Focus: recursive value declarations

let rec x(t) = x(t) fun t -> (x:Delay) (t)
let rec x =1 + x 1 :: (x : Guard)
let rec x = 1 :: x 1 + (x : Dereference)
m ::= Ignore | Delay | Guard | Return | Dereference M= ((x—m’
N=t:m

How to check a declaration?
let rec xy = €1 ... and X, = €, in body

7+ e : Return

[; e : Return

Focus: recursive value declarations

let rec x(t) = x(t) fun t -> (x:Delay) (t)
let rec x =1 + x 1 :: (x : Guard)
let rec x = 1 :: x 1 + (x : Dereference)
m ::= Ignore | Delay | Guard | Return | Dereference M= ((x—m’
N=t:m

How to check a declaration?
let rec xy = €1 ... and X, = €, in body
7+ e : Return
[; e : Return

VI, Vx;, Ti(x) < Guard

Transition slide.

What is the identity of programs (A-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t,ucanonical = t#,u = tFqx U

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

What is the identity of programs (A-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t,ucanonical = t#,u = tFqx U

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

AC(a, =, x): [-short n-long normal forms.
AC(a, —, X, +): ...
AC(a,—, x,1,4,0): 7

Solution proposed in 2017 using (maximal multi-)focusing.

What is the identity of programs (A-terms)?

Canonical representation: a syntactic description of the representatives of
the (contextual) equivalence classes.

t,ucanonical = t#,u = tFqx U

Application: deciding equivalence, program synthesis (maybe?).
Just darn interesting.

AC(a, =, x): [-short n-long normal forms.
AC(a, —, X, +): ...
AC(a,—, x,1,4,0): 7

Solution proposed in 2017 using (maximal multi-)focusing.

Goal: richer types.

System F: no subformula property.

I AlB/a] - C
5 Va.AEC

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

Idea: probe the structure of Va. A through (canonical) proof search.

MrM-A M- B

r“a5B85akFa

FYa.(A— B — a) > «

Idea: probe the structure of Va. A through (canonical) proof search.

MrM-A M- B r-A @& I'FB

ras.585arFa rassa0B=ara

FYa.(A— B — a) > « FVa.(A—a) = (B—a) =«

Idea: probe the structure of Va. A through (canonical) proof search.

Mr=A MN-=B r'-A @& I'EHB
ra-8-sara ra-5a8-akFa
FYa.(A— B — a) > « FVa.(A—a) = (B—a) =«

o N+ a—« Mo
N« N«

def
rfa—aata

FVa. (o= a) > a—«

Idea: probe the structure of Va. A through (canonical) proof search.

Mr=A MN-=B r'-A @& I'EHB
r“a-B-akra ra-aB-akra
FYa.(A— B — a) > « FVa.(A—a) = (B—a) =«

. N+ a—« Mo
N« N«

def
rfa—aata

FVa. (o= a) > a—«

On which fragments can this idea work?

9

Goal: balance between applied and theoretical research.

10

Zooming out

Goal: balance between applied and theoretical research.

Practice
? <mmmmm OCam

Types
Implicits

Theory | Fpun Effects

STLC

10

