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Strongly typed functional language — ML family.
Widely used in our research communities, niche outside.

Research successes: Coq, Why3, Frama-C, HOL-light, CIL, slam/sdv, F*...

Industrial successes: languages (Rust, Webassembly), finance (at Jane
Street), program analysis (at Facebook), blockchain (Tezos), unikernels
(at Docker).

Important common infrastructure.
Free Software project, maintained by a distributed group of 17 volunteers.

(France, UK, Japan)
I'm one of the most active maintainers.



Active project: more applied research for OCaml.
(Inspiration: what SPJ does beautifully for Haskell)

Last year:
@ internship: safely unboxing mutually-recursive declarations
@ internship: a type system for recursive value declarations

@ collaboration: a paper on Merlin (ICFP Experience Report)
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VI, Vx;,  Ti(x) < Guard



Transition slide.
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Goal: richer types.



System F: no subformula property.

I AlB/a] - C
5 Va.AEC

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?
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On which fragments can this idea work?

9



Goal: balance between applied and theoretical research.
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Zooming out

Goal: balance between applied and theoretical research.

Practice
?  <mmmmm OCam

Types
Implicits

Theory | Fpun Effects

STLC
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