Programming research: a missed opportunity for secure
and libre software?

Gabriel Scherer

Parsifal, INRIA Saclay
OCaml

July 3, 2019


https://github.com/ocaml/ocaml/

What is public research? How does it work?

Pick a hard problem that we don't know how to solve.
Come up with a (partial) solution.

Evaluate it rigorously, compare with related work.

e 6 o6 o

Fully detailed presentation made public.

Software gets written. Some good. Mostly unmaintained prototypes.



Many free software projects have hard problems to solve

e Compilers (Gcee, Clang)
@ Systems research (Linux schedulers, etc.)

@ Image processing (G'MIC, etc.)

What about programming research?


http://gmic.eu
http://coccinelle.lip6.fr/

Many free software projects have hard problems to solve

e Compilers (Gcee, Clang)
@ Systems research (Linux schedulers, etc.)

@ Image processing (G'MIC, etc.)

What about programming research?

Coccinelle for the Linux kernel.


http://gmic.eu
http://coccinelle.lip6.fr/

Why3

Demo. (see demo code below)

let max_idx (a : array int) : int
returns { best ->
forall k. 0 <= k < length a -> al[best] >= alk] }

let ref best = 0 in
for i = 1 to length a - 1 do
invariant { 0 <= best < length a }
invariant { forall k . 0 <= k < i —=> al[best] >= alk] }
if a[i] > al[best] then
best <- 1i;
done;
best


http://why3.lri.fr/

Static analysis tools: rule out entire classes of failures

Out-of-bound access, overflows, division-by-zero, use-after-free, etc.

Bug finding vs. spec writing.
(annotations are good for tools and humans alike!)

Success stories: Astrée (no runtime errors in the Airbus flight-control
software), SLAM & Windows kernel, Facebook Infer.

Type systems: a special case, trying to remain simple to use.


http://www.astree.ens.fr/
https://www.microsoft.com/en-us/research/project/slam/
https://fbinfer.com/

Program verification research (2/3): Verified programming

Users write program and assertions / invariants,
tool translate them into goals for automated theorem provers.

Can prove more advanced properties.
Why3, Dafny, Spark/Ada, Frama-C.

Success stories: HTTPS stack in Everest, ProvenCore (Minix 3 variant).


http://why3.lri.fr/
https://rise4fun.com/dafny
https://en.wikipedia.org/wiki/SPARK_(programming_language)
https://frama-c.com/
https://project-everest.github.io/
http://www.provenrun.com/products/provencore/

Program verification research (3/3): Proof assistants

Users write a full mathematical proof, checked by the tool.
Can prove arbitrary results of mathematics or about programs.

Proof assistants: Coq, Agda, Isabelle...

Success story: SelL4, CompCert.


https://en.wikipedia.org/wiki/Proof_assistant
https://github.com/seL4/seL4
http://compcert.inria.fr/

Adoption in Free Software:



FLOSS is lagging behind proprietary software on programming research
adoption.

Faults on both sides: lack of time, unusable research prototypes, etc.



How to improve? (FLOSS contributors)



How to improve? (FLOSS contributors)

Easy: Safer language for new projects



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.



Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.



Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.



Questions?

10



