
Programming research: a missed opportunity for secure
and libre software?

Gabriel Scherer

Parsifal, INRIA Saclay
OCaml

July 3, 2019

1

https://github.com/ocaml/ocaml/


Academic research

What is public research? How does it work?

Pick a hard problem that we don’t know how to solve.

Come up with a (partial) solution.

Evaluate it rigorously, compare with related work.

Fully detailed presentation made public.

Software gets written. Some good. Mostly unmaintained prototypes.

2



Free Software / Academia collaborations

Many free software projects have hard problems to solve

Compilers (Gcc, Clang)

Systems research (Linux schedulers, etc.)

Image processing (G’MIC, etc.)

What about programming research?

Coccinelle for the Linux kernel.

3

http://gmic.eu
http://coccinelle.lip6.fr/


Free Software / Academia collaborations

Many free software projects have hard problems to solve

Compilers (Gcc, Clang)

Systems research (Linux schedulers, etc.)

Image processing (G’MIC, etc.)

What about programming research?

Coccinelle for the Linux kernel.

3

http://gmic.eu
http://coccinelle.lip6.fr/


Why3

Demo. (see demo code below)

let max_idx (a : array int) : int

returns { best ->

forall k. 0 <= k < length a -> a[best] >= a[k] }

=

let ref best = 0 in

for i = 1 to length a - 1 do

invariant { 0 <= best < length a }

invariant { forall k . 0 <= k < i -> a[best] >= a[k] }

if a[i] > a[best] then

best <- i;

done;

best

4

http://why3.lri.fr/


Program verification research (1/3): static analyzers

Static analysis tools: rule out entire classes of failures

Out-of-bound access, overflows, division-by-zero, use-after-free, etc.

Bug finding vs. spec writing.
(annotations are good for tools and humans alike!)

Success stories: Astrée (no runtime errors in the Airbus flight-control
software), SLAM & Windows kernel, Facebook Infer.

Type systems: a special case, trying to remain simple to use.

5

http://www.astree.ens.fr/
https://www.microsoft.com/en-us/research/project/slam/
https://fbinfer.com/


Program verification research (2/3): Verified programming

Users write program and assertions / invariants,
tool translate them into goals for automated theorem provers.

Can prove more advanced properties.

Why3, Dafny, Spark/Ada, Frama-C.

Success stories: HTTPS stack in Everest, ProvenCore (Minix 3 variant).

6

http://why3.lri.fr/
https://rise4fun.com/dafny
https://en.wikipedia.org/wiki/SPARK_(programming_language)
https://frama-c.com/
https://project-everest.github.io/
http://www.provenrun.com/products/provencore/


Program verification research (3/3): Proof assistants

Users write a full mathematical proof, checked by the tool.
Can prove arbitrary results of mathematics or about programs.

Proof assistants: Coq, Agda, Isabelle...

Success story: SeL4, CompCert.

7

https://en.wikipedia.org/wiki/Proof_assistant
https://github.com/seL4/seL4
http://compcert.inria.fr/


Adoption in Free Software:

disappointing!

FLOSS is lagging behind proprietary software on programming research
adoption.

Faults on both sides: lack of time, unusable research prototypes, etc.

8



Adoption in Free Software:disappointing!

FLOSS is lagging behind proprietary software on programming research
adoption.

Faults on both sides: lack of time, unusable research prototypes, etc.

8



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.

9



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.

9



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.

9



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.

9



How to improve? (FLOSS contributors)

Easy: Safer language for new projects

Medium: Seriously try to adopt static-analysis tools.
Provide feedback to researchers to scale their tools.

Hard: stay informed about programming research.
Money: fund programmers to go to academic conferences.

Money: fund some collaboration, or ask for joint financing.

9



Thanks

Questions?

10


