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Goal

Input: a point cloud in a metric space.

Q Is there structure in the data?
What is the topology of the space un-
derlying the data? Can we build some
sort of atlas of this space?
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data points, representing 64x64 pix-
els images of a same object, seen un-
o der various lighting and camera an-
' [] gles. (from Isomap, Science 290).
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What is the reconstruction?

Theoretical Challenges
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Algorithmic Challenges

Curse of dimensionality:

X smooth k-dimensional manifold, € > 0. For any mesh M s.t.
d (M, X) <e, |M| > c¢(X) e 2. [Gruber 1993], [Clarkson 2006]



Algorithmic Challenges

Curse of dimensionality:
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e assume high co-dimension (k << d)
e use landmarking / multi-scale approach

e Build lightweight data structures, of size c¢(k)|L|

e weaker concepts of reconstruction:

homology equivalence, persistent homology...




Algorithmic Challenges

Curse of dimensionality:

X smooth k-dimensional manifold, € > 0. For any mesh M s.t.
dg(M,X) <e, |M| > c¢(X) £3 . [Gruber 1993], [Clarkson 2006]

e assume high co-dimension (k << d)
e use landmarking / multi-scale approach

e Build lightweight data structures, of size c¢(k)|L|

e weaker concepts of reconstruction:

homology equivalence, persistent homology...
o

Q can complexity be reduced to 2°%) Poly(|L|)?
Q can complexity be made polynomial in |L|, k, d?
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Existing Techniques

Chazal, Oudot
.

-

Persistence-based reconstruction
complexity 22" Poly(|L|)

Chazal, Cohen-Steiner,
Lieutier

Boissonnat, Guibas,
Qudot



Iscale Reconstruction
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Algorithm (low dimensions)
[Guibas, O. 07]

Input: a finite point set W in R? or R.

— build L C W iteratively, and maintain its witness complex Cy (L).
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[Guibas, O. 07]

Input: a finite point set W in R? or R.

— build L C W iteratively, and maintain its witness complex Cy (L).
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Algorithm (low dimensions)
[Guibas, O. 07]

Input: a finite point set W in R? or R.

— build L C W iteratively, and maintain its witness complex Cy (L).

Init: L :=0:
° o o%
WHILE L C W oo 0% o0, ,
®e ®e
Let p := argmax,,cyyd(w, L); i °
L:=LU{p}; .
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Algorithm (low dimensions)
[Guibas, O. 07]

Input: a finite point set W in R? or R3.
— build L C W iteratively, and maintain its witness complex Cy (L).
Init: L :=0:

WHILE L C W
Let p := argmax,, .y d(w, L);
L:=LU{p}
update Cyy (L);

END_WHILE
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Algorithm (low dimensions)
[Guibas, O. 07]

Input: a finite point set W in R? or R3.
— build L C W iteratively, and maintain its witness complex Cy (L).
Init: L :=0:

WHILE L C W
Let p := argmax,, oy d(w, L);
L:=LU {p}, °
update Cyy (L); .

END_WHILE

Output: sequence of Betti numbers of Cyy ().



Key Structural Property

If X is a closed k-manifold smoothly embedded in R?, then,

under reasonable sampling conditions, Cyy (L)

=g

A»d?

»@ s

~ X

Dx (L)

- Cw (L) =

e Case k =1:
e Case k = 2:

X

)

L

(

C Dy

)

L

(

- Cw(L) 3 Dx(L)

- Cyy




Key Structural Property

If X is a closed k-manifold smoothly embedded in R?, then,
under reasonable sampling conditions, Cy (L) = Dx (L) ~ X

o Case k = 1:

-Cw (L) =Dx(L) =~ X

X

e Case k = 2:
- Cw (L) 2 Dx (L) » dilate W so that W& D X

e Case k > 3: | |
- Cw (L) € Dx (L) > assign weights to the landmarks

-Dx(L) % X » to remove all slivers from the
vicinity of Dx (L) [Cheng et al. 00]

— Source of problems: slivers



Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.
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Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()
WHILE L C W

insert p = argmax,,cyyd(w, L) in L;
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— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()
WHILE L C W
insert p = argmax,,cyyd(w, L) in L;

pump p;




Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
pump p;
update Ci:,¢ (L);

END_WHILE




Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
pump p;
update Ci:,¢ (L);

END_WHILE




Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
pump p;
update Ci:,¢ (L);

END_WHILE




Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := ()

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
pump p;
update Ci:,¢ (L);

END_WHILE




Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

Init: L := 0;

WHILE L C W
insert p = argmax,, cy-d(w, L) in L;
pump p; '
update Cy7, (L); o

END_WHILE

Output: sequence of Betti numbers of C;, . (L).



Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— maintain Cy;,. (L) for some carefully-chosen (,w.

space ~ 24|
Init: L := 0; time ~ 2¢|W?

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
pump p;
update Ci:,¢ (L);

END_WHILE
Output: sequence of Betti numbers of C;, . (L).



Persistence-Based Algorithm
[Chazal, O. 08]

Input: a finite point set W C R%.

— maintain a nested pair of easily-computable complexes, C'(L) C C*(L).

Init: L := ()
WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
update C1(L) and C?(L);
compute persistent homology of C1(L) — C%(L);

END_WHILE

Output: sequence of persistent Betti numbers of C1(L) — C?(L).



Persistence-Based Algorithm
[Chazal, O. 08]

Input: a finite point set W C R%.

— maintain a nested pair of easily-computable complexes, C'(L) C C*(L).

Init: L := 0; - easy to implement

WHILE L & W - bounded complexity

insert p = argmax,,cyyd(w, L) in L;

update C1(L) and C?(L);
compute persistent homology of C!(L) — C?(L);

- theoretical guarantees

END_WHILE

Output: sequence of persistent Betti numbers of C1(L) — C?(L).



Easy-to-compute Complexes

Let L C R® be finite and let o > 0.

1. Vietoris-Rips complex:

e Given vg, -+ ,vx € L and a € R, [vo,--- ,vk] is a simplex of R*(L) iff we
have ||[v; —vj|| < aforall 0 <i<j<k.

. C% (L) < the nerve of L% P e e ..........

10



Easy-to-compute Complexes

Let L C R® be finite and let o > 0.

1. Vietoris-Rips complex:

e Given vg, -+ ,vx € L and a € R, [vo,--- ,vk] is a simplex of R*(L) iff we
have ||[v; —vj|| < aforall 0 <i<j<k.

o C %(L) is the nerve of L2 . A e

Prop. VL C R¢, Va > 0,
C2 (L) C R*(L) CCYL).

- If the B(v;, 5), B(vj, 5) pairwise intersect,
then the v;,v; are at most o away from one an-
other.

- In addition, if vg is at distance « of vy, - -+ , v,
then vg € ﬂ?:() B(v;, ).

10



Easy-to-compute Complexes

Let L C R® be finite and let o > 0.

1. Vietoris-Rips complex:

e Given vg, -+ ,vx € L and a € R, [vo,--- ,vk] is a simplex of R*(L) iff we
have ||[v; —vj|| < aforall 0 <i<j<k.

. C% (L) < the nerve of L% P e e ..........

Prop. VL C R¢, Va > 0,
C2 (L) C R*(L) CCYL).

- holds in arbitrary metric spaces, where the
bounds are tight.

- Tight bounds in R? [de Silva, Ghrist 07]:
C2 (L) CR¥(L) CCV2(L).

10



Easy-to-compute Complexes

Let L C R® be finite and let o > 0.

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let W C R?.

e Given vo, -+ ,vr € L and a € R, w € W is an a-witness of |vg, - ,vg] if
the v; belong to the ball B(w, dx+1(w) + o), where dg1(w) is the Euclidean
distance between w and its (k + 1)th nearest landmark.

e Given a € R, Cy, (L) is the maximum abstract sim-
plicial complex with vertices in L, whose simplices
are a-witnessed by points of V.

Note: Cyy (L) = Cw (L).




Easy-to-compute Complexes

Let L C R® be finite and let o > 0.

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let W C R?.

e Given vo, -+ ,vr € L and a € R, w € W is an a-witness of |vg, - ,vg] if
the v; belong to the ball B(w, dx+1(w) + o), where dg1(w) is the Euclidean
distance between w and its (k + 1)th nearest landmark.

e Given a € R, Cy, (L) is the maximum abstract sim-
plicial complex with vertices in L, whose simplices
are a-witnessed by points of V.

Thm.: if X is a connected compact subset of R?,
s.t. dg(X, W) <dg(W, L) < + diam(X), then:
Vo > 2dg (W, L), C1(L) C C% (L) C C®(L).

- holds in arbitrary metric spaces, where the bounds are tight.

10



Easy-to-compute Complexes

Let L C R® be finite and let & > 0. Let W C R,

— Intertwined filtrations:

N|Q

C2 (L) — R*(L) — C*(L) — R**(L) — C?**(L) — - -

CH (L) = Cfy (L) = €3 (L) = C2 (L) = C250%(L) = -

— Our goal: study the homomorphisms induced by C*(L) < C% (L).

10



Topology of Unions of Balls

Recall that C¥(L) is the nerve of the union of balls L.

11



Topology of Unions of Balls

Recall that C¥(L) is the nerve of the union of balls L.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]

If X C R%is a compact set with positive weak feature size, and if du (X, L) =
e < 5 wis(X), then, for all a,a’ € [e, wis(X) — €] such that o' > a + 2¢,
and for all A € (0,wfs(X)), we have: Vk € N, Hx(X") = im 4., where
is : Hp(LY) — Hk(LO‘/) is the homomorphism induced by L* < L .

(from [Chazal, Cohen-Steiner 07])
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and for all A € (0,wfs(X)), we have: Vk € N, Hx(X") = im 4., where
is : Hp(LY) — Hk(LO‘/) is the homomorphism induced by L* < L .

ot .
. .“‘
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(from [Chazal, Cohen-Steiner 07])
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Topology of Unions of Balls

Recall that C¥(L) is the nerve of the union of balls L.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]

If X C R%is a compact set with positive weak feature size, and if du (X, L) =
e < 5 wis(X), then, for all a,a’ € [e, wis(X) — €] such that o' > a + 2¢,
and for all A € (0,wfs(X)), we have: Vk € N, Hx(X") = im 4., where
is : Hp(LY) — Hk(LO‘/) is the homomorphism induced by L* < L .

e a-complex:

Thm. [Edelsbrunner 93] Va > 0, L™ deformation retracts onto «(L).

o (87
(H .
L L - vertical arrows are homotopy

J j equivalences
- canonical inclusions commute

11



Topology of Unions of Balls

Recall that C¥(L) is the nerve of the union of balls L.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]

If X C R%is a compact set with positive weak feature size, and if du (X, L) =
e < 5 wis(X), then, for all a,a’ € [e, wis(X) — €] such that o' > a + 2¢,
and for all A € (0,wfs(X)), we have: Vk € N, Hx(X") = im 4., where
is : Hp(LY) — Hk(LO‘/) is the homomorphism induced by L* < L .

e Cech complex:

Thm (Nerve) Va > 0, C*(L) is homotopy equivalent to L“.

@7 @87
L — L - vertical arrows are homotopy
T T equivalences
Co (L) SN co/ (L) - diagram might not commute

11



About the Nerve Theorem

Thm Let L C R? be finite, and let 0 < o < o’. Then, there exist
homotopy equivalences C*(L) — L% and C* (L) — L% that make
the previous diagram commute at homology level.

12



About the Nerve Theorem

Thm Let L C R? be finite, and let 0 < o < o’. Then, there exist
homotopy equivalences C*(L) — L% and C* (L) — L% that make
the previous diagram commute at homology level.

Proof: ~ Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

e Fact: balls of L” intersect along convex (=- contractible) subspaces, if at all.

o let n =#L —1, and let AL" C X x A" be defined by: . .
ALY = U(Z);ASQL Bs(a) x |S] | .

12



About the Nerve Theorem

Thm Let L C R? be finite, and let 0 < o < o’. Then, there exist
homotopy equivalences C*(L) — L% and C* (L) — L% that make
the previous diagram commute at homology level.

Proof: ~ Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

e Fact: balls of L” intersect along convex (=- contractible) subspaces, if at all.

o let n =#L —1, and let AL" C X x A" be defined by: . .

M Uy Bl ls) et
o Let po : AL* — L® and qo : ALY — C%(L) be natural projections.

......

2 I Pa’ - the diagram commutes
ALY  — AL“" - vertical arrows are homo- = G -
Jo | L qa topy equivalences 77 @

co(L) = C(L) -

12



About the Nerve Theorem

Thm Let L C R? be finite, and let 0 < o < o’. Then, there exist
homotopy equivalences C*(L) — L% and C* (L) — L% that make
the previous diagram commute at homology level.

Corollary If X C R? is a compact set with positive weak feature size, and if

du(X,L) = € < % wis(X), then, for all a,a’ € [e, wis(X) — ] such that
o' > o+ 2¢, and for all A € (0,wfs(X)), we have: Vk € N, Hp(X") =
im ¢4, where i, : H(C*(L)) — Hj (CO‘/(L)) is the homomorphism induced by

C*(L) — C* (L).

I i S -

2e 12



Effect on Intertwined Filtrations

e Rips filtration: Let a > 2¢.

C=(L) = R*(L) = C*(L) — C**(L) — R**(L) — C**(L)

13
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Effect on Intertwined Filtrations

e Rips filtration: Let a > 2¢.

C=(L) — R*(L) — C*(L) — C**(L) — R**(L) — C**(L)

dim H,(X?*) = rank Hy(C2(L))—H(C*(L))
<
rank Hk; (Ra (L))%Hk (R4a (L))
<
rank Hy(C*(L))—~Hp(C?**(L)) = dim Hy(X?)

= im H(RY(L))—H,(R**(L)) = H,(X?), since our ring of coefficients is a field.

13



Effect on Intertwined Filtrations

o Witness complex filtration: Let o > 4e.

CF (L) = G (L) = C32(L) = C*(L) = G2 (L) = 25 (L)

dim Hp(X?) = rank Hp(C4(L))—H(C?®®%(L))

= im H(C%, (L))—Hy(C38*(L)) = Hi(X?), since our ring of coefficients is a field.

13



Effect on Intertwined Filtrations

e Intertwined filtration: Let v > %5.

0o (L) — Fo(L) — CY(L) — CU+Da(L) — Fea(L) — ¢ (L)

dim Hp(X?) =  rank Hy(C*(L))—H(C¥(L))

N——"

rank Hy (F*(L))—Hg(F°“(L))

N INA

rank Hy(C**(L))—H,(CPTV*(L)) = dim Hy(X?)

= im Hy, (F*(L))—Hy(F¢* (L)) = Hy(X?), since our ring of coefficients is a field.

13



Effect on Intertwined Filtrations

e Intertwined filtration: Let v > %5.

0o (L) — Fo(L) — CY(L) — CU+Da(L) — Fea(L) — ¢ (L)

/Bz ..................................... ........................... ......................................................... >a

= im Hy, (F*(L))—Hy(F¢* (L)) = Hy(X?), since our ring of coefficients is a field.

13



Effect on Intertwined Filtrations

e Intertwined filtration: Let v > %5.

0o (L) — Fo(L) — CY(L) — CU+Da(L) — Fea(L) — ¢ (L)

= im Hy, (F*(L))—Hy(F¢* (L)) = Hy(X?), since our ring of coefficients is a field.

13



Back to the Algorithm

Input: a finite point set W C R%.

— maintain the nested pair R* (L) C R%¢(L).

Init: L :=10, € := oc;
WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
update € := max,,cw d(w, L);
update R* (L) and R1%¢(L);
compute persistence (R* (L) — R%¢(L));

END_WHILE

Output: sequence of persistent Betti numbers of R*¢(L) — R1%¢(L).

14



Back to the Algorithm

Input: a finite point set W C R%.

Thm If W is a §-sample of some compact set X C R?, such that
0 < =wis(X), then, at all iteration such that § < & < s=wis(X),

one has: Y\ € (0,wfs(X)), Vk €N, Bk (X?) = pP(R* (L) — R'(L)).

1624
WHILE L C W o7
insert p = argmax,,cyyd(w, L) in L;
update € := max,ew d(w, L); >
update R* (L) and R1%¢(L); -
compute persistence (R* (L) — R16€(L))(;) T/e

END_WHILE

Output: sequence of persistent Betti numbers of R*¢(L) — R1%¢(L).
14



A Toy Example

[0, 1] x [0, 1]

U, v) — 1 (cos 2mTu, sin 2muw, cos 2wv, sin 27w
2

10, 000 points sampled uniformly at random from a curve drawn on Clifford’s torus.
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(linear scale).

900 carefully-chosen landmarks, € = 0.0483, Rips filtration up to 6¢

(result provided by Plex)
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A Toy Example

108 |

1

8.1

8,81

Output of the algorithm, applied blindly to the input point cloud.
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_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;
update £ := max,,cyy d(w, L);

update R4€ (L) and R16€ (L);

compute persistence (7?,45 (L) — R16e(L));

END_WHILE

16



_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;

update £ := max,,cyy d(w, L);

. u daeR4€ L) and ’RlGE L):
Hypothesis: W C R%. Plate RE(E) )

compute persistence (7?,45 (L) — R16e(L));

END_WHILE

e At the end of each iteration, the points of L are at least € away from

one another. = they are centers of pairwise-disjoint balls of radius s.
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_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;

update £ := max,,cyy d(w, L);

update R4€ (L) and R16€ (L);

Hypothesis: W C R%.

compute persistence (7?,45 (L) — R16e(L));

END_WHILE

e At the end of each iteration, the points of L are at least € away from
one another. = they are centers of pairwise-disjoint balls of radius s.

e Neighbors in the Rips complex are at most 16 away from each other.
= by a packing argument, each vertex has at most 33% neighbors.
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_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;

update £ := max,,cyy d(w, L);

update R4€ (L) and R16€ (L);

Hypothesis: W C R%.

compute persistence (7?,45 (L) — R16e(L));

END_WHILE

e At the end of each iteration, the points of L are at least € away from

one another. = they are centers of pairwise-disjoint balls of radius s.

e Neighbors in the Rips complex are at most 16 away from each other.
= by a packing argument, each vertex has at most 33% neighbors.

e Each vertex belongs to at most 233 simplices = |R6<(L)| < 233°|L|.
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Hypothesis:

Complexity

W C X smooth m-submanifold.
e << rch(X).

WHILE L. C W
insert p = argmax,,cy d(w, L) in L;
update € := max,,cyy d(w, L);
update R4€(L) and ’RlGE(L);

compute persistence (7?,45 (L) — R16e(L));

END_WHILE

e At the end of each iteration, the points of L are at least € away from

one another.

= they are centers of pairwise-disjoint balls of radius 5

g

e Neighbors in the Rips complex are at most 16 away from each other,
and close to the tangent spaces of X. = by a packing argument, each
vertex v has at most 35 neighbors.

e Each vertex belongs to at most 23°™ simplices = [R165(L)| < 235" |L|.

16



_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;

update £ := max,,cyy d(w, L);

I . update R4€ (L) and R16€ (L ;
Hypothesis:| W C X smooth m-submanifold. paat (L) (L)
compute persistence (R4€(L) SN R16€(L));

e <K I'Ch(X) END_WHILE

e At the end of each iteration, the points of L are at least € away from
one another. = they are centers of pairwise-disjoint balls of radius s.

e Neighbors in the Rips complex are at most 16 away from each other,
and close to the tangent spaces of X. = by a packing argument, each
vertex v has at most 35 neighbors.

e Each vertex belongs to at most 23°™ simplices = [R165(L)| < 235" |L|.

- transition phase: L coarse, |[R'°°(L)| scales up with d

— Two phases:
- stable phase: L dense, |R'°(L)| scales up with m
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_ WHILE L. C W
Com pleXIty insert p = argmax,,cy d(w, L) in L;

update £ := max,,cyy d(w, L);

I . update R4€ (L) and R16€ (L ;
Hypothesis:| W C X smooth m-submanifold. paat (L) (L)
compute persistence (’R,4€(L) SN R16€(L));

e <K I'Ch(X) END_WHILE

e At the end of each iteration, the points of L are at least € away from
one another. = they are centers of pairwise-disjoint balls of radius s.

e Neighbors in the Rips complex are at most 16 away from each other,
and close to the tangent spaces of X. = by a packing argument, each
vertex v has at most 35 neighbors.

e Each vertex belongs to at most 23°™ simplices = [R165(L)| < 235" |L|.

- transition phase: L coarse, |[R'°°(L)| scales up with d

— Two phases:
- stable phase: L dense, |R'°(L)| scales up with m

— with a backtracking strategy, the complexity scales up with m. 16



Complexity

example
(

size (kB)
ba
b1
b2
b3

le+86 -

166086

18068 |

1600 -

168

18 |
1

8.1

8.81

IL| = 100.

Space complexity blows up when |L| < 300, and becomes intractable when

17



Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.
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Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

Toy example:

1000 points sampled uniformly
at random on the unit 2-sphere

15 well-separated landmarks

rest of points used as witnesses
(for witness complex only)

From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk. 18



Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

Cech complex

Toy example:
y examp 10

1000 points sampled uniformly

at random on the unit 2-sphere  © 0.2 0.4 0.6 0.8 1

15 well-separated landmarks 107

. . n 1 1 1 1 1
rest of points used as witnesses ,0 0.2 0.4 0.6 0.8 1

— [

(for witness complex only)
1L

0

From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk.

0 0.2 0.4 0.6 0.8 1

Bo

b1
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Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]

The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

weak withess complex

2 s
Toy example:
;
1000 points sampled uniformly . . . . | .
at random on the unit 2-sphere  g° 61 02 03 04 05 06
15 well-separated landmarks [
. . n l L 1 l l l
rest of points used as witnesses Zn 0.1 0.2 0.3 0.4 0.5 0.5
(for witness complex only)
'l ke
n I I 1 I I I
0 0.1 02 03 04 05 06

From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk.

Bo

b1

B2
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Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

Q If W is a 0-sample of some smooth submanifold X, and L is a uniform
e-sample of W, does the topological noise in the barcode of the filtration
{Ct, (L) }a>0 depend solely on 47

/67: ............................... . ..................... . ..................................................................... >a
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Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

Thm There exist a constant o > 0 and a non-decreasing continuous
map @ : [0,0) — [0,3), s.t. forall 0 < ¢ < e < g rch(X), and for

all a € |£(8 +w(mh(X))2 e), 5 rch(X) — O(e + 5)) Cit, (L) contains a

subcomplex D homeomorphic to X and such that D — C{}, (L) induces
monomorphisms at homology level.

I s e >

O (8 + @ (repixy) e
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Witness Complex vs. Cech, Rips Filtrations

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Cech or Rips filtrations, at least on smooth submanifolds of R¢.

Thm There exist a constant o > 0 and a non-decreasing continuous
map @ : [0,0) — [0,3), s.t. forall 0 < ¢ < e < g rch(X), and for

all a € |£(8 +w(mh(X))2 e), 5 rch(X) — O(e + 5)) Cit, (L) contains a

subcomplex D homeomorphic to X and such that D — C{}, (L) induces
monomorphisms at homology level.

I s e >

® the bound on the ampli-
tude of the topological noise
cannot depend solely on 0

O (8 + @ (repixy) e
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Concluding Remarks

e A weaker concept of reconstruction:
- stands in-between classical reconstruction and topological estimation,
- complexity scales up with intrinsic dimension of the data,

- comes with theoretical guarantees on a large class of compact sets.

e New stability results for a class of filtrations:
- Cech filtration versus unions of Euclidean balls,
- filtrations intertwined with Cech filtration (Rips, witness complex),

- superiority of the witness complex on smooth submanifolds.

e A few (of many) open questions:
- can a single complex be extracted from R* (L) — R1%¢(L)?
- can the computation of the entire Rips complex be avoided?

- what is the exact power of the witness complex filtration?
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