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Géometrica Group
INRIA Futurs



Towards Persistence-Based Reconstruction

in Euclidean Spaces

Frédéric Chazal Steve Y. Oudot
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Goal

1

Input: a point cloud in a metric space.

Q Is there structure in the data?
What is the topology of the space un-
derlying the data? Can we build some
sort of atlas of this space?

Example: set of 4096-dimensional
data points, representing 64x64 pix-
els images of a same object, seen un-
der various lighting and camera an-
gles. (from Isomap, Science 290).



any classical reconstruction algorithm chooses one topological type, which here implies giving up part of the information2

Theoretical Challenges

What is the reconstruction?



in particular, an ε-sample of X is a mesh, therefore its size is exponential in the dimension of X ⇒ very large input data sets.

Algorithmic Challenges

3

Curse of dimensionality:

X smooth k-dimensional manifold, ε > 0. For any mesh M s.t.
dH(M,X) ≤ ε, |M | ≥ c(X) ε−

k
2 . [Gruber 1993], [Clarkson 2006]
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• assume high co-dimension (k << d)

• use landmarking / multi-scale approach

• weaker concepts of reconstruction:

• Build lightweight data structures, of size c(k)|L|

homology equivalence, persistent homology...



in particular, an ε-sample of X is a mesh, therefore its size is exponential in the dimension of X ⇒ very large input data sets.

Algorithmic Challenges

3

Curse of dimensionality:

X smooth k-dimensional manifold, ε > 0. For any mesh M s.t.
dH(M,X) ≤ ε, |M | ≥ c(X) ε−

k
2 . [Gruber 1993], [Clarkson 2006]

• assume high co-dimension (k << d)

• use landmarking / multi-scale approach

Q can complexity be made polynomial in |L|, k, d?

• weaker concepts of reconstruction:

• Build lightweight data structures, of size c(k)|L|

homology equivalence, persistent homology...

Q can complexity be reduced to 2O(k)Poly(|L|)?



Existing Techniques

4

Delaunay Persistent Homology

Distance Functions

- restricted Delaunay
- ε-sampling theory
- H-manifolds
- Witness complex

- filtrations (Čech, α-shape)
- persistence algorithm
- stability of diagrams

- offsets of compact sets
- critical point theory
- λ-medial axis



witness complex filtration, persistence-based reconstruction

[Boissonnat, Oudot 05]: restricted Delaunay of Lipschitz manifolds. [Guibas, Oudot 07]: witness complex and ε-sampling
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new / weaker concepts of reconstruction
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Persistence-based reconstruction

complexity 22O(k)
Poly(|L|)



Multiscale Reconstruction

• build a sequence of
complexes approximating
the input at various scales

• long stable sub-
sequences correspond to
plausible reconstructions

[Guibas, O. 07]

5



Algorithm (low dimensions)

Input: a finite point set W in R2 or R3.

→ build L ⊆W iteratively, and maintain its witness complex CW (L).

6

[Guibas, O. 07]
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Let p := argmaxw∈W d(w,L);

[Guibas, O. 07]
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Algorithm (low dimensions)

Input: a finite point set W in R2 or R3.

→ build L ⊆W iteratively, and maintain its witness complex CW (L).

Init: L := ∅;

while L ( W

L := L ∪ {p};

end while

6

Let p := argmaxw∈W d(w,L);

update CW (L);

Output: sequence of Betti numbers of CW (L).

[Guibas, O. 07]



7

Key Structural Property

• Case k ≥ 3:
- CW (L) * DX(L)
- DX(L) 6' X

• Case k = 1:
- CW (L) = DX(L) ≈ X

• Case k = 2:
- CW (L) ⊆ DX(L) ≈ X
- CW (L) + DX(L)

If X is a closed k-manifold smoothly embedded in Rd, then,
under reasonable sampling conditions, CW (L) = DX(L) ≈ X



7

Key Structural Property

→ Source of problems: slivers

• Case k ≥ 3:
- CW (L) * DX(L)
- DX(L) 6' X

• Case k = 1:
- CW (L) = DX(L) ≈ X

• Case k = 2:
- CW (L) ⊆ DX(L) ≈ X
- CW (L) + DX(L) dilate W so that W ζ ⊇ X

assign weights to the landmarks
to remove all slivers from the
vicinity of DX(L) [Cheng et al. 00]

If X is a closed k-manifold smoothly embedded in Rd, then,
under reasonable sampling conditions, CW (L) = DX(L) ≈ X

ζ



Input: a finite point set W ⊂ Rd.

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]



Input: a finite point set W ⊂ Rd.

Init: L := ∅;

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]



Input: a finite point set W ⊂ Rd.

Init: L := ∅;

while L ( W

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]



Input: a finite point set W ⊂ Rd.

Init: L := ∅;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]



pump (p) means basically that ζ and ω are updated.

Input: a finite point set W ⊂ Rd.

Init: L := ∅;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.
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pump (p) means basically that ζ and ω are updated.

new vertex is pumped

Input: a finite point set W ⊂ Rd.

Init: L := ∅;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update CωW ζ (L);

end while

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Output: sequence of Betti numbers of CωW ζ (L).

pump p;



pump (p) means basically that ζ and ω are updated.

In particular, can we devise a method whose complexity scales up with the intrinsic dimension of the data?

Input: a finite point set W ⊂ Rd.

Init: L := ∅;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update CωW ζ (L);

end while

8

→ maintain CωW ζ (L) for some carefully-chosen ζ, ω.

space ∼ 2d|W |
time ∼ 2d|W |2

Algorithm (arbitrary dimensions)
[Boissonnat, Guibas, O. 07]

Output: sequence of Betti numbers of CωW ζ (L).

ζ

pump p;



Input: a finite point set W ⊂ Rd.

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update C1(L) and C2(L);

end while

9

→ maintain a nested pair of easily-computable complexes, C1(L) ⊆ C2(L).

Persistence-Based Algorithm

Output: sequence of persistent Betti numbers of C1(L) ↪→ C2(L).

[Chazal, O. 08]

compute persistent homology of C1(L) ↪→ C2(L);

Init: L := ∅;



Input: a finite point set W ⊂ Rd.

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update C1(L) and C2(L);

end while

9

→ maintain a nested pair of easily-computable complexes, C1(L) ⊆ C2(L).

Persistence-Based Algorithm

Output: sequence of persistent Betti numbers of C1(L) ↪→ C2(L).

- easy to implement

- bounded complexity

- theoretical guarantees

[Chazal, O. 08]

compute persistent homology of C1(L) ↪→ C2(L);

Init: L := ∅;



• C
α
2 (L) is the nerve of L

α
2 .

This is the abstract simplicial complex whose simplices correspond to non-empty subsets of L of diameter less than α

α/2

10

Easy-to-compute Complexes

Let L ⊂ Rd be finite and let α ≥ 0.

1. Vietoris-Rips complex:

• Given v0, · · · , vk ∈ L and α ∈ R, [v0, · · · , vk] is a simplex of Rα(L) iff we
have ‖vi − vj‖ < α for all 0 ≤ i < j ≤ k.



• C
α
2 (L) is the nerve of L

α
2 .

This is the abstract simplicial complex whose simplices correspond to non-empty subsets of L of diameter less than α

α/2

here, Cα(L) denotes the Čech complex, which is the nerve of Lα

10

Easy-to-compute Complexes

Let L ⊂ Rd be finite and let α ≥ 0.

1. Vietoris-Rips complex:

• Given v0, · · · , vk ∈ L and α ∈ R, [v0, · · · , vk] is a simplex of Rα(L) iff we
have ‖vi − vj‖ < α for all 0 ≤ i < j ≤ k.

Prop. ∀L ⊂ Rd, ∀α > 0,
C α2 (L) ⊆ Rα(L) ⊆ Cα(L).

v0

v1

vk

- If the B(vi,
α
2

), B(vj ,
α
2

) pairwise intersect,
then the vi, vj are at most α away from one an-
other.

- In addition, if v0 is at distance α of v1, · · · , vk,
then v0 ∈

Tk
i=0B(vi, α).



• C
α
2 (L) is the nerve of L

α
2 .

This is the abstract simplicial complex whose simplices correspond to non-empty subsets of L of diameter less than α

α/2

The proof of [de Silva, Ghrist 07] applies Helly’s theorem.

In Euclidean spaces, we in fact haveRα(L) ⊆ C
α√
2 (L).

here, Cα(L) denotes the Čech complex, which is the nerve of Lα

10

Easy-to-compute Complexes

Let L ⊂ Rd be finite and let α ≥ 0.

1. Vietoris-Rips complex:

• Given v0, · · · , vk ∈ L and α ∈ R, [v0, · · · , vk] is a simplex of Rα(L) iff we
have ‖vi − vj‖ < α for all 0 ≤ i < j ≤ k.

Prop. ∀L ⊂ Rd, ∀α > 0,
C α2 (L) ⊆ Rα(L) ⊆ Cα(L).

v0

v1

vk

- holds in arbitrary metric spaces, where the
bounds are tight.

- Tight bounds in Rd [de Silva, Ghrist 07]:

C
α
2 (L) ⊆ Rα(L) ⊆ C

α√
2 (L).
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Easy-to-compute Complexes

w

d2(w)

• Given v0, · · · , vk ∈ L and α ∈ R, w ∈ W is an α-witness of [v0, · · · , vk] if
the vi belong to the ball B(w, dk+1(w) +α), where dk+1(w) is the Euclidean
distance between w and its (k + 1)th nearest landmark.

α

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let W ⊆ Rd.

Let L ⊂ Rd be finite and let α ≥ 0.

• Given α ∈ R, CαW (L) is the maximum abstract sim-
plicial complex with vertices in L, whose simplices
are α-witnessed by points of W .

Note: C0W (L) = CW (L).



Intuitive argument: under these assumptions, W and L are close enough to each other, so that Lα is covered by Wα′ , and reciprocally.
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Easy-to-compute Complexes

• Given v0, · · · , vk ∈ L and α ∈ R, w ∈ W is an α-witness of [v0, · · · , vk] if
the vi belong to the ball B(w, dk+1(w) +α), where dk+1(w) is the Euclidean
distance between w and its (k + 1)th nearest landmark.

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let W ⊆ Rd.

Let L ⊂ Rd be finite and let α ≥ 0.

• Given α ∈ R, CαW (L) is the maximum abstract sim-
plicial complex with vertices in L, whose simplices
are α-witnessed by points of W .

Thm.: if X is a connected compact subset of Rd,
s.t. dH(X,W ) ≤ dH(W,L) < 1

8 diam(X), then:
∀α ≥ 2dH(W,L), C α4 (L) ⊆ CαW (L) ⊆ C8α(L).

Here, the role of X is to bound from above the distances {dk(w), k ∈ N, w ∈ W}.

- holds in arbitrary metric spaces, where the bounds are tight.
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Easy-to-compute Complexes

Let L ⊂ Rd be finite and let α ≥ 0.

→ Intertwined filtrations:

C α2 (L) ↪→ Rα(L) ↪→ Cα(L) ↪→ R2α(L) ↪→ C2α(L) ↪→ · · ·

C α4 (L) ↪→ CαW (L) ↪→ C8α(L) ↪→ C32αW (L) ↪→ C256α(L) ↪→ · · ·

→ Our goal: study the homomorphisms induced by Cα(L) ↪→ Cα′(L).

Let W ⊆ Rd.



11

Topology of Unions of Balls

Recall that Cα(L) is the nerve of the union of balls Lα.



wfs(X) is the smallest positive critical value of the distance function to X, in the sense of [Clark 83].
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Topology of Unions of Balls

Recall that Cα(L) is the nerve of the union of balls Lα.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]
If X ⊂ Rd is a compact set with positive weak feature size, and if dH(X,L) =
ε < 1

4
wfs(X), then, for all α, α′ ∈ [ε, wfs(X) − ε] such that α′ ≥ α + 2ε,

and for all λ ∈ (0,wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼= im i∗, where

i∗ : Hk(Lα)→ Hk(Lα
′
) is the homomorphism induced by Lα ↪→ Lα

′
.

(from [Chazal, Cohen-Steiner 07])
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Topology of Unions of Balls

Recall that Cα(L) is the nerve of the union of balls Lα.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]
If X ⊂ Rd is a compact set with positive weak feature size, and if dH(X,L) =
ε < 1

4
wfs(X), then, for all α, α′ ∈ [ε, wfs(X) − ε] such that α′ ≥ α + 2ε,

and for all λ ∈ (0,wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼= im i∗, where

i∗ : Hk(Lα)→ Hk(Lα
′
) is the homomorphism induced by Lα ↪→ Lα

′
.

• α-complex:

Thm. [Edelsbrunner 93] ∀α > 0, Lα deformation retracts onto α(L).

Lα ↪→ Lα
′

↪→ ↪→

α(L) ↪→ α′(L)

- vertical arrows are homotopy
equivalences

- canonical inclusions commute
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Topology of Unions of Balls

Recall that Cα(L) is the nerve of the union of balls Lα.

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05]
If X ⊂ Rd is a compact set with positive weak feature size, and if dH(X,L) =
ε < 1

4
wfs(X), then, for all α, α′ ∈ [ε, wfs(X) − ε] such that α′ ≥ α + 2ε,

and for all λ ∈ (0,wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼= im i∗, where

i∗ : Hk(Lα)→ Hk(Lα
′
) is the homomorphism induced by Lα ↪→ Lα

′
.

• Čech complex:

Thm (Nerve) ∀α > 0, Cα(L) is homotopy equivalent to Lα.

- vertical arrows are homotopy
equivalences

- diagram might not commute

Lα ↪→ Lα
′

↑ ↑
Cα(L) ↪→ Cα′(L)
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About the Nerve Theorem

Thm Let L ⊂ Rd be finite, and let 0 < α ≤ α′. Then, there exist
homotopy equivalences Cα(L) → Lα and Cα′(L) → Lα

′
that make

the previous diagram commute at homology level.
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About the Nerve Theorem

Thm Let L ⊂ Rd be finite, and let 0 < α ≤ α′. Then, there exist
homotopy equivalences Cα(L) → Lα and Cα′(L) → Lα

′
that make

the previous diagram commute at homology level.

Proof: Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

• Fact: balls of Lα intersect along convex (⇒ contractible) subspaces, if at all.

• Let n = #L− 1, and let ∆Lα ⊆ X ×∆n be defined by:

∆Lα :=
S
∅6=S⊆LBS(α)× [S]



pα is always a homotopy equivalence, and it can be thought of as the ending state of a deformation retraction along the simplices of the nerve, whose elements have either empty or contractible intersections.

qα is a homotopy equivalence because the hypotheses of the Nerve theorem are satisfied.
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About the Nerve Theorem

Thm Let L ⊂ Rd be finite, and let 0 < α ≤ α′. Then, there exist
homotopy equivalences Cα(L) → Lα and Cα′(L) → Lα

′
that make

the previous diagram commute at homology level.

Proof: Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

• Fact: balls of Lα intersect along convex (⇒ contractible) subspaces, if at all.

• Let n = #L− 1, and let ∆Lα ⊆ X ×∆n be defined by:

∆Lα :=
S
∅6=S⊆LBS(α)× [S]

Lα ↪→ Lα
′

pα ↑ ↑ pα′
∆Lα ↪→ ∆Lα

′

qα ↓ ↓ qα′
Cα(L) ↪→ Cα

′
(L)

- the diagram commutes
- vertical arrows are homo-
topy equivalences

• Let pα : ∆Lα → Lα and qα : ∆Lα → Cα(L) be natural projections.

�



12

About the Nerve Theorem

Thm Let L ⊂ Rd be finite, and let 0 < α ≤ α′. Then, there exist
homotopy equivalences Cα(L) → Lα and Cα′(L) → Lα

′
that make

the previous diagram commute at homology level.

Corollary If X ⊂ Rd is a compact set with positive weak feature size, and if
dH(X,L) = ε < 1

4
wfs(X), then, for all α, α′ ∈ [ε, wfs(X) − ε] such that

α′ ≥ α + 2ε, and for all λ ∈ (0,wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼=
im i∗, where i∗ : Hk(Cα(L))→ Hk(Cα

′
(L)) is the homomorphism induced by

Cα(L) ↪→ Cα
′
(L).

2ε

βi α
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Effect on Intertwined Filtrations

C α2 (L) ↪→ Rα(L) ↪→ Cα(L) ↪→ C2α(L) ↪→ R4α(L) ↪→ C4α(L)

• Rips filtration: Let α ≥ 2ε.
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Effect on Intertwined Filtrations

• Rips filtration:

C α2 (L) ↪→ Rα(L) ↪→ Cα(L) ↪→ C2α(L) ↪→ R4α(L) ↪→ C4α(L)

dimHk(Xλ) = rank Hk(C α2 (L))→Hk(C4α(L))
≤

rank Hk(Rα(L))→Hk(R4α(L))
≤

rank Hk(Cα(L))→Hk(C2α(L)) = dimHk(Xλ)

Let α ≥ 2ε.

⇒ im Hk(Rα(L))→Hk(R4α(L)) ∼= Hk(Xλ), since our ring of coefficients is a field.
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Effect on Intertwined Filtrations

• Witness complex filtration:

C α4 (L) ↪→ CαW (L) ↪→ C8α(L) ↪→ C9α(L) ↪→ C36αW (L) ↪→ C288α(L)

dimHk(Xλ) = rank Hk(C α4 (L))→Hk(C288α(L))
≤

rank Hk(CαW (L))→Hk(C36αW (L))
≤

rank Hk(C8α(L))→Hk(C9α(L)) = dimHk(Xλ)

Let α ≥ 4ε.

⇒ im Hk(CαW (L))→Hk(C36αW (L)) ∼= Hk(Xλ), since our ring of coefficients is a field.



13

Effect on Intertwined Filtrations

• Intertwined filtration:

Caα(L) ↪→ Fα(L) ↪→ Cbα(L) ↪→ C(b+1)α(L) ↪→ Fcα(L) ↪→ Cdα(L)

dimHk(Xλ) = rank Hk(Caα(L))→Hk(Cdα(L))
≤

rank Hk(Fα(L))→Hk(Fcα(L))
≤

rank Hk(Cbα(L))→Hk(C(b+1)α(L)) = dimHk(Xλ)

Let α ≥ 1
aε.

⇒ im Hk(Fα(L))→Hk(Fcα(L)) ∼= Hk(Xλ), since our ring of coefficients is a field.



This linear increase of the topological noise has been observed in practice by Chazal and Cohen-Steiner.
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Effect on Intertwined Filtrations

• Intertwined filtration:

Caα(L) ↪→ Fα(L) ↪→ Cbα(L) ↪→ C(b+1)α(L) ↪→ Fcα(L) ↪→ Cdα(L)

Let α ≥ 1
aε.

⇒ im Hk(Fα(L))→Hk(Fcα(L)) ∼= Hk(Xλ), since our ring of coefficients is a field.

βi log2 α

log2(c− 1)
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Back to the Algorithm

Input: a finite point set W ⊂ Rd.

Init: L := ∅, ε :=∞;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update R4ε(L) and R16ε(L);

end while

→ maintain the nested pair R4ε(L) ⊆ R16ε(L).

Output: sequence of persistent Betti numbers of R4ε(L) ↪→ R16ε(L).

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));



Note that the result holds for a large class of compact subsets of Rd

If X is a smooth submanifold of Rd, then X ' ßλ for all sufficiently small λ, and therefore we retrieve the homology of X.
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Back to the Algorithm

Input: a finite point set W ⊂ Rd.

Init: L := ∅, ε :=∞;

while L ( W

insert p = argmaxw∈W d(w,L) in L;

update R4ε(L) and R16ε(L);

end while

→ maintain the nested pair R4ε(L) ⊆ R16ε(L).

Output: sequence of persistent Betti numbers of R4ε(L) ↪→ R16ε(L).

Thm If W is a δ-sample of some compact set X ⊂ Rd, such that
δ < 1

18
wfs(X), then, at all iteration such that δ < ε < 1

18
wfs(X),

one has: ∀λ ∈ (0,wfs(X)), ∀k ∈ N, βk(Xλ) = βpk(R4ε(L) ↪→R16ε(L)).

1/ε
18/wfs(X) 1/δ

0

1

2

βpj

βpi

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));
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A Toy Example

(u, v) 7→ 1
2 (cos 2πu, sin 2πu, cos 2πv, sin 2πv)

[0, 1]× [0, 1] R4

10, 000 points sampled uniformly at random from a curve drawn on Clifford’s torus.



15

A Toy Example

900 carefully-chosen landmarks, ε = 0.0483, Rips filtration up to 6ε (linear scale).

(result provided by Plex)



15

A Toy Example

Output of the algorithm, applied blindly to the input point cloud.
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Complexity
while L ( W

insert p = argmaxw∈W d(w,L) in L;

updateR4ε(L) andR16ε(L);

end while

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));
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updateR4ε(L) andR16ε(L);

end while

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));

• At the end of each iteration, the points of L are at least ε away from
one another. ⇒ they are centers of pairwise-disjoint balls of radius ε

2 .

Hypothesis: W ⊂ Rd.
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• At the end of each iteration, the points of L are at least ε away from
one another. ⇒ they are centers of pairwise-disjoint balls of radius ε
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• Neighbors in the Rips complex are at most 16ε away from each other.
⇒ by a packing argument, each vertex has at most 33d neighbors.
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Complexity
while L ( W

insert p = argmaxw∈W d(w,L) in L;

updateR4ε(L) andR16ε(L);

end while

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));

• At the end of each iteration, the points of L are at least ε away from
one another. ⇒ they are centers of pairwise-disjoint balls of radius ε

2 .

• Neighbors in the Rips complex are at most 16ε away from each other.
⇒ by a packing argument, each vertex has at most 33d neighbors.

• Each vertex belongs to at most 233d simplices⇒ |R16ε(L)| ≤ 233d |L|.

Hypothesis: W ⊂ Rd.
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Complexity
while L ( W

insert p = argmaxw∈W d(w,L) in L;

updateR4ε(L) andR16ε(L);

end while

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));

• At the end of each iteration, the points of L are at least ε away from
one another. ⇒ they are centers of pairwise-disjoint balls of radius ε

2 .

• Neighbors in the Rips complex are at most 16ε away from each other,
and close to the tangent spaces of X. ⇒ by a packing argument, each
vertex v has at most 35m neighbors.

• Each vertex belongs to at most 235m simplices⇒ |R16ε(L)| ≤ 235m |L|.

Hypothesis: W ⊂ X smooth m-submanifold.

ε << rch(X).

v X
T (v)



L coarse ≡ ε large. L dense ≡ ε small.

Give example of a space-filling curve in the unit ball in Rd
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while L ( W
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2 .

• Neighbors in the Rips complex are at most 16ε away from each other,
and close to the tangent spaces of X. ⇒ by a packing argument, each
vertex v has at most 35m neighbors.

• Each vertex belongs to at most 235m simplices⇒ |R16ε(L)| ≤ 235m |L|.

Hypothesis: W ⊂ X smooth m-submanifold.

ε << rch(X).

⇒ Two phases:
- transition phase: L coarse, |R16ε(L)| scales up with d

- stable phase: L dense, |R16ε(L)| scales up with m



L coarse ≡ ε large. L dense ≡ ε small.

Give example of a space-filling curve in the unit ball in Rd

16

Complexity
while L ( W

insert p = argmaxw∈W d(w,L) in L;

updateR4ε(L) andR16ε(L);

end while

update ε := maxw∈W d(w,L);

compute persistence (R4ε(L) ↪→ R16ε(L));

• At the end of each iteration, the points of L are at least ε away from
one another. ⇒ they are centers of pairwise-disjoint balls of radius ε

2 .

• Neighbors in the Rips complex are at most 16ε away from each other,
and close to the tangent spaces of X. ⇒ by a packing argument, each
vertex v has at most 35m neighbors.

• Each vertex belongs to at most 235m simplices⇒ |R16ε(L)| ≤ 235m |L|.

Hypothesis: W ⊂ X smooth m-submanifold.

ε << rch(X).

⇒ Two phases:
- transition phase: L coarse, |R16ε(L)| scales up with d

- stable phase: L dense, |R16ε(L)| scales up with m

→ with a backtracking strategy, the complexity scales up with m.
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Complexity

Space complexity blows up when |L| < 300, and becomes intractable when |L| = 100.

(example)



Here, by cleaner is meant that the amplitude of the topological noise should be smaller, and that the long bars should start earlier.

Witness Complex vs. Čech, Rips Filtrations

18

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Čech or Rips filtrations, at least on smooth submanifolds of Rd.
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Witness Complex vs. Čech, Rips Filtrations
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From V. de Silva, Topological Estimation using Witness Complexes, SPBG’04 talk.

Toy example:

15 well-separated landmarks

rest of points used as witnesses

1000 points sampled uniformly
at random on the unit 2-sphere

(for witness complex only)
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The witness complex filtration should have cleaner persistence barcodes
than Čech or Rips filtrations, at least on smooth submanifolds of Rd.
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Here, by cleaner is meant that the amplitude of the topological noise should be smaller, and that the long bars should start earlier.

Witness Complex vs. Čech, Rips Filtrations

18

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Čech or Rips filtrations, at least on smooth submanifolds of Rd.

Q If W is a δ-sample of some smooth submanifold X, and L is a uniform
ε-sample of W , does the topological noise in the barcode of the filtration
{CαW (L)}α≥0 depend solely on δ?

O(δ)

βi α



Here, by cleaner is meant that the amplitude of the topological noise should be smaller, and that the long bars should start earlier.

Witness Complex vs. Čech, Rips Filtrations

18

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Čech or Rips filtrations, at least on smooth submanifolds of Rd.

βi α

Thm There exist a constant % > 0 and a non-decreasing continuous
map ω̄ : [0, %) → [0, 1

2 ), s.t. for all 0 < δ ≤ ε < % rch(X), and for

all α ∈
[

8
3 (δ + ω̄( ε

rch(X) )2ε), 1
2 rch(X)−O(ε+ δ)

)
, CαW (L) contains a

subcomplex D homeomorphic to X and such that D ↪→ CαW (L) induces
monomorphisms at homology level.

O(δ + ω̄( ε
rch(X) )2ε)



Here, by cleaner is meant that the amplitude of the topological noise should be smaller, and that the long bars should start earlier.

Witness Complex vs. Čech, Rips Filtrations

18

Conjecture: [Carlsson, de Silva 04]
The witness complex filtration should have cleaner persistence barcodes
than Čech or Rips filtrations, at least on smooth submanifolds of Rd.

βi α

Thm There exist a constant % > 0 and a non-decreasing continuous
map ω̄ : [0, %) → [0, 1

2 ), s.t. for all 0 < δ ≤ ε < % rch(X), and for

all α ∈
[

8
3 (δ + ω̄( ε

rch(X) )2ε), 1
2 rch(X)−O(ε+ δ)

)
, CαW (L) contains a

subcomplex D homeomorphic to X and such that D ↪→ CαW (L) induces
monomorphisms at homology level.

O(δ + ω̄( ε
rch(X) )2ε)

⊕ the bound on the ampli-
tude of the topological noise
cannot depend solely on δ



Concluding Remarks

19

• New stability results for a class of filtrations:

- Čech filtration versus unions of Euclidean balls,

- filtrations intertwined with Čech filtration (Rips, witness complex),

- superiority of the witness complex on smooth submanifolds.

• A weaker concept of reconstruction:

- stands in-between classical reconstruction and topological estimation,

- complexity scales up with intrinsic dimension of the data,

- comes with theoretical guarantees on a large class of compact sets.

• A few (of many) open questions:

- can a single complex be extracted from R4ε(L) ↪→ R16ε(L)?

- can the computation of the entire Rips complex be avoided?

- what is the exact power of the witness complex filtration?


