École Polytechnique, January 16th 2008

Towards Persistence-Based Reconstruction in Euclidean Spaces

Frédéric Chazal

Steve Y. Oudot

Géometrica Group INRIA Futurs

Computer Science Department Stanford University

École Polytechnique, January 16th 2008

Towards Persistence-Based Reconstruction in Euclidean Spaces

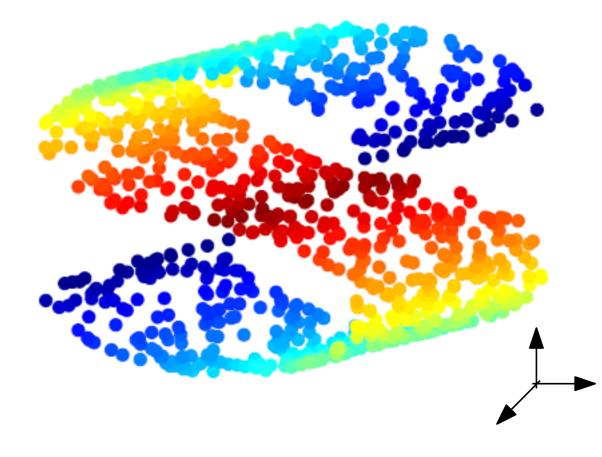
Frédéric Chazal <u>Steve Y. Oudot</u>

 \rightarrow Special thanks to G. Carlsson, V. de Silva, L. J. Guibas

Goal

Input: a point cloud in a metric space.

Q Is there structure in the data? What is the topology of the space underlying the data? Can we build some sort of *atlas* of this space?



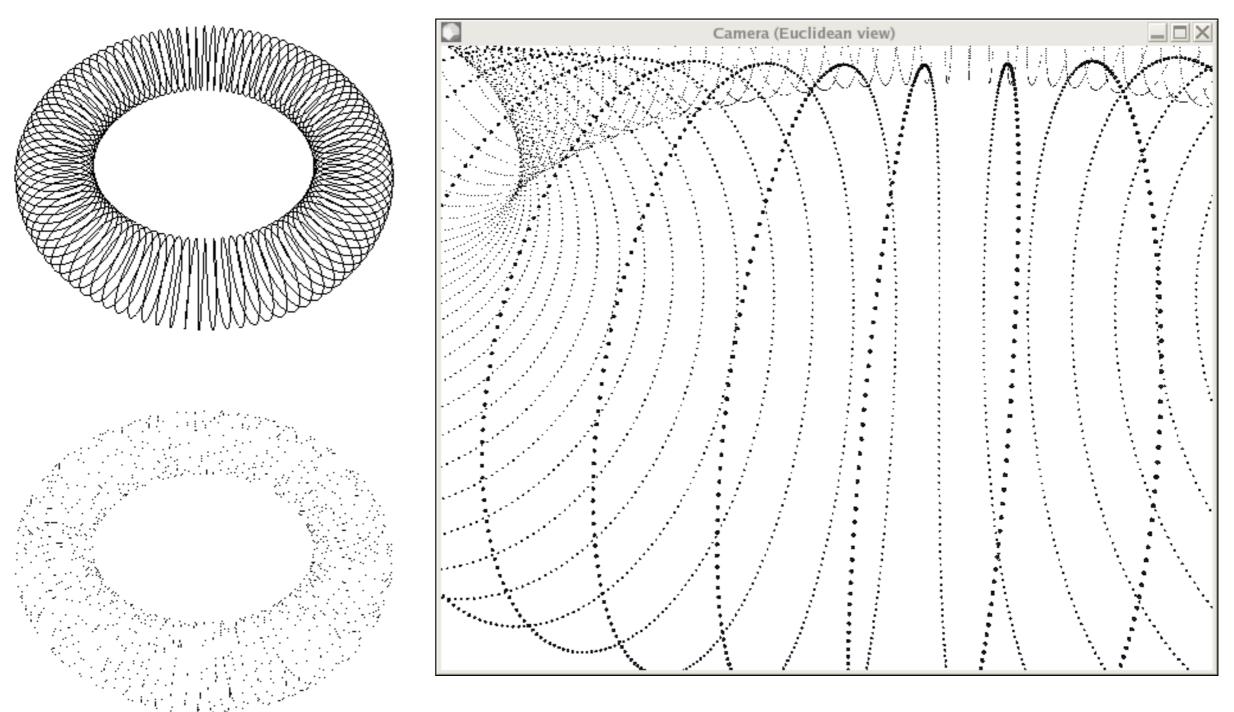
Example: set of 4096-dimensional data points, representing 64x64 pixels images of a same object, seen under various lighting and camera angles. (from Isomap, Science 290).

Lighting direction

Left-right pose

Theoretical Challenges

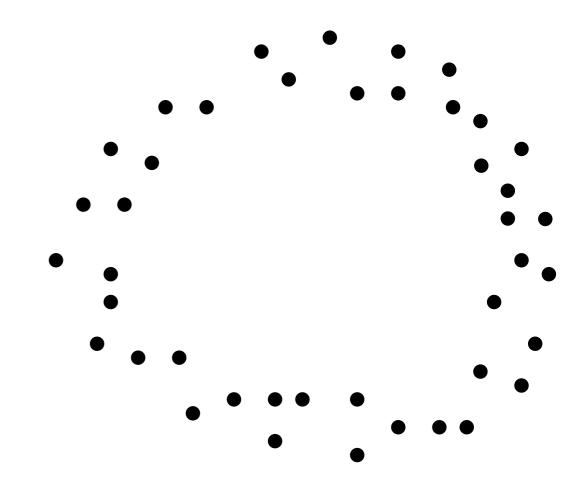
What is the reconstruction?



Algorithmic Challenges

Curse of dimensionality:

X smooth k-dimensional manifold, $\varepsilon > 0$. For any mesh M s.t. $d_H(M, X) \leq \varepsilon$, $|M| \geq c(X) \varepsilon^{-\frac{k}{2}}$. [Gruber 1993], [Clarkson 2006]



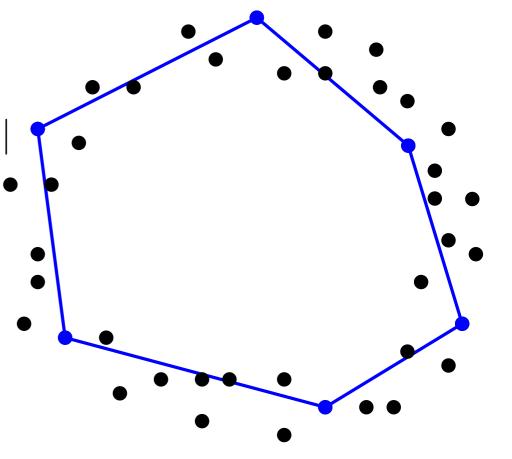
Algorithmic Challenges

Curse of dimensionality:

X smooth k-dimensional manifold, $\varepsilon > 0$. For any mesh M s.t. $d_H(M, X) \leq \varepsilon$, $|M| \geq c(X) \varepsilon^{-\frac{k}{2}}$. [Gruber 1993], [Clarkson 2006]

- assume high co-dimension ($k \ll d$)
- use landmarking / multi-scale approach
- Build lightweight data structures, of size c(k)|L|
- weaker concepts of reconstruction:

homology equivalence, persistent homology...



Algorithmic Challenges

Curse of dimensionality:

X smooth k-dimensional manifold, $\varepsilon > 0$. For any mesh M s.t. $d_H(M, X) \leq \varepsilon$, $|M| \geq c(X) \varepsilon^{-\frac{k}{2}}$. [Gruber 1993], [Clarkson 2006]

- assume high co-dimension ($k \ll d$)
- use landmarking / multi-scale approach
- Build lightweight data structures, of size c(k)|L|
- weaker concepts of reconstruction:

homology equivalence, persistent homology...

- **Q** can complexity be reduced to $2^{O(k)}Poly(|L|)$?
- **Q** can complexity be made polynomial in |L|, k, d?

Existing Techniques

Delaunay

- restricted Delaunay
- ε -sampling theory
- H-manifolds
- Witness complex

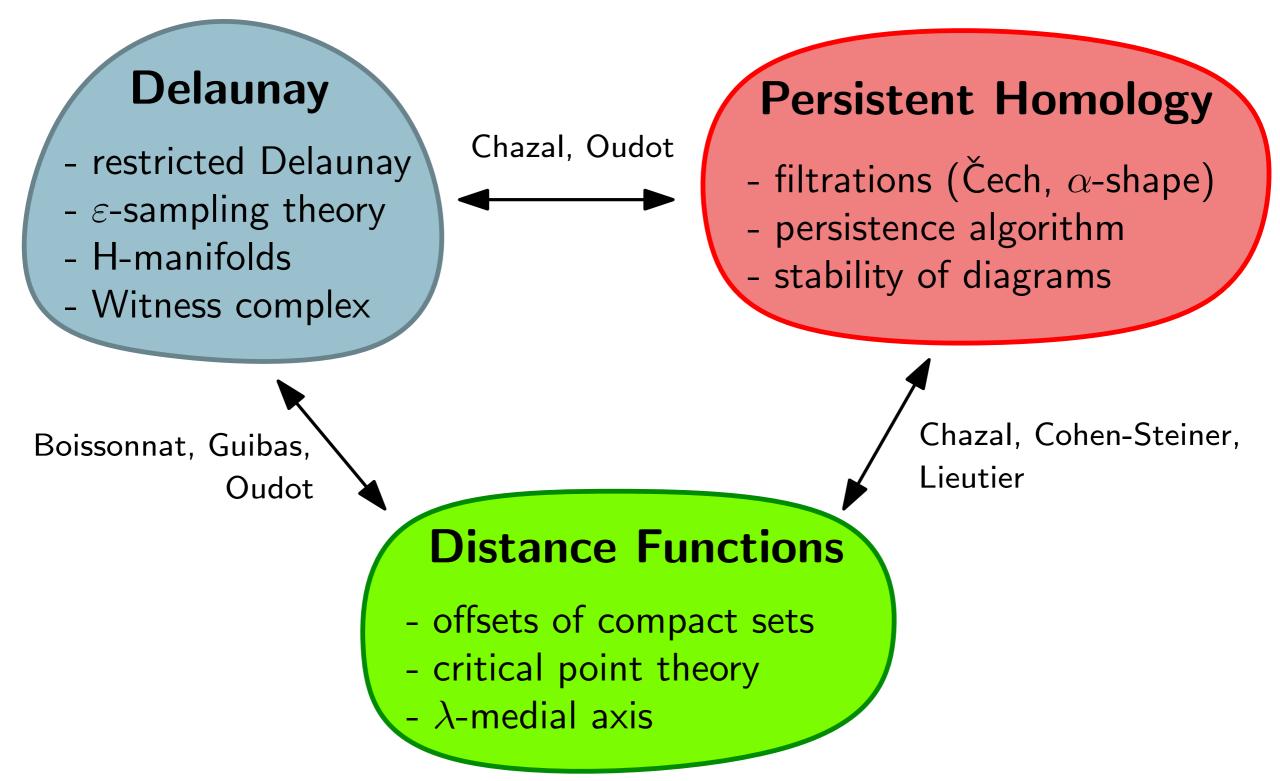
Persistent Homology

- filtrations (Čech, α -shape)
- persistence algorithm
- stability of diagrams

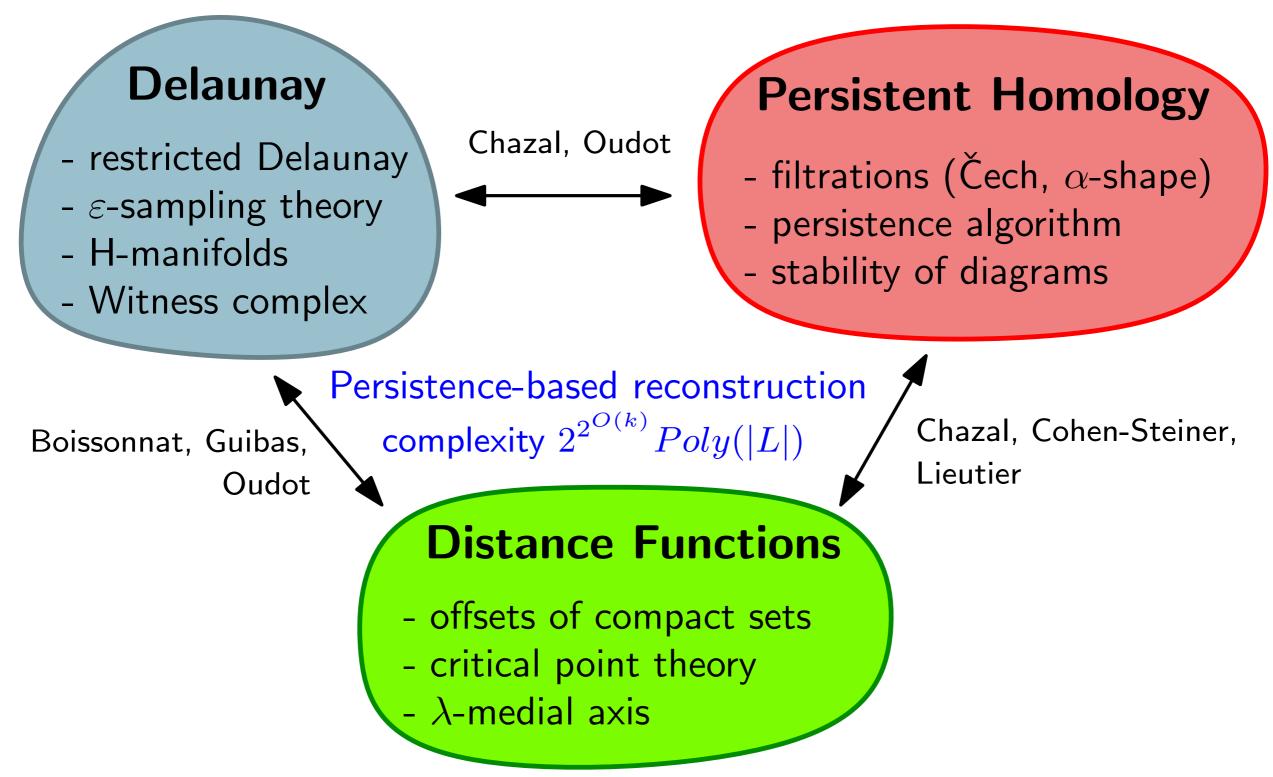
Distance Functions

- offsets of compact sets
- critical point theory
- λ -medial axis

Existing Techniques

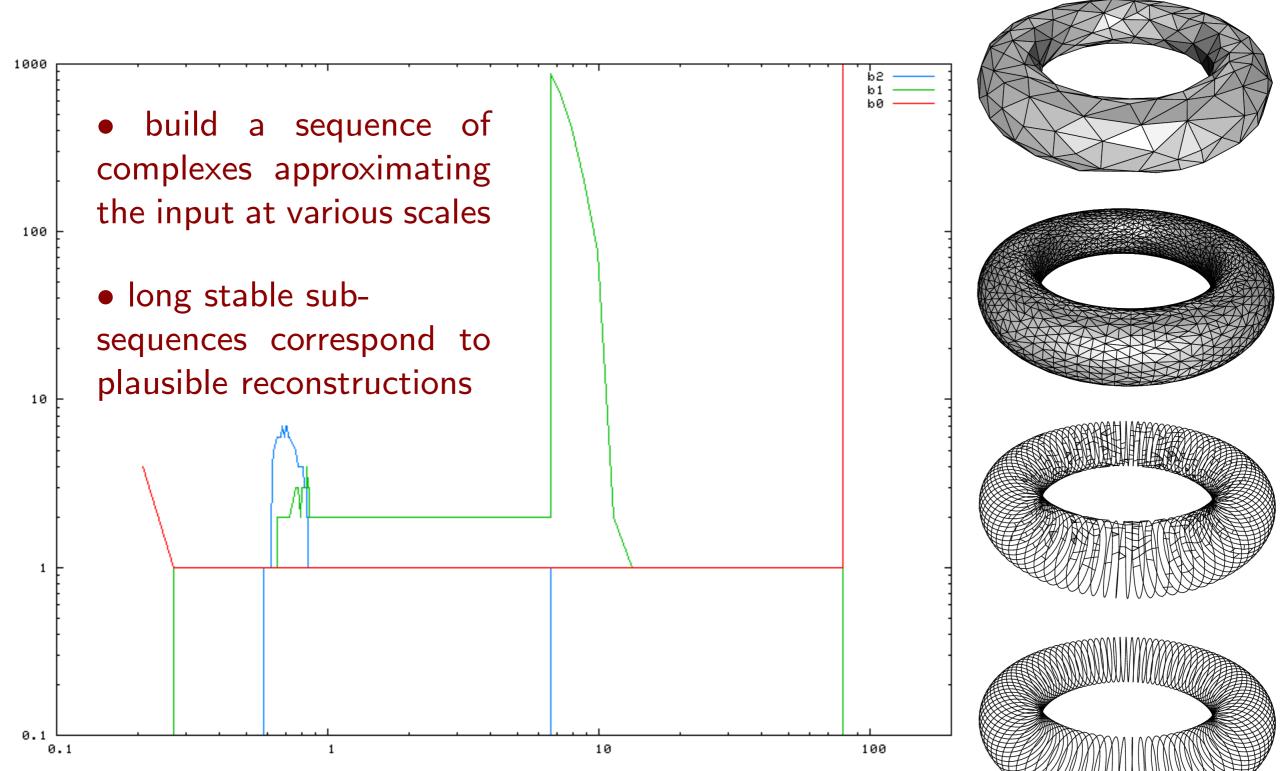


Existing Techniques



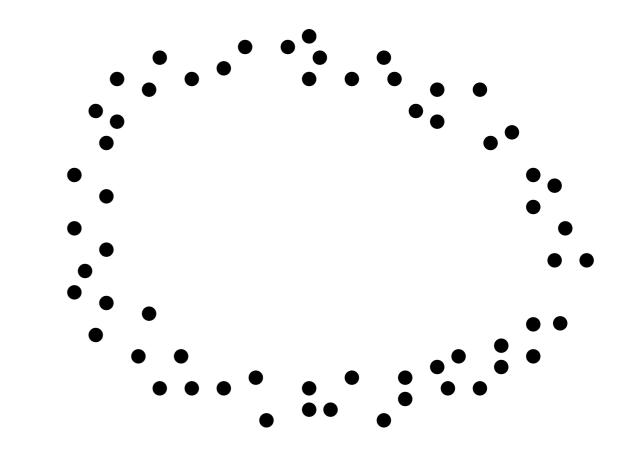
Multiscale Reconstruction

[Guibas, O. 07]



Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

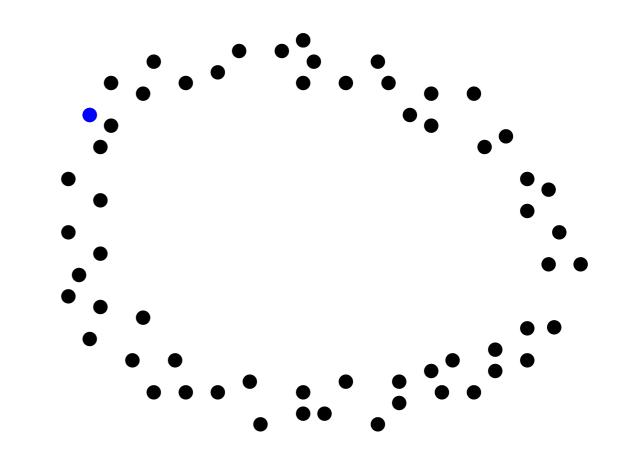


Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

Init: $L := \emptyset$;

WHILE $L \subsetneq W$

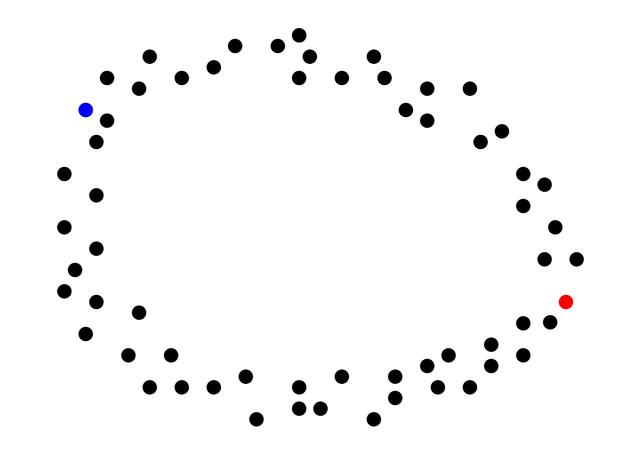


Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

Init: $L := \emptyset$;

WHILE $L \subsetneq W$ Let $p := \operatorname{argmax}_{w \in W} d(w, L);$

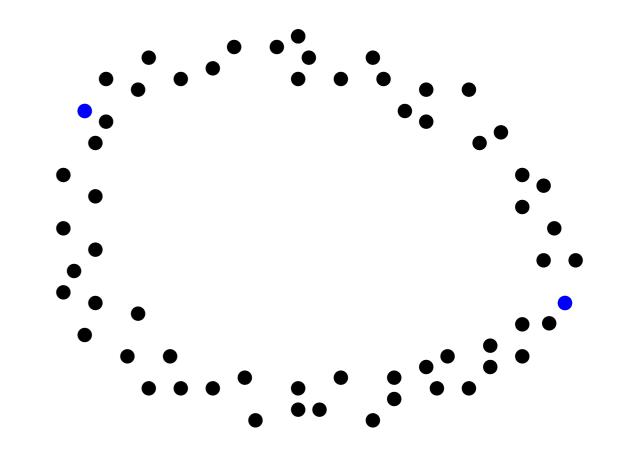


Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

Init: $L := \emptyset$;

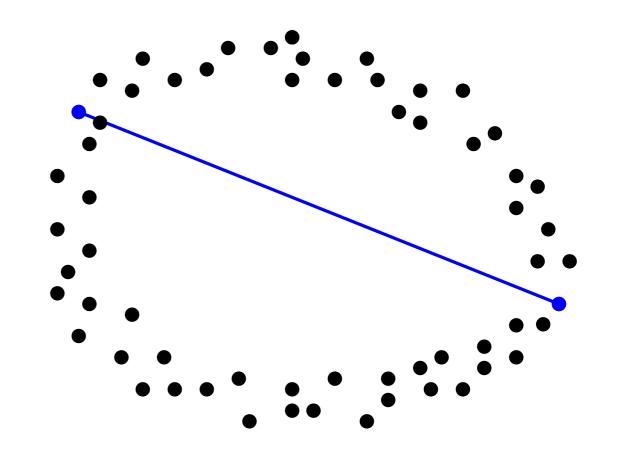
WHILE $L \subsetneq W$ Let $p := \operatorname{argmax}_{w \in W} \mathsf{d}(w, L);$ $L := L \cup \{p\};$



Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

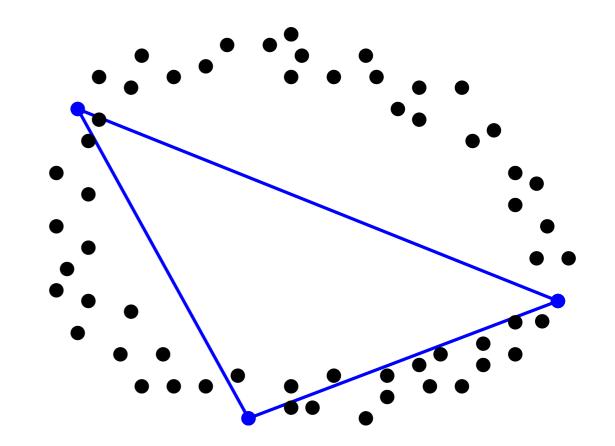
WHILE $L \subsetneq W$ Let $p := \operatorname{argmax}_{w \in W} d(w, L);$ $L := L \cup \{p\};$ update $\mathcal{C}_W(L);$ END_WHILE



Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

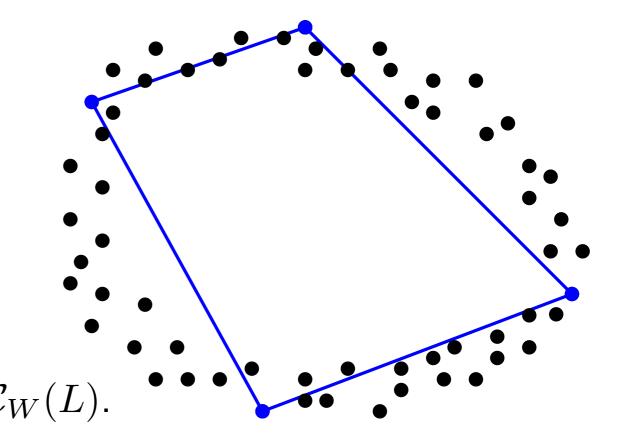
WHILE $L \subsetneq W$ Let $p := \operatorname{argmax}_{w \in W} d(w, L);$ $L := L \cup \{p\};$ update $\mathcal{C}_W(L);$ END_WHILE



Input: a finite point set W in \mathbb{R}^2 or \mathbb{R}^3 .

 \rightarrow build $L \subseteq W$ iteratively, and maintain its witness complex $\mathcal{C}_W(L)$.

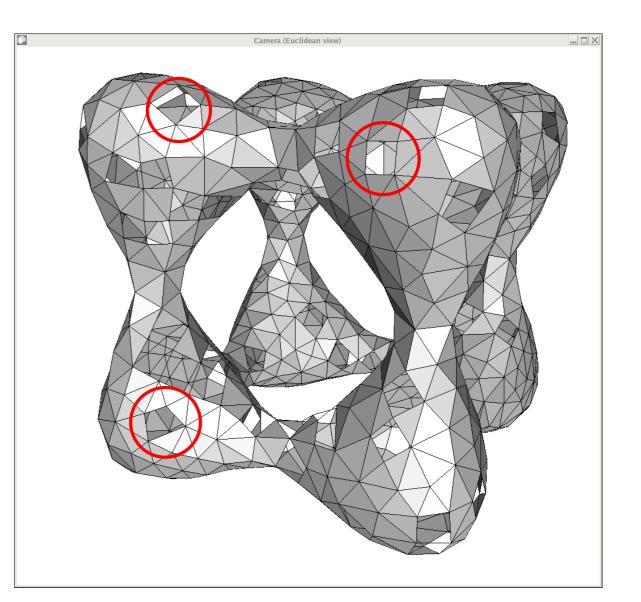
WHILE $L \subsetneq W$ Let $p := \operatorname{argmax}_{w \in W} d(w, L);$ $L := L \cup \{p\};$ update $\mathcal{C}_W(L);$ END_WHILE Output: sequence of Betti numbers of $\mathcal{C}_W(L)$.



Key Structural Property

If X is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under reasonable sampling conditions, $\mathcal{C}_W(L) = \mathcal{D}_X(L) \approx X$

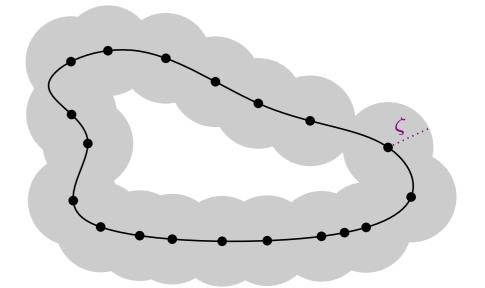
- Case k = 1: - $\mathcal{C}_W(L) = \mathcal{D}_X(L) \approx X$
- Case k = 2:
 - $\mathcal{C}_W(L) \subseteq \mathcal{D}_X(L) \approx X$ $\mathcal{C}_W(L) \not\supseteq \mathcal{D}_X(L)$
- Case $k \ge 3$: - $\mathcal{C}_W(L) \nsubseteq \mathcal{D}_X(L)$ - $\mathcal{D}_X(L) \nsucceq X$



Key Structural Property

If X is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under reasonable sampling conditions, $\mathcal{C}_W(L) = \mathcal{D}_X(L) \approx X$

- Case k = 1: - $\mathcal{C}_W(L) = \mathcal{D}_X(L) \approx X$
- Case k = 2:
 - $-\mathcal{C}_W(L) \subseteq \mathcal{D}_X(L) \approx X$
 - $\mathcal{C}_W(L) \not\supseteq \mathcal{D}_X(L) =$
- Case k > 3:
 - $\mathcal{C}_W(L) \nsubseteq \mathcal{D}_X(L) \\ \mathcal{D}_X(L) \nsucceq X$
- \rightarrow Source of problems: slivers



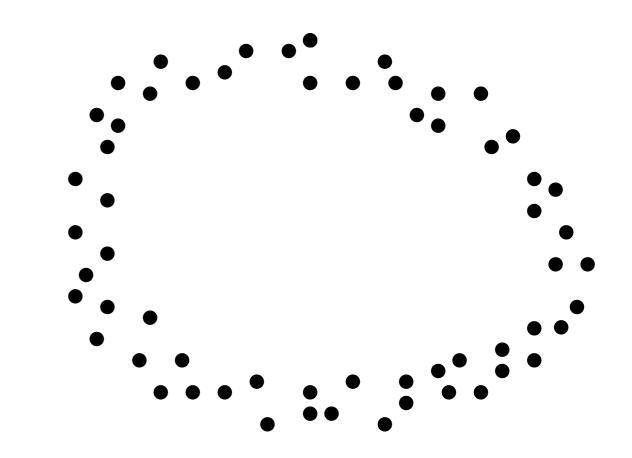
 \longrightarrow dilate W so that $W^{\zeta} \supseteq X$

assign weights to the landmarks to remove all slivers from the vicinity of $\mathcal{D}_X(L)$ [Cheng *et al.* 00]

[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

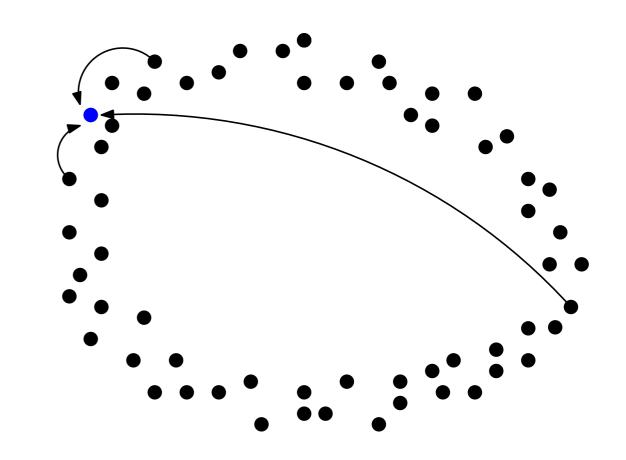
 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .



[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .



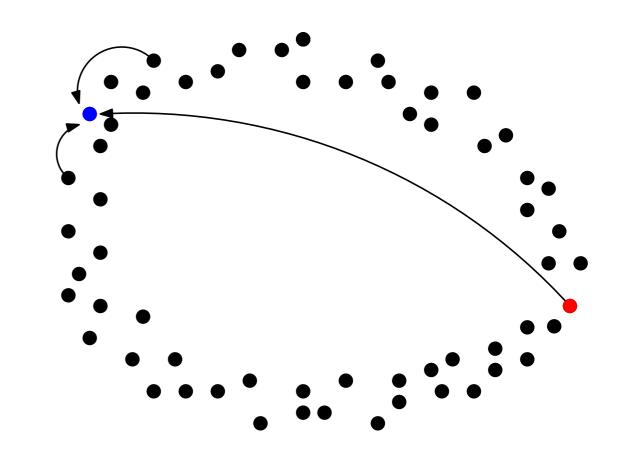
[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$;

WHILE $L \subsetneq W$

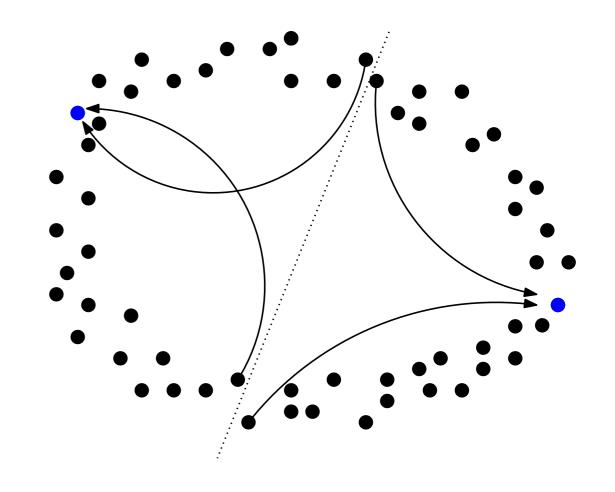


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L;

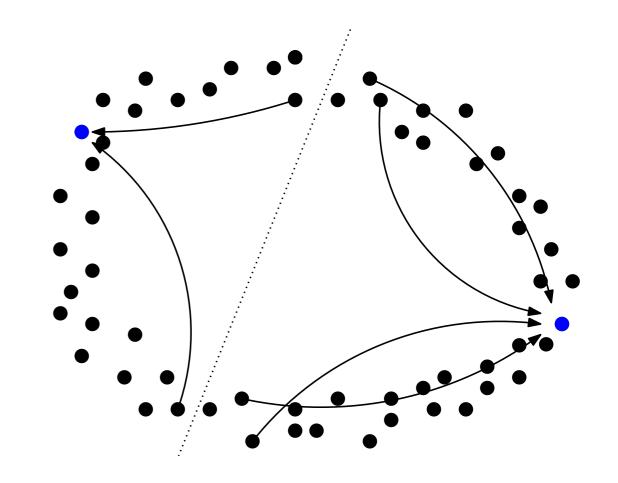


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; pump p;

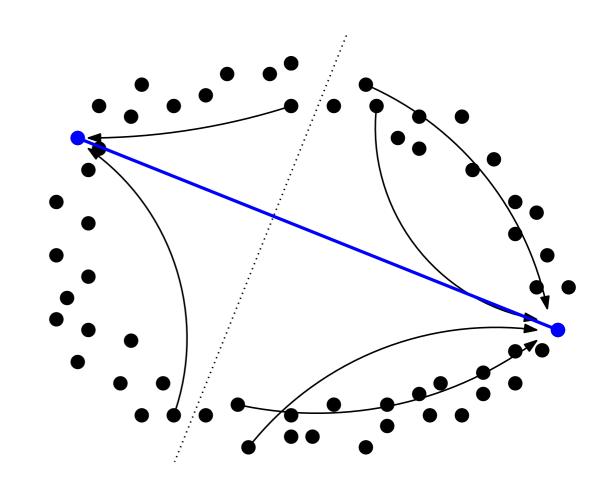


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **pump** p; update $C^{\omega}_{W^{\zeta}}(L)$; END_WHILE

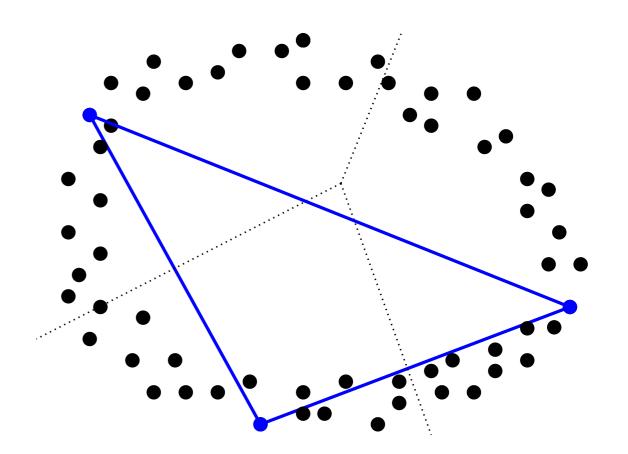


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **pump** p; update $C_{W^{\zeta}}^{\omega}(L)$; END_WHILE

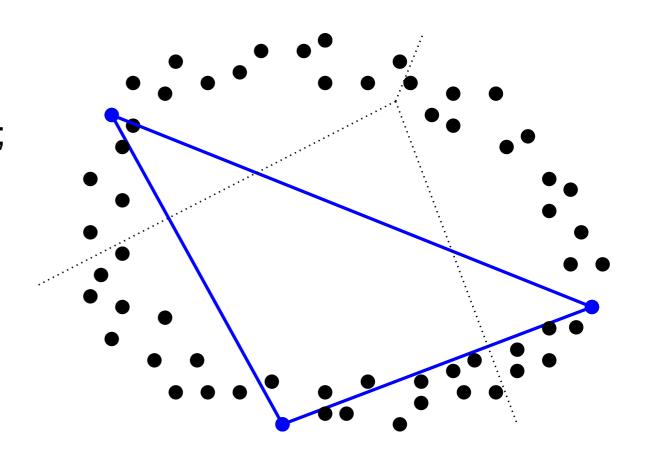


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **pump** p; update $C^{\omega}_{W^{\zeta}}(L)$; END_WHILE

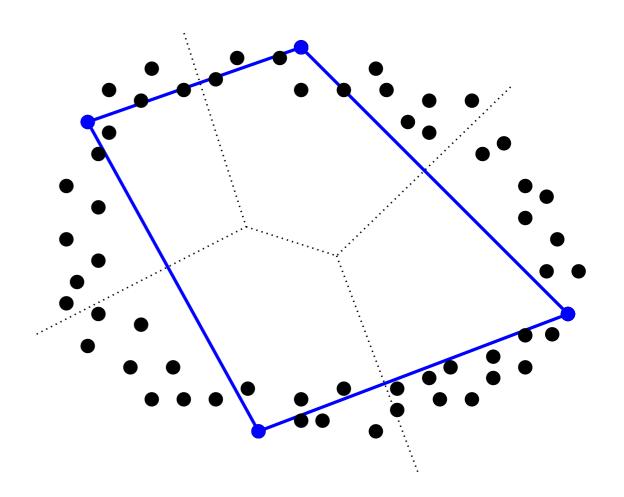


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **pump** p; update $C^{\omega}_{W^{\zeta}}(L)$; END_WHILE

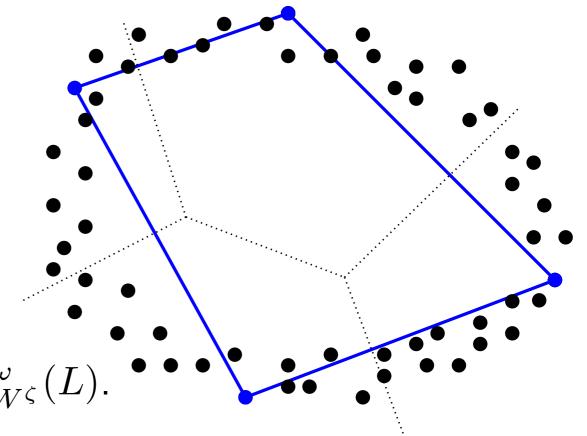


[Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in L; **pump** p; update $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$; END_WHILE Output: sequence of Botti numbers of \mathcal{C}^{ω} (L)



[Boissonnat, Guibas, O. 07]

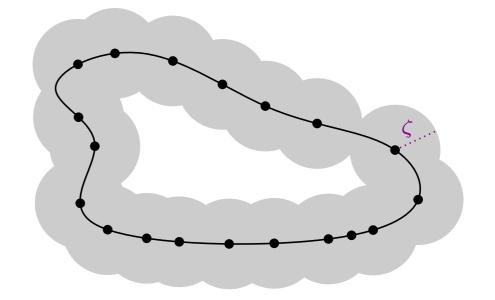
Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$ for some carefully-chosen ζ, ω .

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **pump** p; update $C_{W^{\zeta}}^{\omega}(L)$;

END_WHILE

Output: sequence of Betti numbers of $\mathcal{C}^{\omega}_{W^{\zeta}}(L)$.



Persistence-Based Algorithm

[Chazal, O. 08]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain a nested pair of *easily-computable* complexes, $C^1(L) \subseteq C^2(L)$.

Init: $L := \emptyset$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $C^1(L)$ and $C^2(L)$; compute persistent homology of $C^1(L) \hookrightarrow C^2(L)$; END_WHILE

Output: sequence of persistent Betti numbers of $\mathcal{C}^1(L) \hookrightarrow \mathcal{C}^2(L)$.

Persistence-Based Algorithm

[Chazal, O. 08]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow maintain a nested pair of *easily-computable* complexes, $C^1(L) \subseteq C^2(L)$.

Init:
$$L := \emptyset$$
;
WHILE $L \subsetneq W$
insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L ;
update $C^{1}(L)$ and $C^{2}(L)$;
compute persistent homology of $C^{1}(L) \hookrightarrow C^{2}(L)$;

END_WHILE

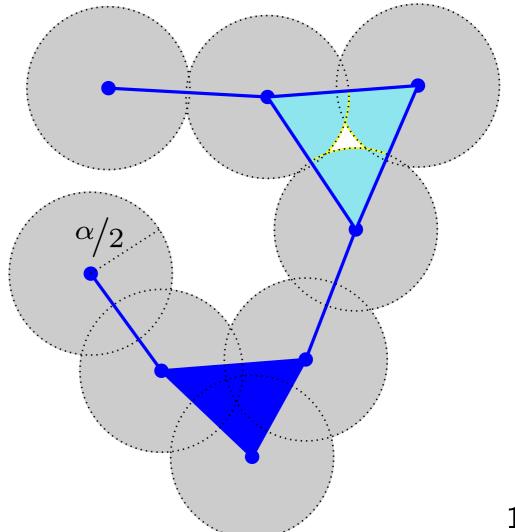
Output: sequence of persistent Betti numbers of $\mathcal{C}^1(L) \hookrightarrow \mathcal{C}^2(L)$.

Easy-to-compute Complexes

Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$.

1. Vietoris-Rips complex:

- Given $v_0, \dots, v_k \in L$ and $\alpha \in \mathbb{R}$, $[v_0, \dots, v_k]$ is a simplex of $\mathcal{R}^{\alpha}(L)$ iff we have $||v_i v_j|| < \alpha$ for all $0 \le i < j \le k$.
- $\mathcal{C}^{\frac{\alpha}{2}}(L)$ is the nerve of $L^{\frac{\alpha}{2}}$.



Easy-to-compute Complexes

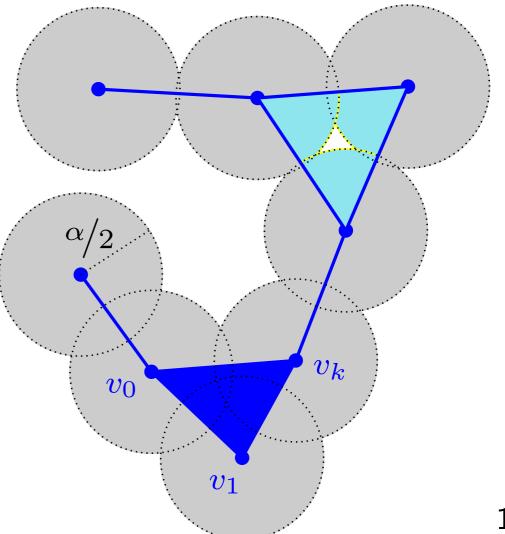
Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$.

1. Vietoris-Rips complex:

- Given $v_0, \dots, v_k \in L$ and $\alpha \in \mathbb{R}$, $[v_0, \dots, v_k]$ is a simplex of $\mathcal{R}^{\alpha}(L)$ iff we have $||v_i v_j|| < \alpha$ for all $0 \le i < j \le k$.
- $\mathcal{C}^{\frac{\alpha}{2}}(L)$ is the nerve of $L^{\frac{\alpha}{2}}$.

Prop. $\forall L \subset \mathbb{R}^d$, $\forall \alpha > 0$, $\mathcal{C}^{\frac{\alpha}{2}}(L) \subseteq \mathcal{R}^{\alpha}(L) \subseteq \mathcal{C}^{\alpha}(L)$.

- If the $B(v_i, \frac{\alpha}{2}), B(v_j, \frac{\alpha}{2})$ pairwise intersect, then the v_i, v_j are at most α away from one another.
- In addition, if v_0 is at distance α of v_1, \dots, v_k , then $v_0 \in \bigcap_{i=0}^k B(v_i, \alpha)$.



Easy-to-compute Complexes

Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$.

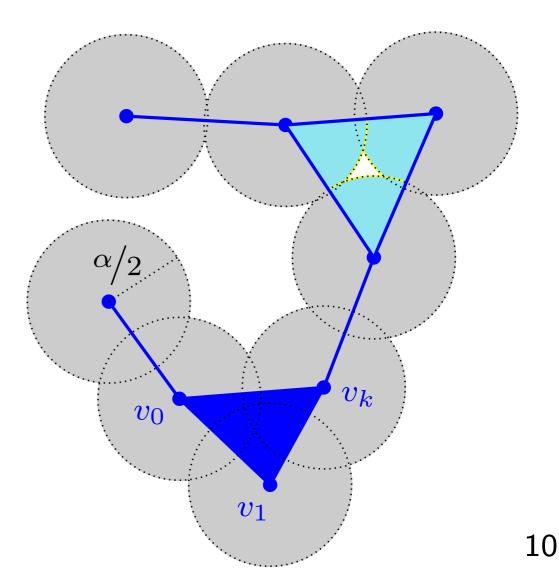
1. Vietoris-Rips complex:

- Given $v_0, \dots, v_k \in L$ and $\alpha \in \mathbb{R}$, $[v_0, \dots, v_k]$ is a simplex of $\mathcal{R}^{\alpha}(L)$ iff we have $||v_i v_j|| < \alpha$ for all $0 \le i < j \le k$.
- $\mathcal{C}^{\frac{\alpha}{2}}(L)$ is the nerve of $L^{\frac{\alpha}{2}}$.

Prop. $\forall L \subset \mathbb{R}^d$, $\forall \alpha > 0$, $\mathcal{C}^{\frac{\alpha}{2}}(L) \subseteq \mathcal{R}^{\alpha}(L) \subseteq \mathcal{C}^{\alpha}(L)$.

- holds in arbitrary metric spaces, where the bounds are tight.

- Tight bounds in \mathbb{R}^d [de Silva, Ghrist 07]: $\mathcal{C}^{\frac{\alpha}{2}}(L) \subseteq \mathcal{R}^{\alpha}(L) \subseteq \mathcal{C}^{\frac{\alpha}{\sqrt{2}}}(L).$



Easy-to-compute Complexes

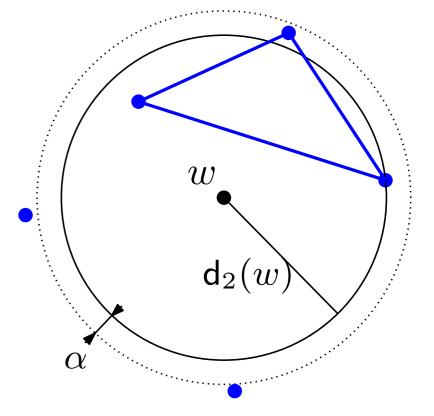
Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$.

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let $W \subseteq \mathbb{R}^d$.

- Given v₀, · · · , v_k ∈ L and α ∈ ℝ, w ∈ W is an α-witness of [v₀, · · · , v_k] if the v_i belong to the ball B(w, d_{k+1}(w) + α), where d_{k+1}(w) is the Euclidean distance between w and its (k + 1)th nearest landmark.
- Given $\alpha \in \mathbb{R}$, $\mathcal{C}_{W}^{\alpha}(L)$ is the maximum abstract simplicial complex with vertices in L, whose simplices are α -witnessed by points of W.

Note: $\mathcal{C}^0_W(L) = \mathcal{C}_W(L)$.



Easy-to-compute Complexes

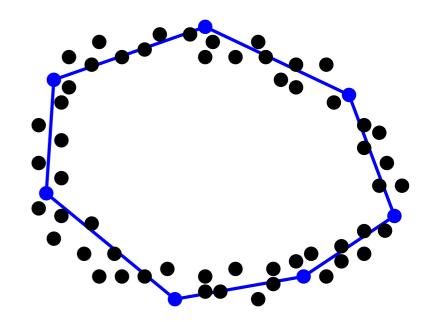
Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$.

2. Relaxed witness complex [Carlsson, de Silva 04]:

Let $W \subseteq \mathbb{R}^d$.

- Given $v_0, \dots, v_k \in L$ and $\alpha \in \mathbb{R}$, $w \in W$ is an α -witness of $[v_0, \dots, v_k]$ if the v_i belong to the ball $B(w, \mathsf{d}_{k+1}(w) + \alpha)$, where $\mathsf{d}_{k+1}(w)$ is the Euclidean distance between w and its (k+1)th nearest landmark.
- Given $\alpha \in \mathbb{R}$, $\mathcal{C}_{W}^{\alpha}(L)$ is the maximum abstract simplicial complex with vertices in L, whose simplices are α -witnessed by points of W.

Thm.: if X is a connected compact subset of \mathbb{R}^d , s.t. $d_H(X, W) \leq d_H(W, L) < \frac{1}{8} \operatorname{diam}(X)$, then: $\forall \alpha \geq 2d_H(W, L)$, $\mathcal{C}^{\frac{\alpha}{4}}(L) \subseteq \mathcal{C}^{\alpha}_W(L) \subseteq \mathcal{C}^{8\alpha}(L)$.



- holds in arbitrary metric spaces, where the bounds are tight.

Easy-to-compute Complexes

Let $L \subset \mathbb{R}^d$ be finite and let $\alpha \ge 0$. Let $W \subseteq \mathbb{R}^d$.

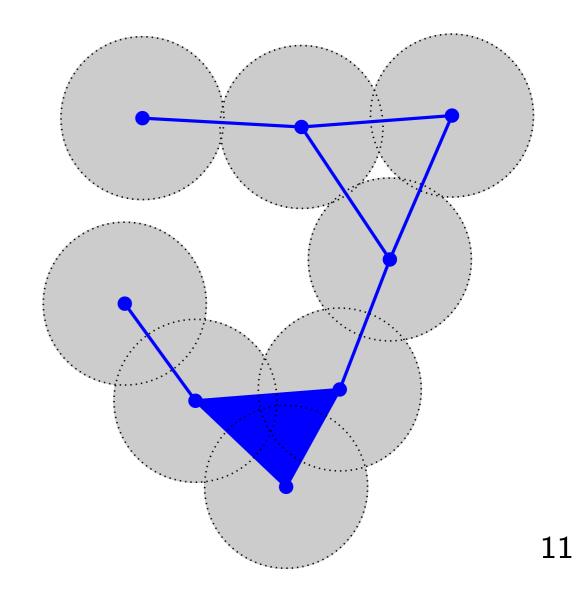
 \rightarrow Intertwined filtrations:

$$\mathcal{C}^{\frac{\alpha}{2}}(L) \hookrightarrow \mathcal{R}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{R}^{2\alpha}(L) \hookrightarrow \mathcal{C}^{2\alpha}(L) \hookrightarrow \cdots$$

$$\mathcal{C}^{\frac{\alpha}{4}}(L) \hookrightarrow \mathcal{C}^{\alpha}_{W}(L) \hookrightarrow \mathcal{C}^{8\alpha}(L) \hookrightarrow \mathcal{C}^{32\alpha}_{W}(L) \hookrightarrow \mathcal{C}^{256\alpha}(L) \hookrightarrow \cdots$$

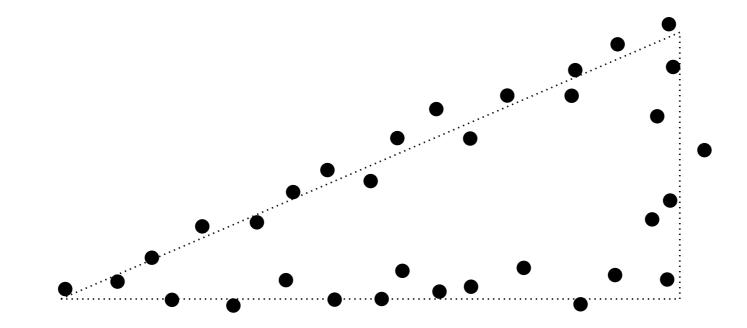
 \rightarrow Our goal: study the homomorphisms induced by $\mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha'}(L)$.

Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .



Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .

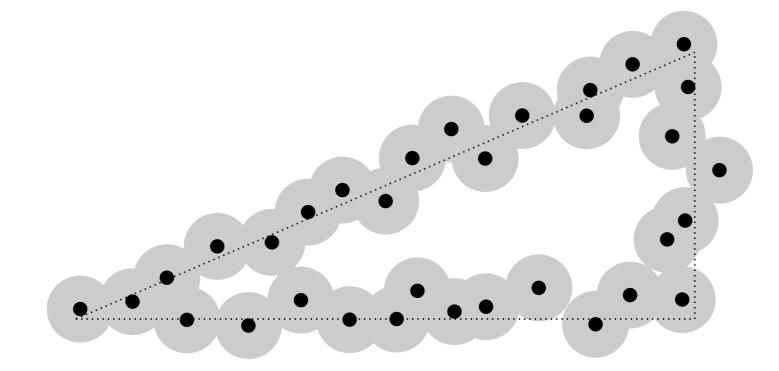
Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05] If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X, L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \ge \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_*: H_k(L^{\alpha}) \to H_k(L^{\alpha'})$ is the homomorphism induced by $L^{\alpha} \hookrightarrow L^{\alpha'}$.



(from [Chazal, Cohen-Steiner 07])

Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .

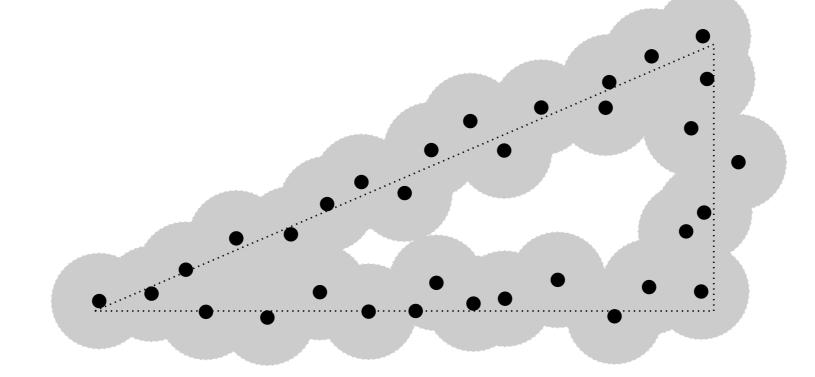
Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05] If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X, L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \ge \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_*: H_k(L^{\alpha}) \to H_k(L^{\alpha'})$ is the homomorphism induced by $L^{\alpha} \hookrightarrow L^{\alpha'}$.



(from [Chazal, Cohen-Steiner 07])

Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05] If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X, L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \ge \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_*: H_k(L^{\alpha}) \to H_k(L^{\alpha'})$ is the homomorphism induced by $L^{\alpha} \hookrightarrow L^{\alpha'}$.



(from [Chazal, Cohen-Steiner 07])

Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05] If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X, L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \ge \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_*: H_k(L^{\alpha}) \to H_k(L^{\alpha'})$ is the homomorphism induced by $L^{\alpha} \hookrightarrow L^{\alpha'}$.

- α -complex:
 - **Thm.** [Edelsbrunner 93] $\forall \alpha > 0$, L^{α} deformation retracts onto $\alpha(L)$.

$$\begin{array}{cccc} L^{\alpha} & \hookrightarrow & L^{\alpha'} \\ \uparrow & & \uparrow \\ \alpha(L) & \hookrightarrow & \alpha'(L) \end{array}$$

- vertical arrows are homotopy equivalences
- canonical inclusions commute

Recall that $\mathcal{C}^{\alpha}(L)$ is the nerve of the union of balls L^{α} .

Thm [Chazal, Lieutier 05], [Cohen-Steiner, Edelsbrunner, Harer 05] If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X, L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \ge \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_*: H_k(L^{\alpha}) \to H_k(L^{\alpha'})$ is the homomorphism induced by $L^{\alpha} \hookrightarrow L^{\alpha'}$.

• Čech complex:

Thm (Nerve) $\forall \alpha > 0$, $C^{\alpha}(L)$ is homotopy equivalent to L^{α} .

- vertical arrows are homotopy equivalences
- diagram might not commute

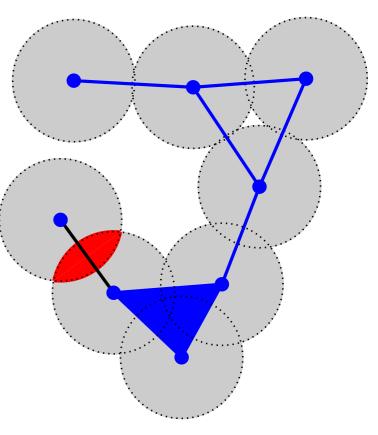
Thm Let $L \subset \mathbb{R}^d$ be finite, and let $0 < \alpha \leq \alpha'$. Then, there exist homotopy equivalences $\mathcal{C}^{\alpha}(L) \to L^{\alpha}$ and $\mathcal{C}^{\alpha'}(L) \to L^{\alpha'}$ that make the previous diagram commute at homology level.

Thm Let $L \subset \mathbb{R}^d$ be finite, and let $0 < \alpha \leq \alpha'$. Then, there exist homotopy equivalences $\mathcal{C}^{\alpha}(L) \to L^{\alpha}$ and $\mathcal{C}^{\alpha'}(L) \to L^{\alpha'}$ that make the previous diagram commute at homology level.

Proof: Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

- Fact: balls of L^{α} intersect along convex (\Rightarrow contractible) subspaces, if at all.
- Let n = #L 1, and let $\Delta L^{\alpha} \subseteq X \times \Delta^n$ be defined by:

 $\Delta L^{\alpha} := \bigcup_{\emptyset \neq S \subseteq L} B_S(\alpha) \times [S]$



Thm Let $L \subset \mathbb{R}^d$ be finite, and let $0 < \alpha \leq \alpha'$. Then, there exist homotopy equivalences $\mathcal{C}^{\alpha}(L) \to L^{\alpha}$ and $\mathcal{C}^{\alpha'}(L) \to L^{\alpha'}$ that make the previous diagram commute at homology level.

Proof: Review of the proof of the Nerve theorem [Hatcher 01, Sec. 4G].

- Fact: balls of L^{α} intersect along convex (\Rightarrow contractible) subspaces, if at all.
- Let n = #L 1, and let $\Delta L^{\alpha} \subseteq X \times \Delta^n$ be defined by:

 $L^{\alpha} \hookrightarrow L^{\alpha'}$

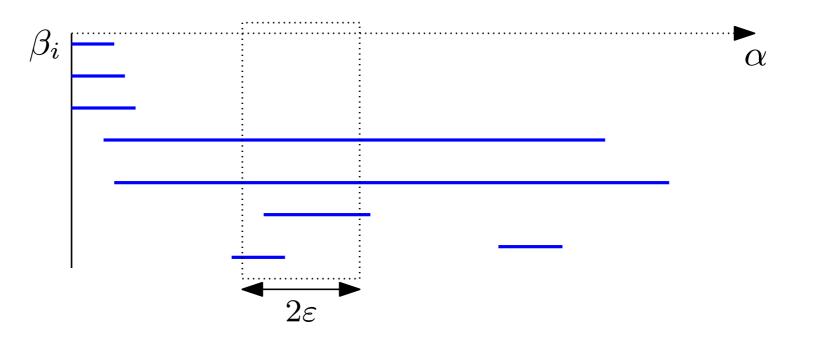
 $\Delta L^{\alpha} := \bigcup_{\emptyset \neq S \subseteq L} B_S(\alpha) \times [S]$

• Let $p_{\alpha} : \Delta L^{\alpha} \to L^{\alpha}$ and $q_{\alpha} : \Delta L^{\alpha} \to \mathcal{C}^{\alpha}(L)$ be natural projections.

 $\begin{array}{cccc} p_{\alpha} \uparrow & \uparrow p_{\alpha'} & - \text{ the diagram commutes} \\ \Delta L^{\alpha} & \hookrightarrow & \Delta L^{\alpha'} & - \text{ vertical arrows are homo-} \\ q_{\alpha} \downarrow & \downarrow q_{\alpha'} & \text{ topy equivalences} \\ \mathcal{C}^{\alpha}(L) & \hookrightarrow & \mathcal{C}^{\alpha'}(L) \end{array}$

Thm Let $L \subset \mathbb{R}^d$ be finite, and let $0 < \alpha \leq \alpha'$. Then, there exist homotopy equivalences $\mathcal{C}^{\alpha}(L) \to L^{\alpha}$ and $\mathcal{C}^{\alpha'}(L) \to L^{\alpha'}$ that make the previous diagram commute at homology level.

Corollary If $X \subset \mathbb{R}^d$ is a compact set with positive weak feature size, and if $d_H(X,L) = \varepsilon < \frac{1}{4} \operatorname{wfs}(X)$, then, for all $\alpha, \alpha' \in [\varepsilon, \operatorname{wfs}(X) - \varepsilon]$ such that $\alpha' \geq \alpha + 2\varepsilon$, and for all $\lambda \in (0, \operatorname{wfs}(X))$, we have: $\forall k \in \mathbb{N}, H_k(X^{\lambda}) \cong \operatorname{in} i_*$, where $i_* : H_k(\mathcal{C}^{\alpha}(L)) \to H_k(\mathcal{C}^{\alpha'}(L))$ is the homomorphism induced by $\mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha'}(L)$.



• Rips filtration: Let $\alpha \geq 2\varepsilon$.

 $\mathcal{C}^{\frac{\alpha}{2}}(L) \hookrightarrow \mathcal{R}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{2\alpha}(L) \hookrightarrow \mathcal{R}^{4\alpha}(L) \hookrightarrow \mathcal{C}^{4\alpha}(L)$

• Rips filtration: Let $\alpha \geq 2\varepsilon$.

 $\mathcal{C}^{\frac{\alpha}{2}}(L) \hookrightarrow \mathcal{R}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{2\alpha}(L) \hookrightarrow \mathcal{R}^{4\alpha}(L) \hookrightarrow \mathcal{C}^{4\alpha}(L)$

• Rips filtration: Let $\alpha \geq 2\varepsilon$.

 $\mathcal{C}^{\frac{\alpha}{2}}(L) \hookrightarrow \mathcal{R}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{2\alpha}(L) \hookrightarrow \mathcal{R}^{4\alpha}(L) \hookrightarrow \mathcal{C}^{4\alpha}(L)$

• Rips filtration: Let $\alpha \geq 2\varepsilon$.

 $\mathcal{C}^{\frac{\alpha}{2}}(L) \hookrightarrow \mathcal{R}^{\alpha}(L) \hookrightarrow \mathcal{C}^{\alpha}(L) \hookrightarrow \mathcal{C}^{2\alpha}(L) \hookrightarrow \mathcal{R}^{4\alpha}(L) \hookrightarrow \mathcal{C}^{4\alpha}(L)$

$$\dim H_k(X^{\lambda}) = \operatorname{rank} H_k(\mathcal{C}^{\frac{\alpha}{2}}(L)) \to H_k(\mathcal{C}^{4\alpha}(L))$$

$$\leq \operatorname{rank} H_k(\mathcal{R}^{\alpha}(L)) \to H_k(\mathcal{R}^{4\alpha}(L))$$

$$\leq \operatorname{rank} H_k(\mathcal{C}^{\alpha}(L)) \to H_k(\mathcal{C}^{2\alpha}(L)) = \dim H_k(X^{\lambda})$$

 $\Rightarrow \operatorname{im} H_k(\mathcal{R}^{\alpha}(L)) \rightarrow H_k(\mathcal{R}^{4\alpha}(L)) \cong H_k(X^{\lambda})$, since our ring of coefficients is a field.

• Witness complex filtration: Let $\alpha \geq 4\varepsilon$.

$$\mathcal{C}^{\frac{\alpha}{4}}(L) \hookrightarrow \mathcal{C}^{\alpha}_{W}(L) \hookrightarrow \mathcal{C}^{8\alpha}(L) \hookrightarrow \mathcal{C}^{9\alpha}(L) \hookrightarrow \mathcal{C}^{36\alpha}_{W}(L) \hookrightarrow \mathcal{C}^{288\alpha}(L)$$

$$\dim H_k(X^{\lambda}) = \operatorname{rank} H_k(\mathcal{C}^{\frac{\alpha}{4}}(L)) \to H_k(\mathcal{C}^{288\alpha}(L))$$

$$\leq \operatorname{rank} H_k(\mathcal{C}^{\alpha}_W(L)) \to H_k(\mathcal{C}^{36\alpha}_W(L))$$

$$\leq \operatorname{rank} H_k(\mathcal{C}^{8\alpha}(L)) \to H_k(\mathcal{C}^{9\alpha}(L)) = \dim H_k(X^{\lambda})$$

 $\Rightarrow \operatorname{im} H_k(\mathcal{C}^{\alpha}_W(L)) \rightarrow H_k(\mathcal{C}^{36\alpha}_W(L)) \cong H_k(X^{\lambda})$, since our ring of coefficients is a field.

• Intertwined filtration: Let $\alpha \geq \frac{1}{a}\varepsilon$.

 $\mathcal{C}^{a\alpha}(L) \hookrightarrow \mathcal{F}^{\alpha}(L) \hookrightarrow \mathcal{C}^{b\alpha}(L) \hookrightarrow \mathcal{C}^{(b+1)\alpha}(L) \hookrightarrow \mathcal{F}^{c\alpha}(L) \hookrightarrow \mathcal{C}^{d\alpha}(L)$

$$\dim H_k(X^{\lambda}) = \operatorname{rank} H_k(\mathcal{C}^{a\alpha}(L)) \to H_k(\mathcal{C}^{d\alpha}(L))$$

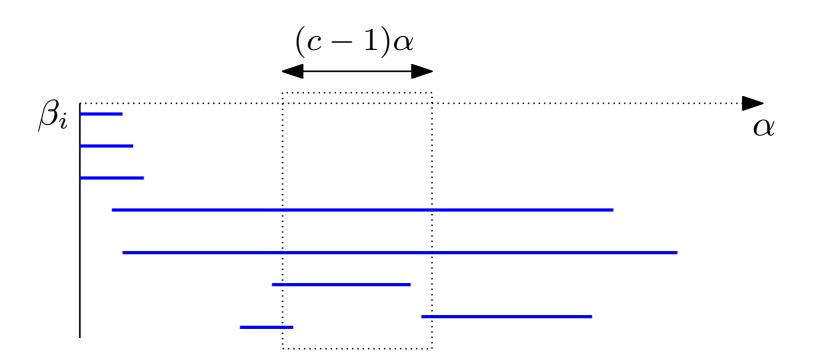
$$\leq \operatorname{rank} H_k(\mathcal{F}^{\alpha}(L)) \to H_k(\mathcal{F}^{c\alpha}(L))$$

$$\leq \operatorname{rank} H_k(\mathcal{C}^{b\alpha}(L)) \to H_k(\mathcal{C}^{(b+1)\alpha}(L)) = \dim H_k(X^{\lambda})$$

 $\Rightarrow \operatorname{im} H_k(\mathcal{F}^{\alpha}(L)) \rightarrow H_k(\mathcal{F}^{c\alpha}(L)) \cong H_k(X^{\lambda})$, since our ring of coefficients is a field.

• Intertwined filtration: Let $\alpha \geq \frac{1}{a}\varepsilon$.

 $\mathcal{C}^{a\alpha}(L) \hookrightarrow \mathcal{F}^{\alpha}(L) \hookrightarrow \mathcal{C}^{b\alpha}(L) \hookrightarrow \mathcal{C}^{(b+1)\alpha}(L) \hookrightarrow \mathcal{F}^{c\alpha}(L) \hookrightarrow \mathcal{C}^{d\alpha}(L)$



 $\Rightarrow \operatorname{im} H_k(\mathcal{F}^{\alpha}(L)) \rightarrow H_k(\mathcal{F}^{c\alpha}(L)) \cong H_k(X^{\lambda})$, since our ring of coefficients is a field.

• Intertwined filtration: Let $\alpha \geq \frac{1}{a}\varepsilon$. $\mathcal{C}^{a\alpha}(L) \hookrightarrow \mathcal{F}^{\alpha}(L) \hookrightarrow \mathcal{C}^{b\alpha}(L) \hookrightarrow \mathcal{C}^{(b+1)\alpha}(L) \hookrightarrow \mathcal{F}^{c\alpha}(L) \hookrightarrow \mathcal{C}^{d\alpha}(L)$ $\log_2(c-1)$ β_i β_i β

 \Rightarrow im $H_k(\mathcal{F}^{\alpha}(L)) \rightarrow H_k(\mathcal{F}^{c\alpha}(L)) \cong H_k(X^{\lambda})$, since our ring of coefficients is a field.

Back to the Algorithm

```
Input: a finite point set W \subset \mathbb{R}^d.
```

```
\rightarrow maintain the nested pair \mathcal{R}^{4\varepsilon}(L) \subseteq \mathcal{R}^{16\varepsilon}(L).
```

```
Init: L := \emptyset, \varepsilon := \infty;

WHILE L \subsetneq W

insert p = \operatorname{argmax}_{w \in W} \mathsf{d}(w, L) in L;

update \varepsilon := \max_{w \in W} \mathsf{d}(w, L);

update \mathcal{R}^{4\varepsilon}(L) and \mathcal{R}^{16\varepsilon}(L);

compute persistence (\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));
```

END_WHILE

Output: sequence of persistent Betti numbers of $\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L)$.

Back to the Algorithm

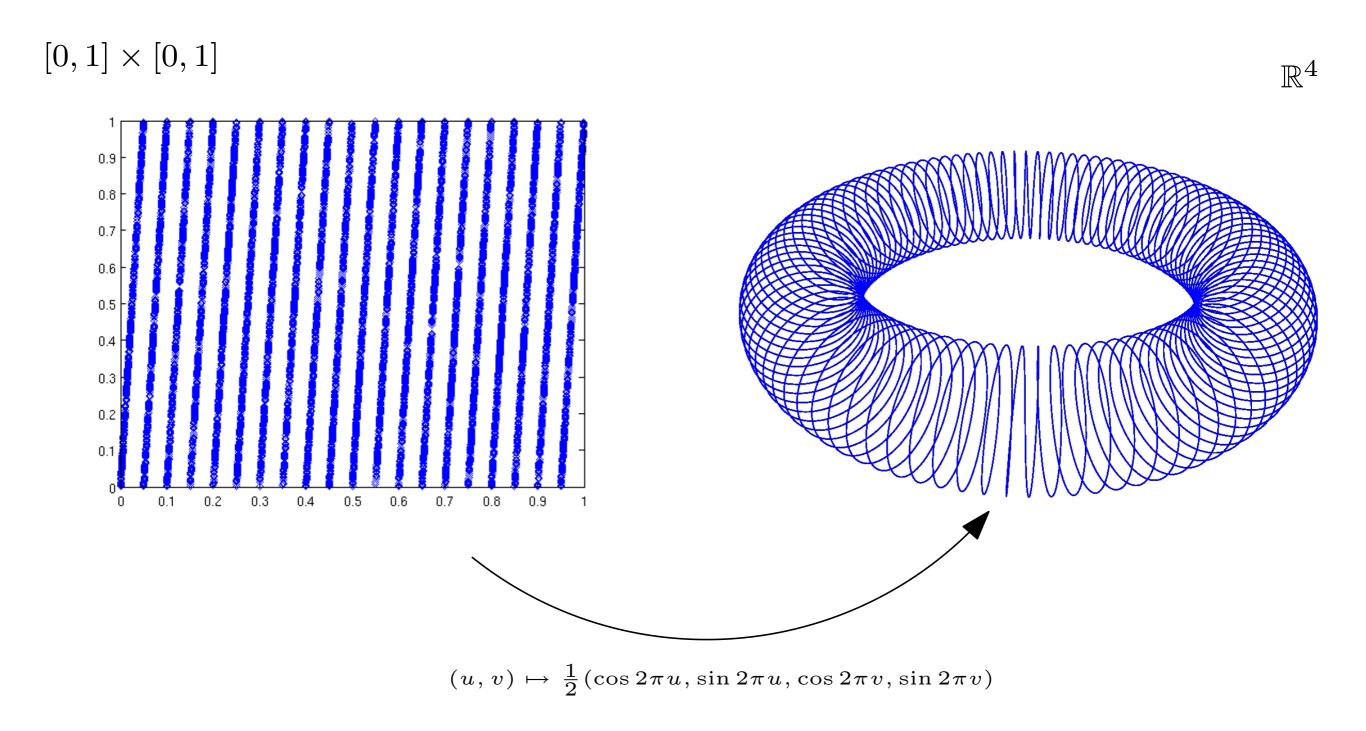
Input: a finite point set $W \subset \mathbb{R}^d$.

Thm If W is a δ -sample of some compact set $X \subset \mathbb{R}^d$, such that $\delta < \frac{1}{18} \operatorname{wfs}(X)$, then, at all iteration such that $\delta < \varepsilon < \frac{1}{18} \operatorname{wfs}(X)$, one has: $\forall \lambda \in (0, \operatorname{wfs}(X))$, $\forall k \in \mathbb{N}$, $\beta_k(X^{\lambda}) = \beta_k^p(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L))$. WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} \operatorname{d}(w, L)$ in L; update $\varepsilon := \max_{w \in W} \operatorname{d}(w, L)$; update $\mathcal{R}^{4\varepsilon}(L)$ and $\mathcal{R}^{16\varepsilon}(L)$; compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L))$; $\mathbb{R}^{4\varepsilon}(L) \cong \mathbb{R}^{4\varepsilon}(L) \hookrightarrow \mathbb{R}^{16\varepsilon}(L)$;

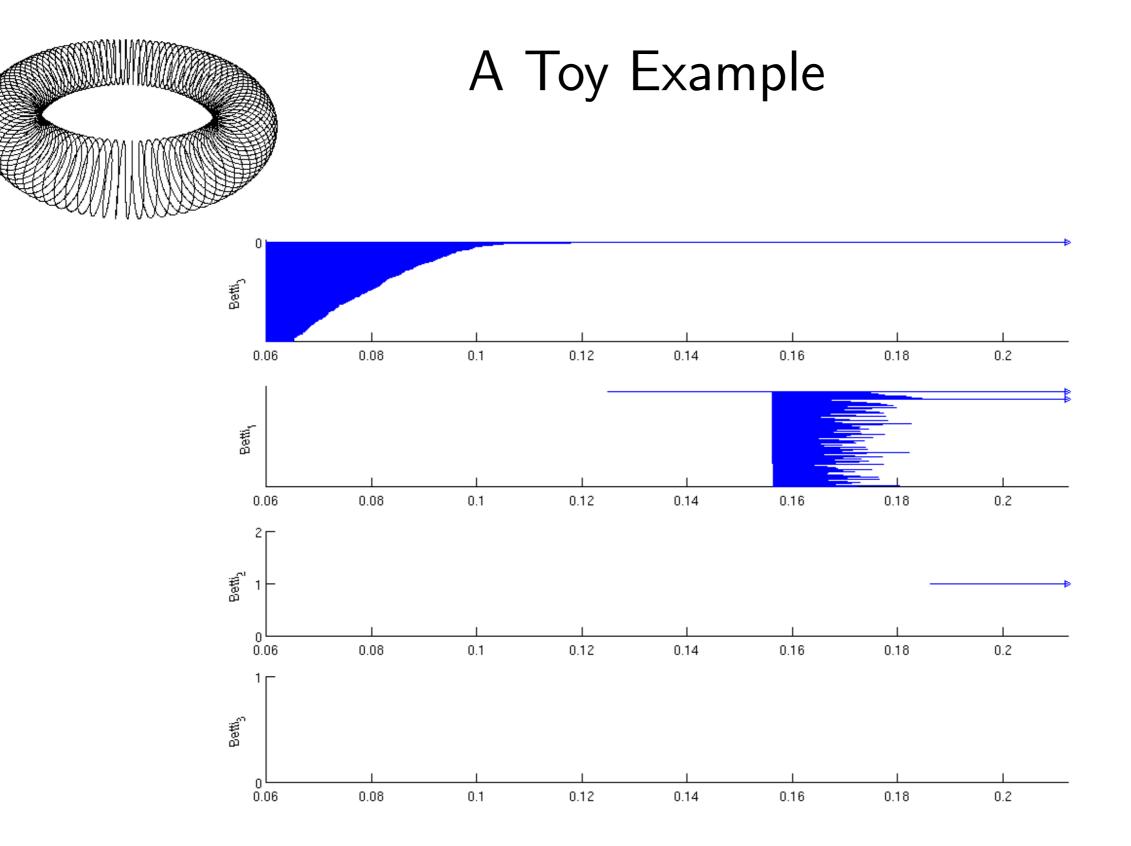
END_WHILE

Output: sequence of persistent Betti numbers of $\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L)$.

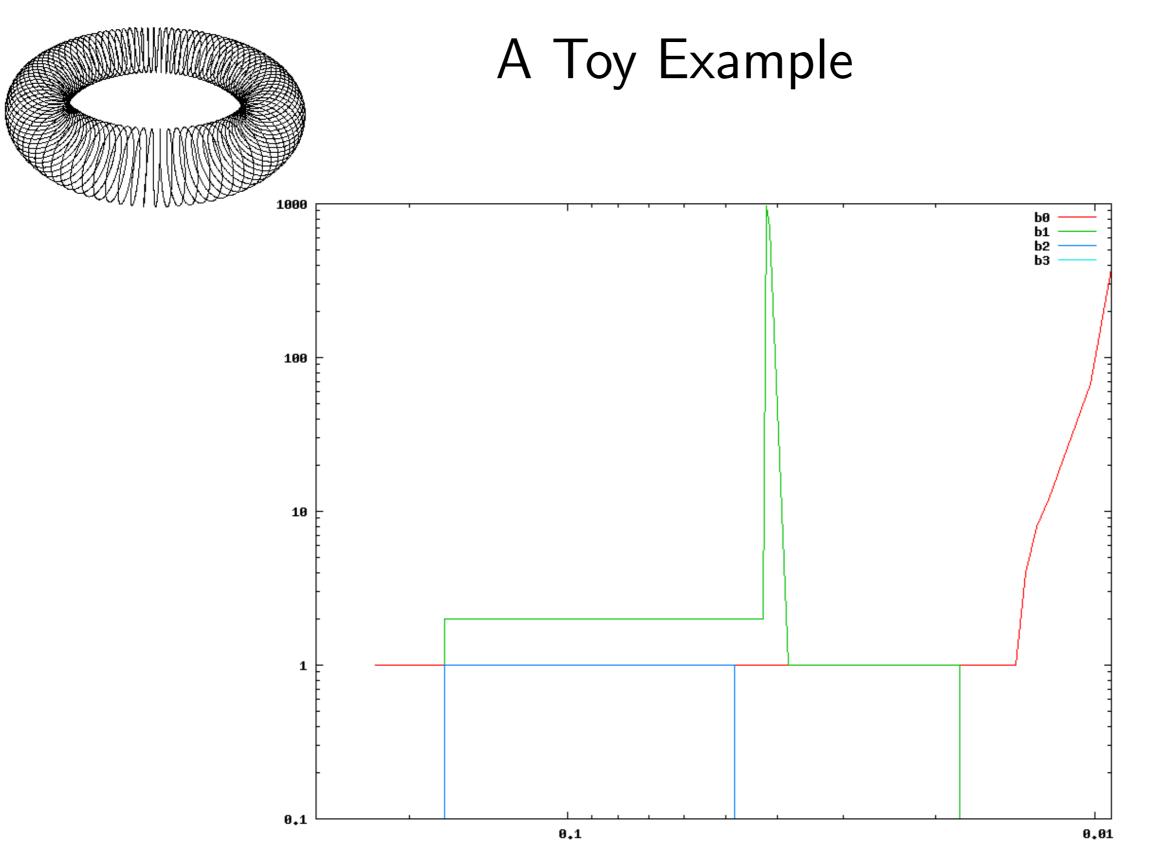
A Toy Example



10,000 points sampled uniformly at random from a curve drawn on Clifford's torus.



900 carefully-chosen landmarks, $\varepsilon = 0.0483$, Rips filtration up to 6ε (linear scale). (result provided by Plex)



Output of the algorithm, applied *blindly* to the input point cloud.

 $\begin{array}{l} \mbox{WHILE } L \subsetneq W \\ \mbox{insert } p = \mathrm{argmax}_{w \in W} \mathsf{d}(w, L) \mbox{ in } L; \\ \mbox{update } \varepsilon := \mathrm{max}_{w \in W} \, \mathsf{d}(w, L); \end{array}$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L);$ compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

Hypothesis: $W \subset \mathbb{R}^d$.

WHILE $L \subsetneq W$ **Complexity** $|_{\text{insert } p = \operatorname{argmax}_{w \in W} d(w, L) \text{ in } L;}$ $|_{\text{update } \varepsilon := \max_{w \in W} d(w, L);}$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L);$ compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

Hypothesis: $W \subset \mathbb{R}^d$.

while $L \subsetneq W$ Complexity insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $\varepsilon := \max_{w \in W} d(w, L);$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L);$ compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

• Neighbors in the Rips complex are at most 16ε away from each other. \Rightarrow by a packing argument, each vertex has at most 33^d neighbors.

Hypothesis: $W \subset \mathbb{R}^d$.

while $L \subsetneq W$ Complexity $\lim_{w \to w} L \neq w$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $\varepsilon := \max_{w \in W} \mathsf{d}(w, L);$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L);$ compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

• Neighbors in the Rips complex are at most 16ε away from each other. \Rightarrow by a packing argument, each vertex has at most 33^d neighbors.

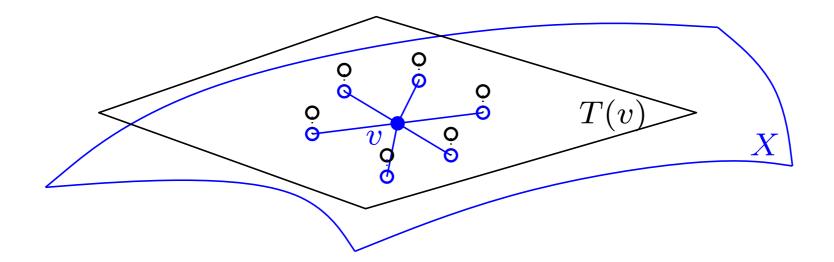
• Each vertex belongs to at most 2^{33^d} simplices $\Rightarrow |\mathcal{R}^{16\varepsilon}(L)| \le 2^{33^d} |L|$.

Complexity

Hypothesis: $W \subset X$ smooth *m*-submanifold. $\varepsilon \ll \operatorname{rch}(X)$. WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $\varepsilon := \max_{w \in W} d(w, L)$; update $\mathcal{R}^{4\varepsilon}(L)$ and $\mathcal{R}^{16\varepsilon}(L)$; compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L))$; END_WHILE

• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

- Neighbors in the Rips complex are at most 16ε away from each other, and close to the tangent spaces of X. \Rightarrow by a packing argument, each vertex v has at most 35^m neighbors.
- Each vertex belongs to at most 2^{35^m} simplices $\Rightarrow |\mathcal{R}^{16\varepsilon}(L)| \le 2^{35^m} |L|$.



Hypothesis: $W \subset X$ smooth *m*-submanifold. $\varepsilon \ll \operatorname{rch}(X)$.

Complexity WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $\varepsilon := \max_{w \in W} \mathsf{d}(w, L);$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L)$; compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

• Neighbors in the Rips complex are at most 16ε away from each other, and close to the tangent spaces of X. \Rightarrow by a packing argument, each vertex v has at most 35^m neighbors.

• Each vertex belongs to at most 2^{35^m} simplices $\Rightarrow |\mathcal{R}^{16\varepsilon}(L)| \le 2^{35^m}|L|$.

 $\Rightarrow \mathsf{Two \ phases:} \ \left(\begin{array}{c} \text{- transition \ phase:} \ L \ \mathsf{coarse,} \ |\mathcal{R}^{16\varepsilon}(L)| \ \mathsf{scales \ up \ with} \ d \\ \text{- stable \ phase:} \ L \ \mathsf{dense,} \ |\mathcal{R}^{16\varepsilon}(L)| \ \mathsf{scales \ up \ with} \ m \end{array}\right)$

Hypothesis: $W \subset X$ smooth *m*-submanifold. $\varepsilon \ll \operatorname{rch}(X)$.

Complexity WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; update $\varepsilon := \max_{w \in W} d(w, L);$ update $\mathcal{R}^{4arepsilon}(L)$ and $\mathcal{R}^{16arepsilon}(L)$; compute persistence $(\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L));$ END_WHILE

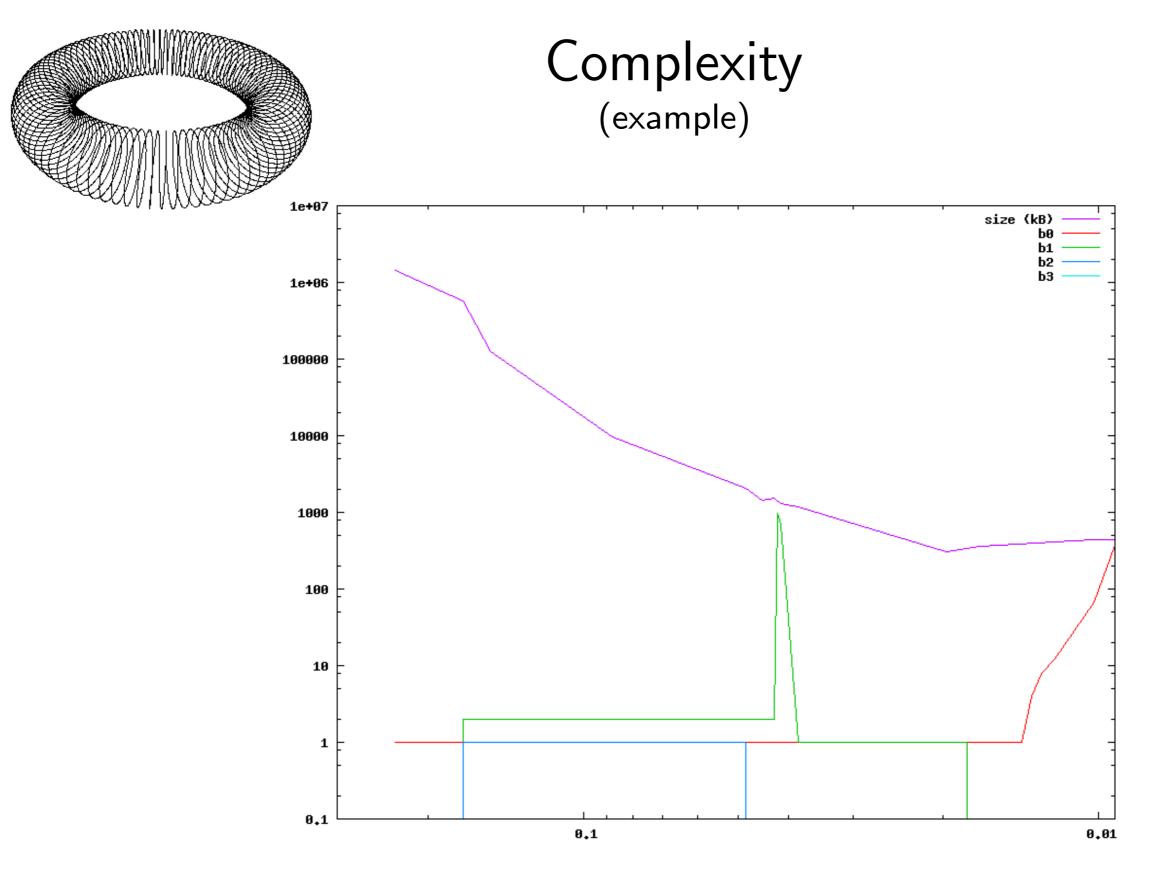
• At the end of each iteration, the points of L are at least ε away from one another. \Rightarrow they are centers of pairwise-disjoint balls of radius $\frac{\varepsilon}{2}$.

• Neighbors in the Rips complex are at most 16ε away from each other, and close to the tangent spaces of X. \Rightarrow by a packing argument, each vertex v has at most 35^m neighbors.

• Each vertex belongs to at most 2^{35^m} simplices $\Rightarrow |\mathcal{R}^{16\varepsilon}(L)| \le 2^{35^m}|L|$.

 $\Rightarrow \mathsf{Two \ phases:} \ \left(\begin{array}{c} \text{- transition \ phase:} \ L \ \mathsf{coarse,} \ |\mathcal{R}^{16\varepsilon}(L)| \ \mathsf{scales \ up \ with} \ d \\ \text{- stable \ phase:} \ L \ \mathsf{dense,} \ |\mathcal{R}^{16\varepsilon}(L)| \ \mathsf{scales \ up \ with} \ m \end{array}\right)$

 \rightarrow with a backtracking strategy, the complexity scales up with m.



Space complexity blows up when |L| < 300, and becomes intractable when |L| = 100.

Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

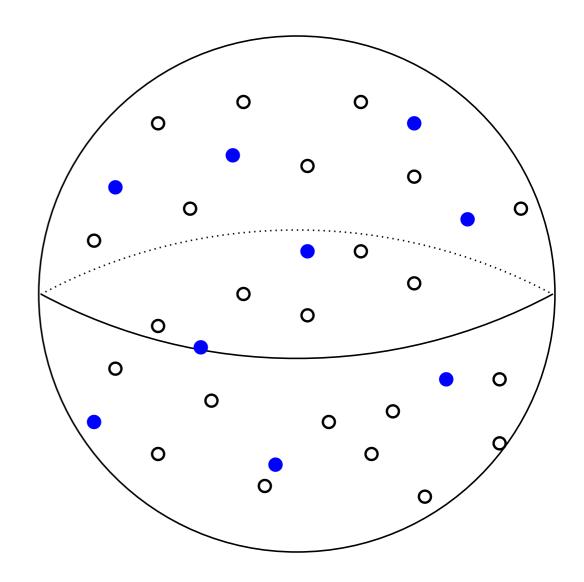
Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

Toy example:

1000 points sampled uniformly at random on the unit 2-sphere

 $15\ {\rm well-separated}\ {\rm landmarks}$

rest of points used as witnesses (for witness complex only)



From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk.

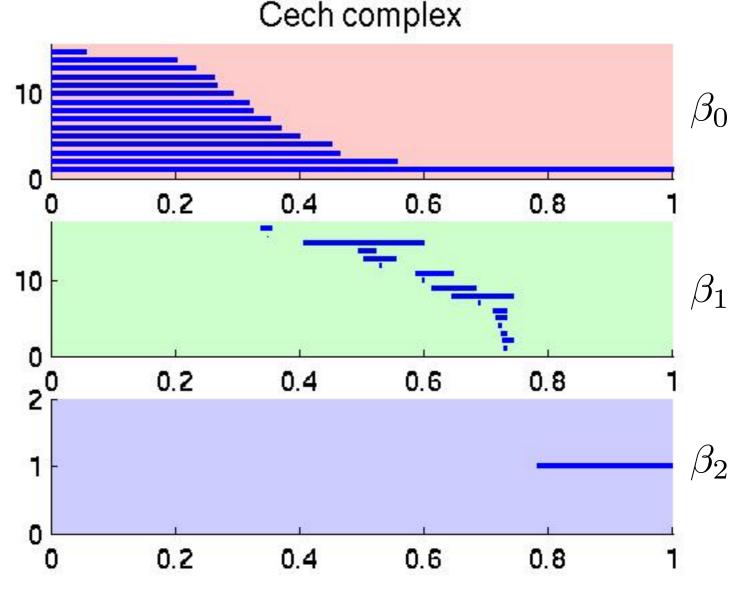
Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

Toy example:

1000 points sampled uniformly at random on the unit 2-sphere

15 well-separated landmarks

rest of points used as witnesses (for witness complex only)



From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk.

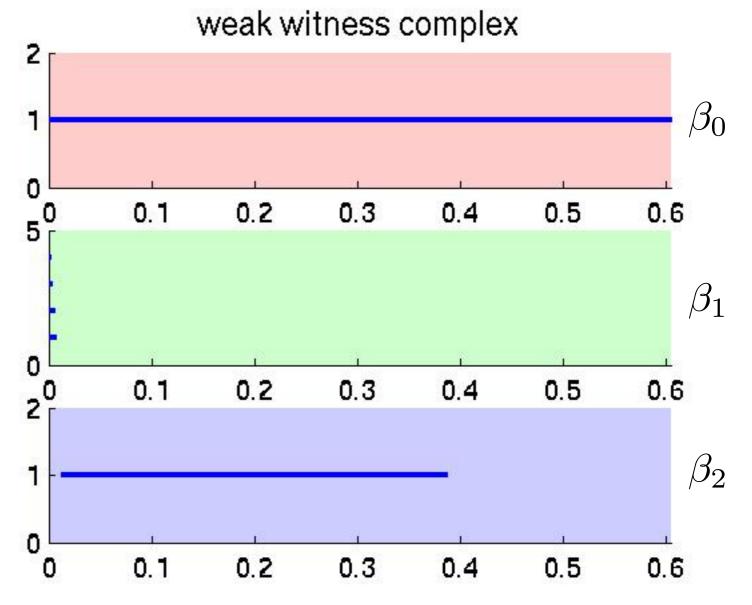
Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

Toy example:

1000 points sampled uniformly at random on the unit 2-sphere

 $15~\ensuremath{\mathsf{well}}\xspace$ separated landmarks

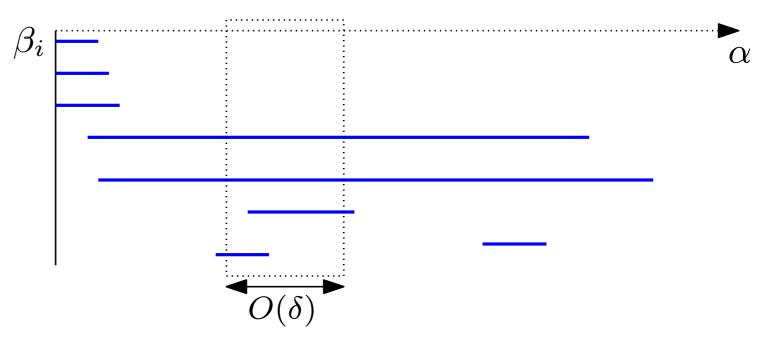
rest of points used as witnesses (for witness complex only)



From V. de Silva, Topological Estimation using Witness Complexes, SPBG'04 talk.

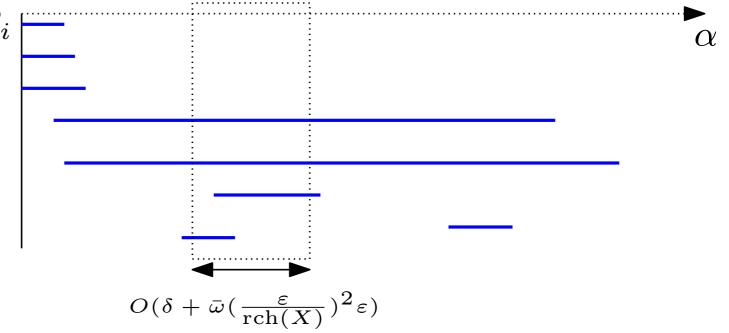
Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

Q If W is a δ -sample of some smooth submanifold X, and L is a uniform ε -sample of W, does the topological noise in the barcode of the filtration $\{\mathcal{C}^{\alpha}_{W}(L)\}_{\alpha\geq 0}$ depend solely on δ ?



Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

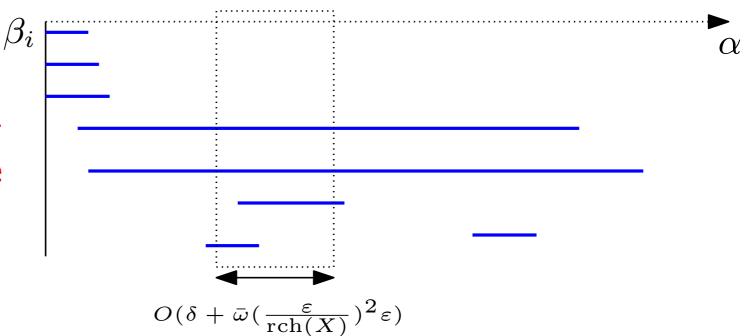
Thm There exist a constant $\varrho > 0$ and a non-decreasing continuous map $\bar{\omega} : [0, \varrho) \to [0, \frac{1}{2})$, s.t. for all $0 < \delta \leq \varepsilon < \varrho \operatorname{rch}(X)$, and for all $\alpha \in \left[\frac{8}{3}(\delta + \bar{\omega}(\frac{\varepsilon}{\operatorname{rch}(X)})^2\varepsilon), \frac{1}{2}\operatorname{rch}(X) - O(\varepsilon + \delta)\right)$, $\mathcal{C}_W^{\alpha}(L)$ contains a subcomplex \mathcal{D} homeomorphic to X and such that $\mathcal{D} \hookrightarrow \mathcal{C}_W^{\alpha}(L)$ induces monomorphisms at homology level.



Conjecture: [Carlsson, de Silva 04] The witness complex filtration should have *cleaner* persistence barcodes than Čech or Rips filtrations, at least on smooth submanifolds of \mathbb{R}^d .

Thm There exist a constant $\varrho > 0$ and a non-decreasing continuous map $\bar{\omega} : [0, \varrho) \to [0, \frac{1}{2})$, s.t. for all $0 < \delta \leq \varepsilon < \varrho \operatorname{rch}(X)$, and for all $\alpha \in \left[\frac{8}{3}(\delta + \bar{\omega}(\frac{\varepsilon}{\operatorname{rch}(X)})^2 \varepsilon), \frac{1}{2}\operatorname{rch}(X) - O(\varepsilon + \delta)\right)$, $\mathcal{C}_W^{\alpha}(L)$ contains a subcomplex \mathcal{D} homeomorphic to X and such that $\mathcal{D} \hookrightarrow \mathcal{C}_W^{\alpha}(L)$ induces monomorphisms at homology level.

 \oplus the bound on the amplitude of the topological noise cannot depend solely on δ



Concluding Remarks

• A weaker concept of reconstruction:

- stands in-between classical reconstruction and topological estimation,
- complexity scales up with intrinsic dimension of the data,
- comes with theoretical guarantees on a large class of compact sets.
- New stability results for a class of filtrations:
 - Čech filtration versus unions of Euclidean balls,
 - filtrations intertwined with Čech filtration (Rips, witness complex),
 - superiority of the witness complex on smooth submanifolds.

• A few (of many) open questions:

- can a single complex be extracted from $\mathcal{R}^{4\varepsilon}(L) \hookrightarrow \mathcal{R}^{16\varepsilon}(L)$?
- can the computation of the entire Rips complex be avoided?
- what is the exact power of the witness complex filtration?