Stability of boundary measures

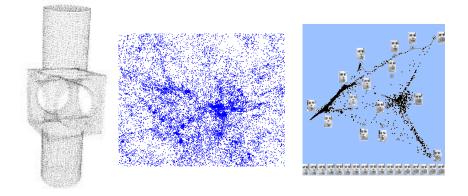
F. Chazal D. Cohen-Steiner Q. Mérigot

INRIA Saclay - Ile de France

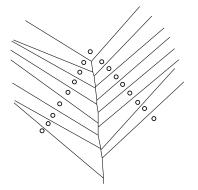
LIX, January 2008

F. Chazal, D. Cohen-Steiner, Q. Mérigot Stability of boundary measures

Point cloud geometry



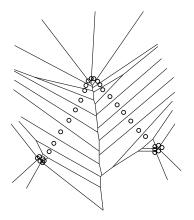
• Given a set of points sampled near an unknown shape, can we infer the geometry of that shape?



- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

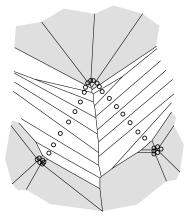


- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...



• the volume of a cell is very sensitive to perturbation

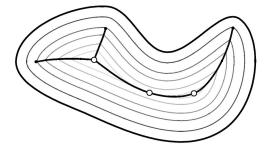
 but if one consider the union of Voronoï cells whose site is contained in a given ball...



- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

Definition

The projection $p_K : \mathbb{R}^n \to K \subset \mathbb{R}^n$ maps any point $x \in \mathbb{R}^n$ to its closest point in K. It is defined outside of the *medial axis* of K.



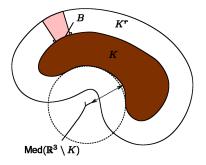
Definition

For $E \subset \mathbb{R}^n$, the boundary measure $\mu_{K,E}$ is defined as follows :

$$\forall B \subseteq K, \ \mu_{K,E}(B) = \textit{vol}^n(\{x \in E \mid p_K(x) \in B\})$$

that is, the n-volume of the part of E that projects on B.

- measure supported in K
- contains a lot of geometric information about K



- Let $K \subset \mathbb{R}^n$ be an *n*-dimensional object with smooth boundary.
- The smallest distance between K and its medial axis is called reach(K).
- Take $E = K^r \equiv \{x \in \mathbb{R}^n; d(x, K) \le r\}$, assuming $r < \operatorname{reach}(K)$.

Tube formula (Steiner, Weyl, Federer)

If r < reach(K):

$$vol^{n}(K^{r}) = vol^{n}(K) + \sum_{k=1}^{n} const(n,k) [\int_{\partial K} \sigma_{k-1}] r^{k}$$

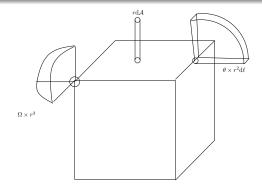
Tube formula (Steiner, Weyl, Federer)

If r < reach(K), for $B \subset K$:

$$\mu_{K,K^{r}}(B) = \underbrace{vol^{n}(B)}_{k=1} + \sum_{k=1}^{n} const(n,k) \underbrace{\left[\int_{B \cap \partial K} \sigma_{k-1}\right]}_{\Phi_{K}^{n-k}(B)} r^{k}$$

- The Φ_K^i are the (signed) *curvature measures* of K.
- If K is d-dimensional, they vanish identically for i > d.
- $\Phi_K^0(K)$ is the Euler characteristic of K.
- They are intrinsic, *i.e.* they do not depend on the embedding.

Convex polyhedron

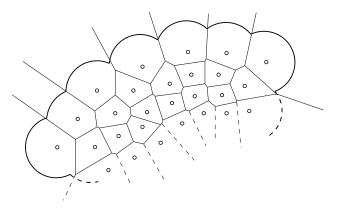


• the boundary measure of a convex polyhedron K can be decomposed as a sum :

$$\mu_{K,K^r}(B) = \sum_{k=0}^n const(n,k) \Phi_{n-k}(B) r^k.$$

 the curvature measure Φⁱ_K is the *i*-dimensional measure supported on the *i*-skeleton of K whose density is the local external dihedral angle.

The boundary measure of a point cloud

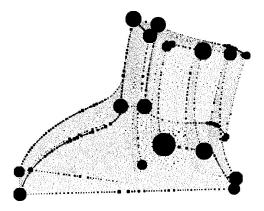


the boundary measure is a sum of weighted Dirac masses :

$$\mu_{C,C^r} = \sum_i \textit{vol}^n(\textit{Vor}(x_i) \cap C^r) \delta_{x_i}$$

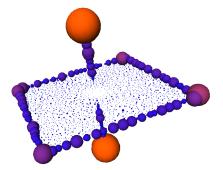
- is it practically feasible to compute the boundary measure of a point cloud $C \subseteq \mathbb{R}^d$?
- if C is a good approximation of K (ie dense enough and without too much noise), does the boundary measure μ_{C,C^r} carry approximately the same geometric information as μ_{K,K^r}?

The boundary measure of a point cloud



Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

The boundary measure of a point cloud



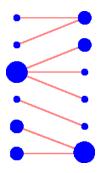
Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

• Assume point cloud C samples compact K well, e.g. $d_H(K, C) \le \varepsilon$. This means that

 $C \subset K^{\varepsilon}$ and $K \subset C^{\varepsilon}$

• Are $\mu_{K,E}$ and $\mu_{C,E}$ close? In which sense?

Wasserstein distance



- Assume measures μ and ν are discrete : $\mu = \sum_{i} c_i \delta_{x_i}, \ \nu = \sum_{j} d_j \delta_{y_j}$ we suppose that mass $(\mu) = mass(\nu)$
- a transport plan between is a set of nonnegative coefficients p_{ij} specifying the amount of mass which is transported from x_i to y_j, with

$$\sum_i p_{ij} = d_j$$
 and $\sum_j p_{ij} = c_i$

the cost of a transport plan is C(p) = ∑_{ij} ||x_i - y_j|| p_{ij}
W(μ, ν) = inf_p C(p)

Kantorovich-Rubinstein theorem

Definition

Let μ and ν be two measures on \mathbb{R}^d having the same total mass $\mu(\mathbb{R}^d) = \nu(\mathbb{R}^d)$.

$$W(\mu,\nu) = \inf_{X,Y} \mathbb{E}[d(X,Y)]$$

where the infimum is taken on all pairs of \mathbb{R}^d -valued random variables X and Y whose law are μ and ν respectively.

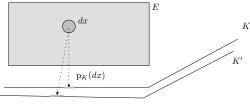
Theorem

For two measures μ and ν with common finite mass and bounded support,

$$W(\mu,\nu) = \sup_{f} |\int f \, d\mu - \int f \, d\nu|$$

where the sup is taken over all 1-Lipschitz functions $\mathbb{R}^n \to \mathbb{R}$.

Wasserstein distance between boundary measures



 $\mathbf{p}_{K'}(dx)$

We consider the following transport plan : the element of mass $p_K(x)dx$ coming from an element of mass dx at $x \in E$ will be transported to $p_{K'}(x)dx$.

the total cost of this transport is :

$$\int_{E} \|p_{K}(x) - p_{K'}(x)\| \, \mathrm{d}x = \|p_{K} - p'_{K}\|_{L^{1}(E)}$$

$$\Rightarrow \quad W(\mu_{\mathcal{K},\mathcal{E}},\mu_{\mathcal{K}',\mathcal{E}}) \leq \left\| p_{\mathcal{K}} - p'_{\mathcal{K}} \right\|_{\mathsf{L}^{1}(\mathcal{E})}$$

Theorem

If *E* is an open set of \mathbb{R}^n with rectifiable boundary, and *K* and *K'* are two *close enough* compact subsets :

$$\|p_{\mathcal{K}} - p_{\mathcal{K}'}\|_{\mathsf{L}^{1}(E)} := \int_{E} \|p_{\mathcal{K}} - p_{\mathcal{K}'}\|$$

$$\leq C(n)[vol^{n}(E) + \operatorname{diam}(\mathcal{K})vol^{n-1}(\partial E)]\sqrt{R_{\mathcal{K}}\mathsf{d}_{H}(\mathcal{K},\mathcal{K}')}$$

where $R_{\mathcal{K}} = \sup_{x \in E} d(x, \mathcal{K})$.

• close enough means that $d_H(K, K')$ does not exceed $\min(R_K, \operatorname{diam}(K), \operatorname{diam}(K)^2/R_K)$

 $C(n) = O(\sqrt{n})$

Lemma

Function $v_{\mathcal{K}} : x \mapsto ||x||^2 - d_{\mathcal{K}}^2(x)$ is convex and $\nabla v_{\mathcal{K}} = 2p_{\mathcal{K}}$ almost everywhere.

Lemma

If $f,g:E
ightarrow\mathbb{R}$ are convex and $k= ext{diam}(
abla f(E)\cup
abla g(E))$ then

$$\begin{split} \|\nabla f - \nabla g\|_{\mathsf{L}^{1}(E)} &\leq C(n) \left[\mathsf{vol}^{n}(E) + k \; \mathsf{vol}^{n-1}(\partial E) \right] \; \|f - g\|_{\infty}^{1/2} \\ &+ C(n) \; \mathsf{vol}^{n-1}(\partial E) \; \|f - g\|_{\infty} \end{split}$$

+ integral geometry arguments.

Theorem

If K is a fixed compact set, and E an open set with smooth boundary, then

$$\mathsf{W}(\mu_{\mathcal{K},\mathcal{E}},\mu_{\mathcal{K}',\mathcal{E}}) \leq \mathit{C}(\mathit{n},\mathcal{E},\mathcal{K}) \, \mathsf{d}_{\mathit{H}}(\mathcal{K},\mathcal{K}')^{1/2}$$

as soon as K' is close enough to K.

A similar result holds for $\mu_{K,K'}$ and $\mu_{K',K''}$.

Estimating curvature measures

- for any K with positive reach, there exists measures $\Phi_{K,i}$ such that for $r < \operatorname{reach}(K)$, $\mu_{K,r}(B) = \sum_{i=1}^{n} \Phi_{K}^{n-i}(B)r^{i}$
- **2** can be computed knowing only the boundary measures for n + 1 values $r_0 < \ldots < r_n$: denote the result by $\Phi_{K_i}^{(r)}$.

Corollary

If reach(K) > r_n and K' is *close* to K, there is a constant C(K, n, (r)) such that

$$\mathsf{d}_{\mathsf{bL}}\left(\Phi_{\mathcal{K},i},\Phi_{\mathcal{K}',i}^{(r)}\right) \leq C(\mathcal{K},n,(r))\,\mathsf{d}_{\mathcal{H}}(\mathcal{K},\mathcal{K}')^{1/2}$$

 \mathcal{C}^0 (Hausdorff) closeness implies closeness of differential properties at a given scale.

algorithm

Input : a point cloud C, a scalar r, a number N

```
Output : an approximation of \mu_{C,C^r} in the form \frac{1}{N} \sum n(p_i) \delta_{p_i}
```

while $k \leq N$

I. Choose a random point X with probability distribution $1 - \frac{1}{2\sqrt{d}}$

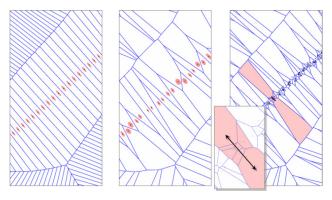
 $\frac{1}{\mathcal{H}^{d}(C^{r})} \left. \mathcal{H}^{d} \right|_{C^{r}}$

II. Finds its closest point p_i in the cloud C, add 1 to $n(p_i)$ end while

III. Multiply each $n(p_i)$ by $\mathcal{H}^d(C^r)$.

Hoeffding's inequality :

$$\mathbb{P}\left[\textit{d}_{\textit{bL}}\left(\mu_{\textit{N}}, \mu \right) \geq \varepsilon \right] \leq 2 \exp\left(\ln(16/\varepsilon) \mathcal{N}(\textit{K}, \varepsilon/16) - \textit{N}\varepsilon^2/2 \right)$$



Replace **volumes** of Voronoï cells by their **covariance matrices**. This gives a tensor-valued measure.

- small/large eigenvalues \simeq tangent/normal space
- principal curvatures/directions?

- The boundary measure and its tensor version encode "much' of the geometry of a compact set.
- these measures depend continuously on the compact set for the Hausdorff distance.
- Solution we do when the underlying shape has zero reach?
- what happens if we replace nearest neighbors by approximate nearest neighbors?
- bow can we deal with outliers?