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Abstract
9

Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained
eigenvalues problems. In this paper, we improve and adapt a recent statistical region merging approach to this task, as a non-11
parametric mixture model estimation problem. The approach appears to be attractive both for its theoretical benefits and its
experimental results, as slight bias brings dramatic improvements over unbiased approaches on challenging digital pictures.13
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grouping is the discovery of intrinsic clusters in data
[1]. Image segmentation is a particular kind of grouping in19
which data consists of an image, and the task is to extract
as regions the objects a user may find conceptually distinct21
from each other. The automation and optimization of this
task face computational issues [2] and an important con-23
ceptual issue: basically, segmentation has access only to the
descriptions of pixels (e.g. color levels) and their spatial re-25
lationships, while a user always uses higher level of knowl-
edge to cluster the image objects. Without such a signifi-27
cant prior world knowledge, the accuracy of grouping is not
meant to be optimality or even near-optimality, but rather29
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accurate candidacy, as segmentation should come up with 31
partition(s) from a candidate segmentation set [3].

With the advent of media making it easier and cheaper to 33
collect and store digital images, unconstrained digital pho-
tographic images have raised this challenge even further 35
towards both computational efficiency and robust process-
ing. Consider for example the well-known benchmark image 37
lena in Fig. 1. Users would certainly consider the hat of
the girl as an object different from the blurred background, 39
and most would consider her shoulder as different from her
face. Nevertheless, due to the distribution of colors, it is vir- 41
tually impossible for segmentation techniques based solely
on low-level cues, such as the colors, to make a clean sepa- 43
ration of these regions. The right image displays the result
of our algorithm. The regions found have white borders. 45
This result is presented more in depth in the experimental
section (Fig. 2). Notice from the result the segmentation of 47
the hat, cleanly separated from the background, and also the
segmentation of the girl’s chin, which is separated from her 49
shoulder.
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Fig. 1. Image lena (left), and our segmentation (right). In the segmentation’s result, regions found are white bordered (see text for details).

Fig. 2. Image lena (upper left), and its segmentation by SRRB, without bias (w/o), and with bias (w/, see Fig. 1). In the segmentations’
results, regions found are delimited with white borders. We have m = 4, |V1| = 2, |V2| = 2, |V3| = 2, |V4| = 2. The upper right table displays
some of the largest regions extracted from the segmentation (Reg. #X). The bottom table shows how lena’s face is built from the two
models whose pixels, denoted by red triangles on the upper right image, have been pointed by the user (each model’s color is random); the
number below×2000 is SRRB’s iteration number.

Common grouping algorithms for image segmentation1
use a weighted neighborhood graph to formulate the spa-
tial relationships among pixels [1–6] and then formulate the3
segmentation as a graph partitioning problem. An essential
difference between these algorithms is the locality of the5
grouping process. Shi and Malik [3] and Yu and Shi [1,7]
solve it from a global standpoint, whereas Felzenszwalb and7
Huttenlocher [4], Nock [2] and Nielsen and Nock [5] make
greedy local decisions to merge the connex components of9
induced subgraphs. Since segmentation is a global optimiza-
tion process, the former approach is a priori a good can-11
didate to tackle the problem, even when it faces computa-
tional complexity issues [3]. However, strong global proper-13
ties can be obtained for the latter approaches, such as qual-
itative bounds on the overall segmentation error [4,2], or15
even quantitative bounds [5].

Our approach to segmentation, which gives the results of 17
Fig. 1, is based on a segmentation framework previously
studied by Yu and Shi [1,7]: grouping with bias. It is par- 19
ticularly useful for domains in which the user may interact
with the segmentation, by inputting constraints to bias its 21
result: sensor models in MRF [8], Human–computer inter-
action, spatial attention and others [1]. Grouping with bias 23
is basically one step further towards the integration of the
user in the loop, compared to the method of general expec- 25
tations of a good segmentation integrated in non-purposive
grouping [9]; it is solved by pointing in the image some pix- 27
els (the bias) that the user feel belong to identical/different
objects, and then solving the segmentation as a constrained 29
grouping problem: pixels with identical labels must belong
to the same region in the segmentation’s result, while pixels 31
with different labels must not belong to the same region. The
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solution for the global approach of Yu and Shi [1,7] is math-1
ematically appealing, but it is computationally demanding,
and it requires quite an extensive bias for good experimental3
results on small images. Furthermore, it makes it difficult to
handle the constraints that some pixels must not belong to5
the same regions; that is why this technique is mainly used
for the particular biased segmentation problem in which one7
wants to segregate some objects from their background.

In this paper, we propose a general solution to biased9
grouping, based on a local approach to image segmentation
[2,5], which basically consists in using the bias for the esti-11
mation of non-parametric mixture models. Distribution-free
processing techniques are useful, if not necessary, in group-13
ing [10,2]. However, estimating clusters in data is already
far from being trivial even when significative distribution15
assumptions are assumed [11]. This is where the bias is of
huge interest when it comes to grouping, as bias defines17
partially labeled regions, with the constraint that different
labels belong to different regions. The approach of Nock19
[2] and Nielsen and Nock [5] is also conceptually appealing
for an adaptation to biased segmentation, because it consid-21
ers that the observed image is the result of the sampling of
a theoretical image, in which regions are statistical regions23
characterized by distributions. There is no distribution as-
sumption on the statistical pixels of this theoretical image.25
The only assumption made is an homogeneity property, ac-
cording to which the expectation of a single color is the27
same inside a statistical region, and it is different between
two adjacent statistical regions. The segmentation problem29
is thus the problem of recognizing the partition of the sta-
tistical regions on the basis of the observed image. The bi-31
ased grouping problem turns out to allow statistical regions
to contain different statistical sub-regions, not necessarily33
connected, each satisfying independently the homogeneity
property, and for which the user feels they all belong to the35
same perceptual object. Thus, it yields a significant general-
ization of the theoretical framework of Nock [2] and Nielsen37
and Nock [5].

Our contribution in this paper is twofold. First, it consists39
of two modifications and improvements to the unbiased seg-
mentation algorithm of Nock [2] and Nielsen and Nock [5].41
Their algorithm contains two stages. Informally, its first part
is a procedure which orders a set of pairs of adjacent pix-43
els, according to the increasing values of some real-valued
function f. Its second part consists of a single pass on this45
order, in which it tests the merging of the regions to which
the pixels belong, using a so-called merging predicate P. f47
and P are the cornerstones of the approach of Nock [2] and
Nielsen and Nock [5]. We propose in this paper a better f,49
and an improved P relying on a slightly more sophisticated
statistical analysis. Our second contribution is the extension51
of this algorithm to grouping with bias. Our extension keeps
both fast processing and the theoretical bounds on the qual-53
ity of the segmentation. Experimentally, the results appear
to be very favorable when comparing them to those of the55
approach of Yu and Shi [1,7]. They also appear to lead to

dramatic improvements over unbiased grouping, when com- 57
paring our mostly automated biased grouping process to the
human segmentations obtained on images of the Berkeley 59
segmentation data set and benchmark images [12].

Section 2 summarizes the unbiased approach of Nock [2] 61
and Nielsen and Nock [5], and presents our modification to
their algorithm in the unbiased setting. Section 3 presents 63
our extension to biased grouping and some theoretical re-
sults. Section 4 presents experimental results, and Section 5 65
concludes the paper.

2. Grouping exploiting concentration phenomena 67

We recall here the basic facts of the model of Nock [2]
and Nielsen and Nock [5]. Throughout this paper, “log” is 69
the base-2 logarithm. The notation | · | denotes the number
of pixels (cardinality) when applied to a region R, or to the 71
observed image I. Each pixel of I contains three color levels
(R, G, B), each of the three belonging to the set {1, 2, . . . , g}. 73
The RGB setting is used to cast our results directly on the
same setting as Nock [2] and Nielsen and Nock [5]; however, 75
the versatile technique of Nock [2] and Nielsen and Nock
[5] can be tailored to other numerical feature description 77
spaces, and handles more complex formulations of the color
gamuts, such as CIE, L∗u∗v∗, HSI, etc. as well as channel 79
sampling rates.

2.1. The model and algorithm of Nock [2] and Nielsen and 81
Nock [5]

The image I is an observation of a perfect object (or “true 83
region”, or statistical region) scene I∗ we do not know of,
and which we try to approximate through the observation of 85
I. It is I∗ which captures the global properties of the scene:
theoretical (or statistical) pixels are each represented by a set 87
of Q distributions for each color level, from which each of
the observed color level is sampled. The statistical regions 89
of I∗ satisfy a 4-connexity constraint, and the simple ho-
mogeneity constraint that the R (resp., G, B) expectation is 91
the same inside a statistical region. In order to discriminate
regions, we assume that between any two adjacent regions 93
of I∗, at least one of the three expectations is different. It
is important that, apart from an additional independency, no 95
more assumptions are put on I∗: for instance, the distribu-
tions can all be different for all statistical pixels, thereby 97
contrasting with usual statistical models used in image seg-
mentation, involving hypotheses that can be quite restric- 99
tive [10]. Q is a parameter which quantifies the complexity
of the scene, the generality of the model, and the statisti- 101
cal hardness of the task as well. If Q is small, the model
gains in generality (Q = 1 brings the most general model), 103
but segmenting the image is more difficult from a statistical
standpoint. Experimentally, Q turns out to be a tunable pa- 105
rameter which controls the coarseness of the segmentation,
even if one value in [2,5] (Q = 32) appears to be sufficient 107
to obtain nice segmentations for a large body of images.
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From this model, Nock [2] and Nielsen and Nock [5]1
obtain a merging predicate P(R, R′) based on concentration
inequalities, to decide whether two observed regions R and3
R′ belong to the same statistical region of I∗, and thus have
to be merged. Let Ra denote the observed average for color5
a in region R of I, and let Rl be the set of regions with l
pixels. Let7

b(R) = g

√
1

2Q|R|
(

ln
|R|R||

�

)
. (1)

Ref. [2] pick |Rl | = (l + 1)g . The merging predicate is [2]9

P(R, R′) =
{true iff ∀a ∈ {R, G, B}, |R′

a − Ra |
�b(R) + b(R′),

false otherwise.
(2)

The description of the algorithm probabilistic-sorted image11
segmentation (PSIS) of Nock [2] is straightforward, as
exposed in Algorithm 1. It basically consists in making a13
preliminary sorting over the set SI of the pairs of adjacent
pixels of the image, according to the increasing values of a15
real-valued function f (p, p′). f (., .) takes a pair of pixels
p and p′ as input, and returns the maximum of the three17
color differences (R, G and B) in absolute value between p
and p′:19

f (p, p′) = max
a∈{R,G,B} |p′

a − pa |. (3)

In 4-connexity, the number of such pairs is |SI | = 2rI cI −21
rI − cI = O(|I |) if I has rI rows and cI columns. After
ordering, the algorithm traverses this order only once, and23
test for any pair (pi, p

′
i
) the merging of the two regions to

which they currently belong, R(pi) and R(p′
i
) (here, the25

subscript i denotes the rank of the couple in the order). Such
an algorithm is called region-merging, since it gradually27
merges regions, pixels being taken as elementary regions.

Algorithm 1: PSIS(I )

Input: an image I
S′
I

= Order_increasing(SI , f);
for i = 1 to |S′

I
| do⌊

if R(pi) �= R(p′
i
) and P(R(pi), R(p′

i
)) = true then

� Union (R(pi), R(p′
i
));

29
This approach to segmentation is interesting from the algo-
rithmic standpoint, because it is both simple and fast. The31
eigenvalue approach of Shi and Malik [3] admits a naive so-
lution whose time complexity is O(|I |3)—impractical even33
for moderate-sized images—. Mathematical tricks can scale
down the time complexity at the expense of greater im-35
plementation efforts, but it still lies somewhere in between
O(|I |√|I |) and O(|I |3). In the case of Algorithm 1, the37
for...to complexity is O(|I |) (linear). Fortunately, the order
is also cheap as radixsorting with f (., .) values as the39
keys brings a time complexity O(|I | log g). Since g can be
considered constant, we get an overall approximate linear-41

time complexity for the whole algorithm using an Union-
Find implementation [13]. 43

We now concentrate on our modifications to f and the
merging predicate P. 45

2.2. An improved f

Nielsen and Nock [5] have shown that f should theoret- 47
ically be an estimator, as reliable as possible, of the lo-
cal between-pixel gradients. Eq. (3) is the simplest way to 49
compute these estimators, but there is another choice with
which we have obtained yet better visual results. It consists 51
in extending convolution kernels classically used in edge
detection for pixel-wise gradient estimation. In 4-connexity, 53
neighbor pixels are either horizontal or vertical. Thus, we
only need �̂x or �̂y between neighbor pixels p and p′, for 55
each color channel a ∈ {R, G, B}. A natural choice is to
extend the Sobel convolution filter to the following kernels: 57

�̂x :
[−1 0 0 1

−2 0 0 2
−1 0 0 1

]
,

�̂y :



1 2 1
0 0 0
0 0 0

−1 −2 −1


 .

For example, whenever neighbor pixels p and p′ are hori- 59
zontal, �̂x is used and the two pixels in the convolution fil-
ter are located in the second row, and the second and third 61
columns. Only for the pixels for which the estimations with
�̂x and �̂y cannot be done (i.e. those of the image border) 63
do we keep the estimation of Eq. (3).

2.3. An improved merging predicate P, and associated 65
theoretical results

Our first result is based on the following theorem: 67

Theorem 1 (The independent bounded difference inequality,
McDiarmid [14]). Let X = (X1, X2, . . . , Xn) be a family 69
of independent r.v. with Xk taking values in a set Ak for
each k. Suppose that the real-valued function h defined on 71∏

kAk satisfies |h(x) − h(x′)|�ck whenever vectors x and
x′ differ only in the k-th coordinate. Let � be the expected 73
value of the r.v. h(X). Then for any ��0,

Pr(h(X) − ���)� exp


−2�2

/∑
k

(ck)
2


 . (4)

75

From this theorem, we obtain the following result on
the deviation of observed differences between regions of I. 77
Recall that Ra denotes the observed average of color a for
region R. 79

Theorem 2. Consider a fixed couple (R, R′) of regions of
I. ∀0 < ��1, ∀a ∈ {R, G, B} the probability is no more 81
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than � that1

|(Ra − R
′
a) − E(Ra − R

′
a)|�g

√
1

2Q

(
1

|R| + 1

|R′|
)

ln
2

�
.

Proof. Suppose we shift the value of the outcome of one3
r.v. among the Q(|R| + |R′|) possible r.v. of the couple
(R, R′). |Ra −R

′
a | is subject to a variation of at most cR =5

g/(Q|R|) when this modification affects region R (among
Q|R| possible r.v.), and at most cR′=g/(Q|R′|) for a change7
inside R′ (among Q|R′| possible r.v.). We get

∑
k(ck)

2 =
Q(|R|(cR)2 + |R′|(cR′)2) = (g2/Q)((1/|R|) + (1/|R′|)).9
Using the fact that the deviation with the absolute value is at
most twice that without, and using Theorem 1 (solving for11
�) brings our result. This ends the proof of Theorem 2. �

Fix some a ∈ {R, G, B}. Provided we have some way to13
evaluate the theoretical deviation of |Ra − R

′
a |, a candidate

merging predicate is straightforward. Nock [2] and Nielsen15
and Nock [5] use a concentration inequality on the deviation
of the average color level around its expectation for any17
single arbitrary region R. Thus, they get for each region R
probabilistic bounds on the deviation of |Ra−E(Ra)|. When19
two adjacent regions R and R′ come from the same true
region in I∗, we have E(Ra) = E(R

′
a); thus the triangular21

inequality makes that the deviation of |Ra −R
′
a | is no more

than the sum of deviations for each region’s color around its23
expectation, and we get the merging predicate of Nock [2]
and Nielsen and Nock [5] in Eq. (2). However, the use of25
the triangular inequality weakens the concentration bound.
Notice that when R and R′ come from the same true region27
in I∗, Theorem 2 directly yields a probabilistic bound on
the deviation of |Ra −R

′
a | (since E(Ra −R

′
a)=0), without29

a similar weakening.
However, Theorem 2 is a single event’s concentration in31

what it considers a single couple of regions (R, R′), and one
should extend this to the whole image, in order to obtain33
a convenient merging predicate. Fortunately, one can easily
upperbound the probability that such a large deviation occurs35
in the observed image I, using the union bound. Nock [2]
remark that this is no more than the probability to occur37
in the set of all regions (whether present or absent from
I). The cardinal of each subset containing fixed-size regions39
can be upperbounded by a degree-O(g) polynomial [2], but
it yields to a pretty large upperbound.41

Another counting argument is possible, if we remark that
the occurrence probability on I is also no more than that43
measured on the set of couples of I whose merging is tested,
S′
I

(See Algorithm 1). Its cardinal, |S′
I
|, is comparatively45

small: for a single-pass algorithm, |S′
I
| < |I |2, and even

|S′
I
|=�(|I |) in 4-connexity. Thus, we get the following the-47

orem. �

Theorem 3. ∀0 < ��1, there is probability at least 1 −49
(3|S′

I
|�) that all couples (R, R′) tested shall verify ∀a ∈

{R, G, B}, |(Ra − R
′
a) − E(Ra − R

′
a)|�b(R, R′), with 51

b(R, R′) = g

√
1

2Q

(
1

|R| + 1

|R′|
)

ln
2

�
. (5)

b(R, R′) would lead to a very good theoretical merging 53
predicate P instead of using the threshold b(R) + b(R′) in
Eq. (2), provided we pick a � small enough. This predicate 55
would be much better than [2,5] from the theoretical stand-
point, but slightly larger thresholds are possible that keep 57
all the desirable theoretical properties we look for, and give
much better visual results. Our merging predicate uses one 59
such threshold, which turns out to be Õ(b(R, R′)) (the tilde
upon the big-Oh notation authorizes to remove constants and 61
log-terms). Remark that provided regions R and R′ are not
empty, b(R, R′)�

√
b2(R) + b2(R′) < b(R) + b(R′). This 63

right quantity is that of Eq. (2). The center quantity is the
one we use for our merging predicate. Notice that it is in- 65
deed Õ(b(R, R′)) provided a good upperbound on |Rl | is
used. Our merging predicate is thus: 67

P(R, R′) =


true iff ∀a ∈ {R, G, B}, |R′

a − Ra |
�

√
b2(R) + b2(R′),

false otherwise.
(6)

Let us now concentrate on |Rl |. Nock [2] and Nielsen and 69
Nock [5] pick |Rl | = (l + 1)g , considering that a region
is an unordered bag of pixels (each color level is given 71
0, 1, . . . , l pixels). This bound counts numerous duplicates
for each region: e.g. at least (l + 1)g−l when l < g. Thus, 73
we fix |Rl | = (l + 1)min{l,g}.

As advocated before, the merging predicate in Eq. (6) has 75
proven experimentally to be more interesting than that of
Eq. (2). Let us briefly illustrate its theoretical interests, that 77
encompass those of the merging predicate of Nock [2] and
Nielsen and Nock [5] (due to the fact that it is tighter). 79

Suppose that we are able to make the merging tests
through f in such a way that when any test between two 81
(parts of) true regions occurs, that means that all tests in-
side each of the two true regions have previously occurred. 83
Let us name A this assumption. Informally, A stresses the
need to make f as accurate as possible (and it has moti- 85
vated our study of Section 2.2). Notice also that A does not
postulate at all that we know where the statistical regions 87
of I∗ are in I. Under assumption A, Nielsen and Nock
[5] have shown that with high probability, the error of the 89
segmentation is limited from both the qualitative and the
quantitative standpoint. There are basically three kind of 91
errors a segmentation algorithm can suffer with respect to
the optimal segmentation. First, under-merging represents 93
the case where one or more regions obtained are strict sub-
parts of statistical regions. Second, over-merging represents 95
the case where some regions obtained strictly contain more
than one statistical region. Third, there is the “hybrid” (and 97
most probable) case where some regions obtained contain
more than one strict subpart of true regions. Name for short 99
s∗(I ) as the set of regions of the ideal segmentation of
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I following the statistical regions of I∗, and s(I ) the set1
of regions in the segmentation we get. Then we have the
following qualitative bound on the error.3

Theorem 4. With probability �1 − �(|I |�), the segmenta-
tion on I satisfying A is an over-merging of I∗, that is:5
∀O ∈ s∗(I ), ∃R ∈ s(I ) : O ⊆ R.

Proof. From Theorem 3, with probability > 1 − (3|S′
I
|�)7

(thus > 1 − �(|I |�) in 4-connexity), all regions R and
R′ coming from the same statistical region of I∗,9
whose merging is tested, satisfy ∀a ∈ {R, G, B}, |Ra −
R

′
a |�b(R, R′)�

√
b2(R) + b2(R′) (thus, P(R, R′) =11

true). Since A holds, the segmentation obtained is an
over-merging of I∗. �13

Because of the choice of our P, it satisfies also the quan-
titative bounds of Nielsen and Nock [5], i.e. we can show15
that with high probability, the over-segmentation of Theo-
rem 4 shall not hopefully result in a too large error. We refer17
the reader to Nielsen and Nock [5] for the explicit values of
this error bound, not needed here. In the sequel, we shall re-19
fer to our modified version of PSIS as SRRB, which stands
for Statistical Region Refinement (with Bias). We have cho-21
sen to use refinement better than merging, because it shall
be clear from the experiments that the bias may help to im-23
prove both the merging and the splitting of regions, even
when SRRB formally belongs to region merging algorithms.25

3. Grouping with bias

It shall be useful in this section to think of I as containing27
vertices instead of pixels, and the (4-)connexity as defining
edges, so that I can be represented by a simple graph (V , E).29
Following Yu and Shi [1], we define a grouping bias to be
user-defined disjoint subsets of V: {V1, V2, . . . , Vm} = V.31
Any feasible solution to the constrained grouping problem
is a partition of V into connex components (thus, a partition33
of the pixels of I into regions), such that

(i) any such connex component intersects at most one ele-35
ment of V, and

(ii) ∀1� i �m, any element of Vi is included into one connex37
component.

The first condition states that no region in the segmentation39
of I may contain elements from two distinct subsets in V,
and condition (ii) states that each vertex in V belongs to a41
region.

For any region R of I, we define a model for the region43
to be a subset of R, without connexity constraints on its
elements, containing one vertex of some element of V. The45
term model makes statistical sense because any Vi ∈ V

with |Vi | > 1 may represent a single object for the user, but47
composed of different statistical regions (“models”) of I∗.
Each element of Vi can thus represent one theoretical pixel49
of each different statistical sub-regions, whose union makes

the object perceived by the user. For example, the hat of 51
lena in Fig. 1 visually contains two parts belonging to the
same conceptual object (a bandeau and the hat itself). There 53
is a significant gradient between these two parts of the hat.
So, one may imagine to create some Vi ∈ V by pointing 55
two pixels, one on the top of the hat, and one somewhere
on the bandeau (or on the bright hat’s border whose color is 57
similar to the bandeau). This indicates that these two parts
with different colors define two models that belong to the 59
same object, and should thus be considered as a single region
in the segmentation’s result (Notice that this is indeed the 61
case from our biased segmentation’s result in Fig. 1.)

Grouping with bias has another advantage, since it natu- 63
rally handles occlusions, as the user may specify that two
(or more) models not connected represent the same region. 65
This could be the case in Fig. 1 for lena’s hair for example.

Any region R defined by some Vi ∈ V is a partition 67
of models, each represented by one element of Vi . We
name regions without vertices from V as “model-free”. 69
There are therefore two types of regions in our segmenta-
tion: those model-free, and those being a partition of sub- 71
regions, each defined by the elements of one subset in V.
Our region merging algorithm keeps this as an invariant: 73
thus, merging a model-free region and a model-based re-
gion results in the merging of the first region into one 75
model of the second. The modification of the approach
in Refs. [2,5] consists in first making each Vi defined by 77
the user, and then, through the traversing of S′

I
, replacing

the merging stage (the if condition in the for...to of Algo- 79
rithm 1) by the following new if condition (∀(p, p′) ∈ S′

I
):

if If R(p) and R(p′) are model-free, then we compute
P(R(p), R(p′)) as in Algorithm 1, and eventually
merge them;

else if both contain models, then we do not merge them;
Indeed, in that case, either the models are defined by
vertices of different subsets in V (and we obviously
do not have to merge them), or they are defined by
vertices of the same subset of V. However, in that
case, they have been defined by the used as different
sub-regions of the same object, so we keep these sub-
regions distinct until the end of the algorithm.

else consider without loss of generality that R(p) con-
tains models and R(p′) does not. We first compute
P(M(p), R(p′)), with M the model of R(p) adjacent
to R(p′) (notice that p ∈ M(p)):
if it returns true, then a merge is done: we fold

R(p′) into M(p); thus, M(p) grows (and not
the other models of R(p)), as after this merging
it integrates R(p′).

else we search for the best matching model M(p)

of R(p) w.r.t. R(p′) (the one minimizing
maxa∈R,G,B |M(p)a − R(p′)a |), and eventu-
ally fold R(p′) into M(p) iff P(M(p), R(p′))
returns true. 81
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At the end of the algorithm, all models of each Vi are merged1
altogether in the segmentation’s output.

The theoretical properties enjoyed by this extension to3
grouping with bias are the same as the unbiased approach
given in Section 2, provided we make the assumption that5
all the vertices of the subsets in V come from different
statistical regions of I∗. Recall that this is sound with the fact7
that the aim of bias is precisely to make it possible for the
observer to integrate in the same perceptual object different9
statistical (true) regions of I∗. For example, we have:

Theorem 5. Suppose that the vertices of V come from11 ∑m
i=1|Vi | different statistical regions of I∗. Then, with prob-

ability �1 − �(|I |�), the segmentation on I satisfying A is13
an over-merging of I∗.

Quantitative bounds on the are also possible, following15
Nielsen and Nock [5].

4. Experiments

We have run SRRB on a benchmark of digital pictures of
various contents and difficulty levels, to test its ability to im-19
prove the segmentation quality over the unbiased approach,
while using a bias as slight as possible. While looking at the21
experiments performed on Figs. 2–7 , the reader may keep
in mind that images are segmented as they are, i.e. without23
any preprocessing, and with the same value for the param-
eters, following Nock [2] and Nielsen and Nock [5]:25

Q = 32, (7)

� = 1

3|I |2 . (8)27

Thus, the quality of the results may be attributed only to
SRRB, and not to any content-specific tuning or preprocess-29
ing optimization.

4.1. SRR B ’s model choice rules, and first experiments31

Fig. 2 shows detailed results on the image lena, that have
been previously outlined in the introduction. We have chosen33
this image because it is one of the mostly used benchmark
in image processing, and it has features making it difficult35
to segment, such as its blurred regions, its thin differences
between perceptually distinct regions (e.g. her face and her37
shoulder), its single majority tone (reddish), its strong gra-
dients (e.g. her hat). The result of SRRB with bias displays39
four model-based regions. Each such region is defined only
by two models. In the result of SRRB with bias, the sym-41
bols denote the pixels that have been pointed by the user to
define each element of V. Different symbols denote differ-43
ent elements of V, and thus different perceptual regions for
the user.45

The result of SRRB with bias displays a very good seg-
mentation of the image. The girl’s hat and her shoulder, two 47
very difficult regions to segment, are almost perfectly seg-
mented. The quality of the segmentation is to be evaluated 49
in the light of the bias given. The user has specified only
eight pixels for the whole image. Obviously, these pixels 51
have not been chosen at random.

Two simple “rules of thumb” appear to be enough for a 53
limited processing of most of the images, while obtaining
the significant improvements over unbiased segmentation 55
observed in lena, and over images as well such as those
of Fig. 3. 57

The first and most important is a gradient rule: the sub-
regions of smoothest gradients between two perceptually 59
distinct regions are good places for specifying models. This
prevents the order to merge distinct perceptual sub-regions 61
in the early steps of SRRB, during which the statistical ac-
curacy of the merging predicate is the smallest. In image 63
lena, the two red triangles defining her face are approxi-
mately located in smooth gradient parts between the face and 65
the hat, and between the face and the shoulder respectively.

The second is a size rule: during the merging steps, no 67
two models mix altogether into a single model, even when
they belong to the same region. Furthermore, the merging of 69
a model-free region into a model of another region does not
necessarily imply that they are connected, as connexity is 71
ensured only with the region containing the model. Thus, if
the user specifies very small models in perceptually distinct 73
regions, this may yield a significant over-merging for the
regions to which such model belongs. For example, if we had 75
put a red triangle in lena’s right eye, her hair would have
been merged with her face. Such a mistake does not really 77
represent a real additional interaction burden, as putting a
single different additional model in the hair would solve the 79
problem. However, this simple rule of leaving model-free
too small regions may save a significant number of models, 81
and thus reduce the interaction time for the user.

For relatively “easier” pictures, such as those of Fig. 3, 83
sparse and simple choices yield dramatic improvements
over unbiased grouping: the stairs and the tower of 85
castle-1 are almost perfectly segmented, and the castle
of castle-2 is almost perfectly extracted as a whole 87
(notice the model in the drainpipe, which prevents it to be
merged with the bushy tree). 89

In the next subsection, we make further comparisons of
SRRB with biased normalized cuts (NCuts). 91

4.2. SRR B vs. NCuts

Yu and Shi [1,7] have proposed a mathematically appeal- 93
ing extension of the original unbiased normalized cuts prob-
lem of Shi and Malik [3]. In the original problem, the image 95
is transformed into a weighted graph, and the objective is to
make a partition of this graph into a fixed number of connex 97
components, so as to minimize the cut between the com-
ponents and maximize an association (within-component) 99
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Fig. 3. Segmentation results on images castle-1 (m = 3, |V1| = 5, |V2| = 4, |V3| = 3) and castle-2 (m = 5,

|V1| = 3, |V2| = 1, |V3| = 1, |V4| = 1, |V5| = 2). Conventions follow Fig. 2.

measure. The solution of this problem, even when compu-1
tationally intractable [3], can be fairly well approximated
by the eigen decomposition of a stochastic matrix. The ex-3
tension of this technique to biased grouping involves con-
strained eigenvalue problems. These problems make it dif-5
ficult to handle non-transitive constraints, such as the con-
straint “must not belong to the same region”, which belongs7
to the core of the biased grouping problem (see Section 3).
In the Refs. [1,7], the bias takes the form of transitive con-9
straints, such as “must belong to the same region”. In that
case, nothing is assumed for the pixels with different la-11

bels. In order to make a fair comparison with NCuts, we
have decided to study a particular biased grouping prob- 13
lem whose constraints fit in this category, and for which the
NCuts give some of their best results [7]: the segregation 15
of the foreground from the background of an image. This
problem is addressed on NCuts by making a frame (10 pix- 17
els width in most of our experiments) on an image, and then
constrain the grouping to treat this frame as a single region. 19

Fig. 4 presents some results that have been obtained for
three animal pictures, in which we want to segregate the 21
animal from its background. Fig. 5 presents additional re-
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Fig. 4. SRRB vs. NCuts on images leopard (m=2, |V1|=4, |V2|=5), bat (m=2, |V1|=2, |V2|=7) and badger (m=2, |V1|=10, |V2|=4).
For each image, the result of SRRB with bias and the largest regions found by SRRB and NCuts are shown. The remaining regions follow
the convention of Fig. 2.

sults on an animal, and on a flower. The results display1
that the NCuts perform reasonably well, but fail to make
accurate segmentations of regions with deep localized con-3
trasts, such as the head of the badger, the speckled coat
of the leopard, or the flower. Because these contrasts5
make very small local cut values for NCuts, they tend to
be selected as region frontiers, and transitive constraints do7
not seem to be enough for preventing their split. This is
clearly a drawback that SRRB does not suffer, as it manages9
very accurate segmentations of all animals. Even the bee
of the flower image receives an accurate segmentation,11
which segregates the insect from both the background and13

the flower, while NCuts essentially succeed only in making
an accurate segregation of the insect from the background. 15
This flower image is an example of a difficult image for
grouping algorithms based only on low-level cues: due to 17
the distribution of colors, it is virtually impossible to make a
single region out of the flower, whose colors are contrasted, 19
while preventing the bee to be merged with the background.
Eight models pointed are enough to solve this problem in 21
SRRB.

Since our merging predicate relies on comparing observed 23
averages, making segmentations without bias in SRRB faces
the problem of under merging for regions with strong 25



UNCORRECTED P
ROOF

10 R. Nock, F. Nielsen / Pattern Recognition ( ) –

PR2195
ARTICLE IN PRESS

Fig. 5. More results on images chamois (m=3, |V1|=5, |V2|=3, |V3|=3) and flower (m=3, |V1|=3, |V2|=3, |V3|=2). Conventions
follow Fig. 4.

Fig. 6. Comparison of SRRB and NCuts on the BSDB image woman (m = 2, |V1| = 3, |V2| = 3). The “human” result is a segmentation
from a human, taken from the BSDB (regions are displayed white with black borders). Other conventions follow Fig. 4.
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Fig. 7. Experiments on the BSDB. Segmentation’s conventions follow Fig. 6. The numbers below the results of SRRB (w/) are m (bold),
and the cardinal of the Vis.

gradients, such as the ceiling of the cave in the bat image1
of Fig. 4. Fortunately, the bias makes it possible to handle
gradients in quite an efficient way. The strong gradient of3
the bat picture comes from the flash of the camera and the
rocky irregular ceiling of the cave. The background contains5
very bright parts (upper left) up to very dark parts (lower
right); in that case, only seven models have been necessary7
to segregate the bat.

All these result have to be appreciated in the light of the9
amount of bias imposed, and the execution times. SRRB has
required no more than a total of 14 pixels pointed in each11

image. Furthermore, the execution times give a significant
advantage to SRRB: each image was segmented in about 13
a second with SRRB, while it took between 5 and 9 min
with NCuts. The experiments were ran on a Pentium IV 15
2 GHz PC with 512 MB ram. Grouping with bias involves an
interaction with the user to define the constraints, and a loop 17
between the user and the machine for their optimization: in
that case, a program running in no time to get the results is 19
clearly an advantage.

Fig. 6 shows a first experiment on the Berkeley Segmen- 21
tation Data set and Benchmark (BSDB, [12]). This data base
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presents, on a large amount of images, the results of hu-1
man segmentations. This is particularly relevant for biased
grouping, which precisely involves the human in the loop.3
Again, the task of segregating the woman from her back-
ground is much more accurate for SRRB when compared to5
NCuts: SRRB fits very well the human segmentation, with
only six pixels pointed in the image.7

4.3. SRR B vs. human on the BSDB images

We have performed more experiments on the BSDB, to9
compare SRRB against human segmentations. The prob-
lems considered are more general than the segregation11
background/foreground, which has led us to leave some-
what NCuts for these experiments (whose best results were13
above average), and focus on the way the biased segmen-
tation in SRRB could come close to that of an human. The15
results are presented in Fig. 7. Apart from image cave, we
have not necessarily tried to fit the human segmentations17
observed in the BSDB. Rather, we have tried to fit the way
we would segment the images, and then we have chosen19
in the BSDB an human segmentation close to the result
obtained. Notice that the images chosen are, on average,21
quite difficult. A typically difficult example is the sand
image, in which very little can be obtained from the colors23
only. In this image, the NCuts without bias have obtained
almost exactly the same result as SRRB without bias. The25
biased segmentation, which makes extensive use of the gra-
dient rule to choose the models (Section 4.1), has obtained27
a very good segmentation of the picture with few models,
and the result closely follows the human segmentation. On29
image cave, we have tried to fit as exactly as possible
an human segmentation of the BSDB (shown), using the31
fewest number of models. Without an extensive tuning (this
took only few tries), we have almost exactly matched the33
human segmentation while using only 12 models.

5. Conclusion

In this paper, we have proposed a novel method for seg-
menting an image with a user-defined bias. The bias takes37
the form of pixels pointed by the user on the image, to define
regions with distinctive sub-parts. The algorithm proposed39
rely on an unbiased segmentation algorithm [2,5], which we
first modify and improve. The extension to biased segmen-41
tation keeps both the fast processing time and the theoretical
properties of the former unbiased approaches onto which43
it is based. Experimental results show dramatic improve-
ments of the biased segmentations over the unbiased results,45
and the biased results compare very favourably to previous
approaches [1,7]. All these benefits come at a negligible47
additional computational cost when compared to unbiased
grouping, while biased eigenvalue-based segmentation ap-49
proaches suffer from slow-downs of magnitude orders [1].
From an experimental standpoint, the running time of our51

biased approach is also a magnitude order smaller than those
of Yu and Shi [1,7], and it is compatible with the constraint 53
that grouping with bias involves close interactions with the
user. We also emphasize the slight bias we use, with which 55
the quality improvements it brings make it a valuable com-
panion well worth the try for the segmentation of complex 57
images, such as those obtained with digital media.

Code availability: SRRB can be obtained from the au- 59
thor’s webpages.
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