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Abstract. In this paper, we consider the task of clustering multivari-
ate normal distributions with respect to the relative entropy into a pre-
scribed number, k, of clusters using a generalization of Lloyd’s k-means
algorithm [1]. We revisit this information-theoretic clustering problem
under the auspices of mixed-type Bregman divergences, and show that
the approach of Davis and Dhillon [2] (NIPS*06) can also be derived
directly, by applying the Bregman k-means algorithm, once the proper
vector/matrix Legendre transformations are defined. We further explain
the dualistic structure of the sided k-means clustering, and present a
novel k-means algorithm for clustering with respect to the symmetrical
relative entropy, the J-divergence. Our approach extends to differential
entropic clustering of arbitrary members of the same exponential families
in statistics.

1 Introduction

In this paper, we consider the problem of clustering multivariate normal distri-
butions into a given number of clusters. This clustering problem occurs in many
real-world settings where each datum point is naturally represented by multiple
observation samples defining a mean and a variance-covariance matrix modeling
the underlying distribution: Namely, a multivariate normal (Gaussian) distribu-
tion. This setting allows one to conveniently deal with anisotropic noisy data
sets, where each point is characterized by an individual Gaussian distribution
representing locally the amount of noise. Clustering “raw” normal data sets is
also an important algorithmic issue in computer vision and sound processing. For
example, Myrvoll and Soong [3] consider this task for adapting hidden Markov
model (HMM) parameters in a structured maximum a posteriori linear regres-
sion (SMAPLR), and obtained improved speech recognition rate. In computer
vision, Gaussian mixture models (GMMs) abound from statistical image mod-
eling learnt by the expectation-maximization (EM) soft clustering technique [4],
and therefore represent a versatile source of raw Gaussian data sets to manip-
ulate efficiently. The closest prior work to this paper is the differential entropic
clustering of multivariate Gaussians of Davis and Dhillon [2], that can be derived
from our framework as a special case.
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A central question for clustering is to define the appropriate information-
theoretic measure between any pair of multivariate normal distribution objects
as the Euclidean distance falls short in that context. Let N(m, S) denote1 the
d-variate normal distribution with mean m and variance-covariance matrix S.
Its probability density function (pdf.) is given as follows [5]:

p(x; m, S) =
1

(2π)
d
2
√

detS
exp

(
− (x − m)T S−1(x − m)

2

)
, (1)

where m ∈ R
d is called the mean, and S � 0 is a positive semi-definite ma-

trix called the variance-covariance matrix, satisfying xT Sx ≥ 0 ∀x ∈ R
d. The

variance-covariance matrix S = [Si,j ]i,j with Si,j = E[(X(i)−m(i))(X(j)−m(j))]
and mi = E[X(i)] ∀i ∈ {1, ..., d}, is an invertible symmetric matrix with posi-
tive determinant: detS > 0. A normal distribution “statistical object” can thus
be interpreted as a “compound point” Λ̃ = (m, S) in D = d(d+3)

2 dimensions
by stacking the mean vector m with the d(d+1)

2 coefficients of the symmetric
variance-covariance matrix S. This encoding may be interpreted as a serial-
ization or linearization operation. A fundamental distance between statistical
distributions that finds deep roots in information theory [6] is the relative en-
tropy, also called the Kullback-Leibler divergence or information discrimination
measure. The oriented distance is asymmetric (ie., KL(p||q) �= KL(q||p)) and
defined as:

KL(p(x; mi, Si)||p(x; mj , Sj)) =
∫

x∈Rd

p(x; mi, Si) log
p(x; mi, Si)
p(x; mj , Sj)

dx. (2)

The Kullback-Leibler divergence expresses the differential relative entropy
with the cross-entropy as follows:

KL(p(x;mi, Si)p(x;mj , Sj)) = −H(p(x;mi, Si))−
∫

x∈Rd

p(x;mi, Si) log p(x;mj , Sj)dx,

(3)

where the Shannon’ differential entropy is

H(p(x; mi, Si)) = −
∫

x∈Rd

p(x; mi, Si) log p(x; mi, Si)dx, (4)

independent of the mean vector:

H(p(x; mi, Si)) =
d

2
+

1
2

log(2π)ddetSi. (5)

Fastidious integral computations yield the well-known Kullback-Leibler diver-
gence formula for multivariate normal distributions:
1 We do not use the conventional (μ, Σ) notations to avoid misleading formula later

on, such as
∑n

i=1 Σi, etc.
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KL(p(x; mi, Si)||p(x; mj , Sj)) =
1
2

log |S−1
i Sj |+

1
2
tr

(
(S−1

i Sj)−1) − d

2
+

1
2
(mi − mj)T S−1

j (mi − mj), (6)

where tr(S) is the trace of square matrix S, the sum of its diagonal elements:
tr(S) =

∑d
i=1 Si,i. In particular, the Kullback-Leibler divergence of normal

distributions reduces to the quadratic distance for unit spherical Gaussians:
KL(p(x; mi, I)||p(x; mj , I)) = 1

2 ||mi − mj ||2, where I denotes the d × d iden-
tity matrix.

2 Viewing Kullback-Leibler Divergence as a Mixed-Type
Bregman Divergence

It turns out that a neat generalization of both statistical distributions and
information-theoretic divergences brings a simple way to find out the same result
of Eq. 6 by bypassing the integral computation. Indeed, the well-known normal
density function can be expressed into the canonical form of exponential families
in statistics [7]. Exponential families include many familiar distributions such
as Poisson, Bernoulli, Beta, Gamma, and normal distributions. Yet exponential
families do not cover the full spectrum of usual distributions either, as they do
not contain the uniform nor Cauchy distributions.

Let us first consider univariate normal distributions N(m, s2) with associated
probability density function:

p(x; m, s2) =
1

s
√

2π
exp −

(
(x − m)2

2s2

)
. (7)

The pdf can be mathematically rewritten to fit the canonical decomposition
of distributions belonging to the exponential families [7], as follows:

p(x; m, s2) = p(x; θ = (θ1, θ2)) = exp {< θ, t(x) > −F (θ) + C(x)} , (8)

where θ = (θ1 = μ
σ2 , θ2 = − 1

2σ2 ) are the natural parameters associated with the

sufficient statistics t(x) = (x, x2). The log normalizer F (θ) = − θ2
1

4θ2
+ 1

2 log −π
θ2

is a
strictly convex and differentiable function that specifies uniquely the exponential
family, and the function C(x) is the carrier measure. See [7,8] for more details
and plenty of examples. Once this canonical decomposition is figured out, we can
simply apply the generic equivalence theorem [9] [8] Kullback-Leibler↔Bregman
divergence [10]:

KL(p(x; mi, Si)||p(x; mj , Sj)) = DF (θj ||θi), (9)

to get the closed-form formula easily. In other words, this theorem (see [8] for a
proof) states that the Kullback-Leibler divergence of two distributions of the same
exponential family is equivalent to the Bregman divergence for the log normalizer
generator by swapping arguments. The Bregman divergence [10] DF is defined as
the tail of a Taylor expansion for a strictly convex and differentiable function F as:

DF (θj ||θi) = F (θj) − F (θi)− < θj − θi, ∇F (θi) >, (10)
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where < ·, · > denote the vector inner product (< p, q >= pT q) and ∇F is the
gradient operator. For multivariate normals, the same kind of decomposition
exists but on mixed-type vector/matrix parameters, as we shall describe next.

3 Clustering with Respect to the Kullback-Leibler
Divergence

3.1 Bregman/Kullback-Leibler Hard k-Means

Banerjee et al. [9] generalized Lloyd’s k-means hard clustering technique [1]
to the broad family of Bregman divergences DF . The Bregman hard k-means
clustering of a point set P = {p1, ..., pn} works as follows:

1. Initialization. Let C1, ..., Ck be the initial k cluster centers called the seeds.
Seeds can be initialized in many various ways and is an important step to
consider in practice, as explained in [11]. The simplest technique, called
Forgy’s initialization [12], is to allocate at random seeds from the source
points.

2. Repeat until converge or stopping criterion is met
(a) Assignment. Associate to each “point” pi its closest center with respect

to divergence DF : pi → arg minCj∈{C1,...,Ck} DF (pi||Cj). Let Cl denote
the lth cluster, the set of points closer to center Cl than to any other
cluster center. The clusters form a partition of the point set P . This
partition may be geometrically interpreted as the underlying partition
emanating from the Bregman Voronoi diagram of the cluster centers
C1, ..., Ck themselves, see [8].

(b) Center re-estimation. Choose the new cluster centers Ci ∀i ∈ {1, ..., k}
as the cluster respective centroids: Ci = 1

|Ci|
∑

pj∈Ci
pj. A key property

emphasized in [9] is that the Bregman centroid defined as the minimizer
of the right-side intracluster average arg minc∈Rd

∑
pi∈Cl| DF (pi||c) is in-

dependent of the considered Bregman generator F , and always coincide
with the center of mass.

The Bregman hard clustering enjoys the same convergence property as the
traditional k-means. That is, the Bregman loss function

∑k
l=1

∑
pi∈Cl

DF (pi||Cl)
monotonically decreases until convergence is reached. Thus a stopping criterion
can also be choosen to terminate the loop as soon as the difference between the
Bregman losses of two successive iterations goes below a prescribed threshold.
In fact, Lloyd’s algorithm [1] is a Bregman hard clustering for the quadratic
Bregman divergence (F (x) =

∑d
i=1 x2

i ) with associated (Bregman) quadratic
loss. As mentioned above, the centers of clusters are found as right-type sum
average minimization problems. For a n-point set P = {p1, ..., pn}, the center is
defined as

arg min
c∈Rd

DF (pi||c) =
1
n

n∑
i=1

pi. (11)
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Fig. 1. Bivariate normal k-means clustering (k = 3, d = 2, D = 5) with respect to
the right-type Bregman centroid (the center of mass of natural parameters, equivalent
to the left-type Kullback-Leibler centroid) of 32 bivariate normals. Each cluster is
displayed with its own color, and the centroids are rasterized as red variance-covariance
ellipses centered on their means.

That is, the Bregman right-centroid is surprisingly invariant to the considered
Bregman divergence [9] and always equal to the center of mass. Note that al-
though the squared Euclidean distance is a Bregman (symmetric) divergence, it
is not the case for the single Euclidean distance for which the minimum average
distance optimization problem yields the Fermat-Weber point [13] that does not
admit closed-form solution.

Thus for clustering normals with respect to the Kullback-Leibler divergence
using this Bregman hard clustering, we need to consider the oriented distance
DF (θi||ωl) for the log normalizer of the normal distributions interpreted as mem-
bers of a given exponential family, where ωl denote the cluster centroid in the
natural parameter space. Since DF (θi||ωl) = KL(cl||pi) it turns out that the hard
Bregman clustering minimizes the Kullback-Leibler loss

∑k
l=1

∑
pi∈Cl

KL(cl||pi).
We now describe the primitives required to apply the Bregman k-means clus-
tering to the case of the Kullback-Leibler clustering of multivariate normal
distributions.

3.2 Mixed-Type Parameters of Multivariate Normals

The density function of multivariate normals of Eq. 1 can be rewritten into
the canonical decomposition of Eq. 8 to yield an exponential family of order
D = d(d+3)

2 (the mean vector and the positive definite matrix S−1 accounting
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respectively for d and d(d+1)
2 parameters). The sufficient statistics is stacked onto

a two-part D-dimensional vector/matrix entity

x̃ = (x, −1
2
xxT ) (12)

associated with the natural parameter

Θ̃ = (θ, Θ) = (S−1m,
1
2
S−1). (13)

Accordingly, the source parameter are denoted by Λ̃ = (m, S). The log normal-
izer specifying the exponential family is (see [14]):

F (Θ̃) =
1
4
Tr(Θ−1θθT ) − 1

2
log detΘ +

d

2
log 2π. (14)

To compute the Kullback-Leibler divergence of two normal distributions Np =
N (μp, Σp) and Nq = N (μq , Σq), we use the Bregman divergence as follows:

KL(Np||Nq) = DF (Θ̃q||Θ̃p) (15)

= F (Θ̃q) − F (Θ̃p)− < (Θ̃q − Θ̃p), ∇F (Θ̃p) > . (16)

The inner product < Θ̃p, Θ̃q > is a composite inner product obtained as the sum
of two inner products of vectors and matrices:

< Θ̃p, Θ̃q >=< Θp, Θq > + < θp, θq > . (17)

For matrices, the inner product < Θp, Θq > is defined by the trace of the matrix
product ΘpΘ

T
q :

< Θp, Θq >= Tr(ΘpΘ
T
q ). (18)

Figure 1 displays the Bregman k-means clustering result on a set of 32 bivari-
ate normals.

4 Dual Bregman Divergence

We introduce the Legendre transformation to interpret dually the former k-
means Bregman clustering. We refer to [8] for detailed explanations that we
concisely summarize here as follows: Any Bregman generator function F admits
a dual Bregman generator function G = F ∗ via the Legendre transformation

G(y) = sup
x∈X

{< y, x > −F (x)}. (19)

The supremum is reached at the unique point where the gradient of G(x) =<
y, x > −F (x) vanishes, that is when y = ∇F (x). Writing X ′

F for the gradient
space {x′ = ∇F (x)|x ∈ X}, the convex conjugate G = F ∗ of F is the function
X ′

F ⊂ R
d → R defined by

F ∗(x′) =< x, x′ > −F (x). (20)
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Primal (natural Θ̃) Dual (expectation H̃)

Fig. 2. Clustering in the primal (natural) space Θ̃ is dually equivalent to clustering in
the dual (expectation) space H̃ . The transformations are reversible. Both normal data
sets are visualized in the source parameter space Λ̃.

It follows from Legendre transformation that any Bregman divergence DF ad-
mits a dual Bregman divergence DF ∗ related to DF as follows:

DF (p||q) = F (p) + F ∗(∇F (q))− < p, ∇F (q) >, (21)
= F (p) + F ∗(q′)− < p, q′ >, (22)
= DF ∗(q′||p′). (23)

Yoshizawa and Tanabe [14] carried out non-trivial computations that yield
the dual natural/expectation coordinate systems arising from the canonical de-
composition of the density function p(x; m, S):

H̃ =
(

η = μ
H = −(Σ + μμT )

)
⇐⇒ Λ̃ =

(
λ = μ
Λ = Σ

)
, (24)

Λ̃ =
(

λ = μ
Λ = Σ

)
⇐⇒ Θ̃ =

(
θ = Σ−1μ
Θ = 1

2Σ−1

)
(25)

The strictly convex and differentiable dual Bregman generator functions (ie.,
potential functions in information geometry) are F (Θ̃) = 1

4Tr(Θ−1θθT ) − 1
2 log

detΘ + d
2 log π, and F ∗(H̃) = − 1

2 log(1+ ηT H−1η) − 1
2 log det(−H)− d

2 log(2πe)
defined respectively both on the topologically open space R

d × C−
d , where Cd

denote the d-dimensional cone of symmetric positive definite matrices. The H̃ ⇔
Θ̃ coordinate transformations obtained from the Legendre transformation are
given by

H̃ = ∇Θ̃F (Θ̃) =
(

∇Θ̃F (θ)
∇Θ̃F (Θ)

)
=

( 1
2Θ−1θ

− 1
2Θ−1 − 1

4 (Θ−1θ)(Θ−1θ)T

)
(26)

=
(

μ
−(Σ + μμT )

)
(27)
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and

Θ̃ = ∇H̃F ∗(H̃) =
(

∇H̃F ∗(η)
∇H̃F ∗(H)

)
=

(
−(H + ηηT )−1η
− 1

2 (H + ηηT )−1

)
=

(
Σ−1μ
1
2Σ−1

)
. (28)

These formula simplify significantly when we restrict ourselves to diagonal-
only variance-covariance matrices Si, spherical Gaussians Si = siI, or univariate
normals N (mi, s

2
i ).

5 Left-Sided and Right-Sided Clusterings

The former Bregman k-means clustering makes use of the right-side of the di-
vergence for clustering. It is therefore equivalent to the left-side clustering for
the dual Bregman divergence on the gradient point set (see Figure 2). The left-
side Kullback-Leibler clustering of members of the same exponential family is
a right-side Bregman clustering for the log normalizer. Similarly, the right-side
Kullback-Leibler clustering of members of the same exponential family is a left-
side Bregman clustering for the log normalizer, that is itself equivalent to a
right-side Bregman clustering for the dual convex conjugate F∗ obtained from
Legendre transformation.

We find that the left-side Bregman clustering (ie., right-side Kullback-Leibler)
is exactly the clustering algorithm reported in [2]. In particular, the cluster centers
for the right-side Kullback-Leibler divergence are left-side Bregman centroids that
have been shown to be generalized means [15], given as (for (∇F̃ )−1 = ∇F̃ ∗ ):

Θ̃ = (∇F̃ )−1

(
n∑

i=1

∇F̃ (Θ̃i)

)
. (29)

After calculus, it follows in accordance with [2] that

S∗ =

(
1
n

∑
i

S−1
i

)−1

, (30)

m∗ = S∗(
n∑

i=1

1
n

S−1
i mi). (31)

6 Inferring Multivariate Normal Distributions

As mentioned in the introduction, in many real-world settings each datum point
can be sampled several times yielding multiple observations assumed to be drawn
from an underlying distribution. This modeling is convenient for considering
individual noise characteristics. In many cases, we may also assume Gaussian
sampling or Gaussian noise, see [2] for concrete examples in sensor data net-
work and statistical debugging applications. The problem is then to infer from
observations x1, ..., xs the parameters m and S. It turns out that the maxi-
mum likelihood estimator (MLE) of exponential families is the centroid of the
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sufficient statistics evaluated on the observations [7]. Since multivariate normal
distributions belongs to the exponential families with statistics (x, − 1

2xxT ), it
follows from the maximum likelihood estimator that

μ̂ =
1
s

s∑
i=1

xi, (32)

and

Ŝ =

(
1
2s

s∑
i=1

xix
T
i

)
− μ̂μ̂T . (33)

This estimator may be biased [5].

7 Symmetric Clustering with the J-Divergence

The symmetrical Kullback-Leibler divergence 1
2 (KL(p||q)+KL(q||p)) is called the

J-divergence. Although centroids for the left-side and right-side Kullback-Leibler
divergence admit elegant closed-form solutions as generalized means [15], it is also
known that the symmetrized Kullback-Leibler centroid of discrete distributions
does not admit such a closed-form solution [16]. Nevertheless, the centroid of
symmetrized Bregman divergence has been exactly geometrically characterized
as the intersection of the geodesic linking the left- and right-sided centroids
(say, cF

L and cF
R respectively) with the mixed-type bisector: MF (cF

R, cF
L) = {x ∈

X | DF (cF
R||x) = DF (x||cF

L )}. We summarize the geodesic-walk approximation
heuristic of [15] as follows: We initially consider λ ∈ [λm = 0, λM = 1] and repeat
the following steps until λM −λm ≤ ε, for ε > 0 a prescribed precision threshold:

1. Geodesic walk. Compute interval midpoint λh = λm+λM

2 and correspond-
ing geodesic point

qh = (∇F )−1((1 − λh)∇F (cF
R) + λh∇F (cF

L )), (34)

Fig. 3. The left-(red) and right-sided (blue) Kullback-Leibler centroids, and the sym-
metrized Kullback-Leibler J-divergence centroid (green) for a set of eight bivariate
normals
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Fig. 4. Clustering sided or symmetrized multivariate normals. For identical variance-
covariance matrices, this Bregman clustering amounts to the regular k-means. Indeed,
in this case the Kullback-Leibler becomes proportional to the squared Euclidean dis-
tance. See demo applet at http://www.sonycsl.co.jp/person/nielsen/KMj/

2. Mixed-type bisector side. Evaluate the sign of DF (cF
R||qh)−DF (qh||cR

L),
and

3. Dichotomy. Branch on [λh, λM ] if the sign is negative, or on [λm, λh]
otherwise.

Figure 3 shows the two sided left- and right-sided centroids, and the sym-
metrized centroid for the case of bivariate normals (handled as points in 5D).
We can then apply the classical k-means algorithm on these symmetrized cen-
troids. Figure 4 displays that the multivariate clustering applet, which shows the
property that it becomes the regular k-means if we fix all variance-covariance
matrices to identity. See also the recent work of Teboulle [17] that further gen-
eralizes center-based clustering to Bregman and Csiszár f -divergences.

8 Concluding Remarks

We have presented the k-means hard clustering techniques [1] for clustering mul-
tivariate normals in arbitrary dimensions with respect to the Kullback-Leibler
divergence. Our approach relies on instantiating the generic Bregman hard clus-
tering of Banerjee et al. [9] by using the fact that the relative entropy between
any two normal distributions can be derived from the corresponding mixed-type
Bregman divergence obtained by setting the Bregman generator as the log nor-
malizer function of the normal exponential family. This in turn yields a dual
interpretation of the right-sided k-means clustering as a left-sided k-means clus-
tering that was formerly studied by Davis and Dhillon [2] using an ad-hoc opti-
mization technique. Furthermore, based on the very recent work on symmetrical
Bregman centroids [15], we showed how to cluster multivariate normals with re-
spect to the symmetrical Kullback-Leibler divergence, called the J-divergence.

http://www.sonycsl.co.jp/person/nielsen/KMj/
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This is all the more important for applications that require to handle symmetric
information-theoretic measures [3].
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