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With the recent advances in computed tomography and magnetic resonance devices,
cross-sectional images are now commonly used for diagnosis. However, how contours
between cross-sections should be connected is often ambiguous. In this paper, we propose
an algorithm that enumerates all possible cases of the correspondence of contours. This
is useful for achieving fully automatic interpolation of contours, although our current
implementation still requires some degree of manual interaction.
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1. Introduction

Computed tomography (CT) and magnetic resonance (MR) devices enable us to
easily obtain cross-sectional images from physical objects. To visualize such data in
three dimensions (3D), volume rendering is often used.!? Volume rendering, how-
ever, usually requires quite dense cross sections and a large amount of storage.
Therefore, simpler methods, such as surface rendering, are still used for visualiza-
tion.

When polygonal meshes are constructed from sparse cross-sectional contours,
each interspace between adjacent cross-sectional planes has to be filled by inter-
polation. If the shape of the object is simple, the interpolation is trivial. However,
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Fig. 1. Ambiguity in interpolating contours where the interpolated object could be either a bifur-
cating pipe (a) or four pillars (b)

handling real-world medical data, such as human skeleton or brain, becomes diffi-
cult as the spacing between slices increases and when the numbers of contours in
adjacent cross sections differ.

There has been much previous work in this field.?*® However, to the best of the
authors’ knowledge, the existing work focuses mainly on how to obtain a smooth
transition rather than on the correspondence of topological structures. For exam-
ple, in Fig.1, it is not easy to determine the correct topological structure for the
interspace. Suppose that the six contours are obtained from a blood vessel. One
may speculate that two streams meet between the two slices as shown in Fig.1(a).
However, if shape-based interpolation® is used, for example, the result is four pillars,
as shown in Fig.1(b) (arising from the four areas of overlap in a top view).

It is usually difficult to determine topological structure without additional
knowledge about the object. In Fig.1, the four pillars could actually be the cor-
rect interpolation for some other physical object.

Although topological structure is important, a user’s knowledge is not limited
to topology. The topology of an object describes just one part of the full shape
information - the skeleton information. Other knowledge may be specified by means
of the integral of the surface curvature, volume of the object, or its interference with
other objects’ surfaces, but these quantities cannot be calculated and compared with
possible cases until the surface has been reconstructed.
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However, the strategy of first determining the topological structure, then con-
structing the surface, and finally optimizing the shape to match the user’s knowl-
edge tends to find local minima, because the optimization is usually performed to
improve the shape of the surface, rather than to change the topology. Even if topo-
logical change 1s allowed, without scanning every possible case, it is hard to find an
answer that is sufficiently close to the global optimum, because topological changes
strongly and unpredictably affect the above-mentioned quantities.

In this paper, we propose a method that enumerates all possible topological
structures. A polygonal mesh is then constructed for each result in the enumeration.
This algorithm forms a basis for calculating the global optimum, namely the shape
that best matches the user’s knowledge.

2. Background

Over two decades have been devoted to research on interpolation of contours.®3

Although this work did not deal with bifurcation, an important idea was intro-
duced by Fuchs et al.? Namely, the problem of finding the correspondence between
points on contours can be reduced to the problem of finding the minimum cost path
in a directed toroidal graph. Later work has taken bifurcation into account. The
original toroidal graph was extended to deal with bifurcations and holes by Shantz.”
Shinagawa et al. extended the toroidal graph to be continuous.® Christiansen et al.
proposed an algorithm based on the connection of the nearest points.® Ekoule et
al. proposed another method that handles highly complex bifurcations and convex
contours.’® The Delaunay triangulations can also be used for solving the correspon-
dence problem.'! These methods typically use contours defined by pieces of straight
lines as input, calculate the correspondence between junction points, and output
triangulated meshes.

There is yet another approach where a 2D function is defined for each cross
section and is interpolated in 3D. In this framework, each cross-sectional contour is
first converted to a binary image and then converted to a grayscale image where the
intensity of a pixel is computed as the distance from the contours.*'? It calculates
the gray value as the shortest signed distance from the contours (a positive value
for the interior of the contours and a negative for the exterior) and is linearly
interpolated in 3D. The final surface is then extracted as the isosurface of the
3D field distance function. Recently, shape-based interpolation has been further
extended by using information about the correspondence of contours.® Distance
field manipulation'? is similar to these approaches.

If the spacing between slices is quite narrow, it is possible to solve the con-
tour interpolation problem as the interpolation of unorganized points.'*'® In this
scenario, each contour is converted to a set of unorganized points having no connec-
tivity information. There 1s some work involved in the reconstruction from this set
of unorganized points, mainly in the context of approximating the object surface
obtained by range scanners or stereo matching algorithms.
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Fig. 2. Construction of a Reeb graph where the original object (a) is sliced (b) and the corre-
sponding Reeb graph (c) is constructed by handling each contour as a point

Other approaches include work by Cong et al., in which a numerical solver
was used that directly calculates the functional value in 3D.'6 Yet another method
uses singularity and the distance between contours in determining bifurcation,”
which has similarities to our algorithm. However, there is still a possibility with
this method of rejecting a correct result, since it only uses the distances between
contours and the genus as the knowledge of an object. Our method just outputs
possible results, giving further information about an object such as the curvature
limit or the volume of the closed area.

The remainder of the paper is as follows. Notation is defined and our algorithm
to enumerate all the possible connectivity patterns is presented in Section 3. In
Section 4, we show several results and Section 5 concludes the paper.

3. Algorithm
3.1. Notation
3.1.1. Reeb graphs

The first tool we use is the so-called Reeb graph. A Reeb graph is a graph that
gives a simple representation of the topology (bifurcation status) of a continuous
function defined onto an object. One of the simplest functions is the height function
h. The height function h simply returns the height (e.g. the z value) of the point
of the surface.

A Reeb graph of an object 1s built as follows. As depicted in Fig.2, the object is
sliced and each cross-sectional contour is represented as a point of the Reeb graph.
The points where two (or more) contours meet or a contour disappears are called
the singular points (see Fig.3). Mathematically, the singular points are defined as
the points where

oh _0h _ (1)
Ooxr Oy
holds (see Morse theory).



Enumeration of Contour Correspondence 5

(b) (©)

Fig. 3. Singular points used in this paper: a peak point (a), a pit point (b), and a saddle point (c)
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Fig. 4. An example in which the number of singular points is important where the input contours(a)

are interpolated either using general assumptions only(b), or with knowledge about the number
of singular points(c)

7YY

(b) (c)

Fig. 5. An example of a degenerate singular point (a) where the singular point connects three
contours to one contour (b) which can also be interpreted as the combination of two 2-to-1 singular
points that coincide at this point (c)

The importance of the number of singular points is as follows. If the input
contours are as shown in Fig.4(a), then from traditional assumptions of bifurcations
and from the distance between contours, the topology shown in Fig.4(b) results.
However, if the user specifies knowledge about the number of singular points, (in
this case, “two”,) the topology shown in Fig.4 (c) should be the correct answer.

The singular points are represented as the nodes of the Reeb graph.'” Singular
points where more than two contours meet are said to be degenerate (see Fig.5).
These degenerate singular points can be decomposed into a sequence of simple 2-to-
1 singular points. Although it is possible to use other functions,'® the Reeb graph
of the height function is sufficient in this paper.
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Image Contour Tree

Fig. 6. An example of a contour tree where each contour in an image corresponds to a node
in the contour tree and a parent-child relationship in the contour tree implies a circumscription
relationship in the image. The root node of the contour tree is the VHC

3.1.2. Contour trees

A contour tree represents the circumscription relationship of contours in a slice, and
similar notions have been used previously 1°. Each node in a contour tree represents
one contour and each edge represents the circumscription relationship between two
contours. A contour circumscribes all contours which are its descendants in the
contour tree. In general, there is more than one separate object in an image. In this
case, more than one connected component exists in a contour tree. For convenience,
we assume that there is a virtual contour that circumscribes all the contours in the
image and the corresponding root node is added to the contour tree. Such a contour
is called a Virtual Hollow Contour (VHC) (see Fig.6). A singular point exists at
the height where the topology of the contour tree changes.?’

3.2. Outline of the proposed algorithm

We assume that contours are already extracted from input images and the contour
trees are built. The outline of the algorithm is as follows.

e Transform a contour tree of each slice by the operations that merge or elim-
inate nodes. This corresponds to the transformation of the Reeb graph. Each
elementary transformation generates a singular point. At this stage, all possible
transformation patterns are enumerated. We limit ourselves to the cases where
nodes are only merged or eliminated rather than divided or added because the
increase in the number of nodes in these cases leads to an infinite number of
solutions. This restriction is further discussed later on.

e Two of the transformed contour trees are compared, each of which is one of the
enumerated contour trees from adjacent slices. If both trees have the same struc-
ture, the transformation operations applied in the previous stage are validated.
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Fig. 7. An example of an unnatural result caused by an increase in the number of contours

3.2.1. Transformation of a contour tree

According to the Morse theory, there are three types of non-degenerate singular
points. In what follows, we denote them by e%.e! and e? using the same notations
as the cells corresponding to the singular points.?® There are twelve types of Morse
operators defined.?° If operations that increase the number of contours are allowed,
the number of possible Reeb graphs becomes infinite. Moreover, it causes an unnat-
ural result as in Fig.7, where topological structure in the interspace is complicated
(more specifically, when the object is sliced by a plane at the middle of the original
upper and lower cross sections, the number of cross-sectional contours is larger than
that on either of the original planes.)

For this reason, we assume the number of contours will never increase at the
enumeration stage. Thus, we adopt only three types of Morse operators. The sin-
gular point €° is considered to be the point where a contour disappears as shown in
Fig.8(a) (if seen from top to bottom);i.e., this removes a node in a contour tree. The
corresponding operator is EO. The singular point e' is a point where two contours
are connected. Since there are two types of operations in the case of the singular
point e! (that is, it connects either sibling contours as shown in Fig.8(b) or the
parent and child contours as shown in Fig.8(c)), the corresponding two operators
(E1_SI and E1_PC) are defined. Note the difference between the singular points
and the Morse operators. EQ is the operator that corresponds to the singular point
¢? whereas E1.SI and E1_PC correspond to e'.

When one of the three operators is applied to a part of a contour tree, the re-
maining part of the contour tree is affected accordingly.?? If EO is applied, all the
descendant nodes must be removed simultaneously to avoid self intersection that
never occurs in the case of natural solid objects. When E1_SI is applied, the descen-
dants of the connected two contours are simply merged and become the descendants
of the newly created node (see Fig.9). The EI_PC case is more complicated (see
Fig.10). In this case, contour a(parent) and contour b(child) are connected. The



8 5. Owada, Y. Shinagawa & F. Nielsen

(a)

Fig. 8. Three types of Morse operators which correspond to the singular points ¢® and e! where

e® removes a contour and e! connects two contours
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Fig. 9. An example of E1_SI where descendant nodes b and d are merged after the connection

newly created contour a4+b and the descendants of b (¢,d) become siblings. The
general case is shown in Fig.11.

3.2.2. Enumeration

Enumerating every possible correspondence of contours amounts to enumerating
all the possible transformations of contour trees and matching them, which in turn
amounts to seeking all possible combinations of the aforementioned operators. A
problem is the complex behavior of the remaining parts of the tree when the oper-
ators are applied. We propose the following algorithm.

(1) Applying EO
At first, we enumerate all the combinations of EQ. To do this, we traverse the
contour tree from the root(VHC) and set a flag at each node indicating whether
to apply EO in breadth-first order or not. As an exception, the root node (VHC)
i1s never marked. If a node is marked as “apply E0”, all the descendants are
deleted. An example of the result at this stage is shown in Fig.12, where the
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Fig. 10. An example of E1_PC where after the contour a and b are merged, c,d and a4+b become
sibling nodes
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Fig. 11. When a parent and a child are connected by E1_PC, the descendant nodes of the child
become sibling nodes of the parent node.

Fig. 12. All the enumerated patterns by the application of EO to the contour tree shown in Fig.6

contour tree shown in Fig.6 is used as input.

(2) Applying E1_ST and E1_PC
Next, E1_ST and E1_PC are applied. These operators merge nodes in the con-
tour tree. As we stated previously, E1_PC creates a complex structure in the
remaining part of the tree. To handle this, we again mark the nodes. At this
stage, both operators connect nodes several times and eventually a certain num-
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Fig. 13. An example of E1_SI application by indexing, where both children of VHC have index
“1” and these two nodes are connected by E1_SI

Fig. 14. Impossible assignment of indices where two nodes with index “1” are contained and these
nodes cannot be connected because they are neither siblings nor parent-child nodes

ber of nodes remain, regardless of the applied operators. To describe this, we
assign the same index number to the original nodes which merge to one node.
Fig.13 depicts an example of the correspondence between indexing and the ac-
tual application of the operators. In this case, nodes that have index “1” are
connected. The applied operator is E1_SI because the original two nodes with
index “1” are siblings. Every time a merge operation is applied, it is necessary
to move the other part of the tree according to the type of the operator. This is
repeated until no two neighboring nodes have the same index. If any two nodes
still have the same index, the index assignment is invalid (e.g., Fig.14). This
test is performed for every combination of index assignments.

By converting the combination of operators to the indexing problem, the order
of operators is lost; e.g., the difference between Fig.15(a) and Fig.15(b) is not
distinguished. However, we do not regard this difference as important because in
many cases, the height of the singular points depends on what kind of smoothing
algorithm is used in the final mesh reconstruction. In this paper, the constructed
Reeb graph is just used for determining the initial mesh. The final surface shape
is not necessarily the same as the original Reeb graph.

3.2.3. Matching the contour trees

After the possible contour trees are enumerated, the two trees enumerated from
adjacent cross sections are compared. If they have identical structure, the two con-
tour trees can be matched. In this case no more transformation of contour trees
(singular points) is necessary to connect the contours.
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(a) (b)

Fig. 15. Examples of singular points at different heights

4. Implementation
4.1. Initial mesh construction

Once the correspondence of contours is determined, the surface of the object is
constructed. Although construction of the surface is not essential in this paper, we
propose a simple procedure here. At first, the position of each singular point is
calculated by the following two steps.

(1) Determine the two dimensional positions of the singular points on the cross-
sectional plane. If the singular point is e, the position is simply the center of
gravity of the contour connected to the singular point. If the type of singular
point is e', the position is calculated as the center of the closest two points®
(see Fig.16).

(2) Determine the height of each singular point within the corresponding interspace.
The height order of singular points corresponds to the application order of the
Morse operators (see section 3.2). The singular points are located evenly in
the height direction retaining the height order (see Fig.17). Note the height
difference between singular points is calculated for each connected component
of the Reeb graph within an interspace.

Finally, the mesh 1s built. It is an easy and well-studied problem because all the
bifurcation points and the corresponding contour shapes are already calculated.
It means that the topological shape is already known and only the one-to-one
correspondence of contours should be considered. In addition, because newly created
contours have similar shapes to the neighboring contours as shown in Fig.16, it
is trivial to find the correspondence of points between the new contour and the
neighbors. When the contours on adjacent slices vary widely in shape, we use the
toroidal graph?® to calculate the correspondence.

4.2. Ezxperimental Results

We have implemented an interactive topology selector as shown in Fig.18. When
the contour data is input (Fig.19 (a)), possible Reeb graphs are automatically
enumerated. This software also has an ability to sort the enumerated results using
an objective function. This function is designed to minimize the number of singular
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Fig. 16. Calculation of contour shapes where a new singular point is generated at the center of
the closest pair of contours

Height Height
y

Fig. 17. Calculation of the height of each singular point, where each singular point is located
evenly in the height direction retaining the height order within the connected component

points?! and the distance between connected contours. If the Reeb graph at the
top of the list is not satisfactory, the user can select another Reeb graph (Fig.19
(b)). After the topology is set, an initial mesh is constructed (Fig.19 (c)). Finally
the mesh is smoothed and output (Fig.19 (d)).

We used the Loop subdivision scheme?? to smooth the mesh. The final shape
does not exactly “interpolate” the original contour data because the Loop subdivi-
sion scheme is an “approximating” subdivision scheme in comparison to “interpo-
lating” subdivision schemes such as the Butterfly or the Kobblet schemes . We do
not consider this problem crucial in this paper, but if the final surface must strictly
passes through the input contours, interpolating subdivision schemes or, alterna-
tively, other smoothing methods such as the global thin plate energy minimizing
method?? or the non-shrinking Gaussian smoothing method??* should be used.

All the enumerated patterns when contour images with four slices are input are
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Fig. 18. A screen shot of our interactive topology selector

shown in Fig.20. In this example, the topmost image and the bottommost image
contain no contour while the second image contains four contours and the third
image contains two contours. In this case, only seven patterns are possible (Fig.20
(a)-(g)). The final mesh is rendered as translucent polygons. (¢) and (f) may need
more explanation. The difference between (c) and (e) is that in (e), the top-right
small contour is connected to its exterior contour while in (c), it is deleted. The
difference between (d) and (f) is the same.

Fig.21 shows the results of our method. The four columns show the input con-
tours, the Reeb graph, the reconstructed initial mesh and the final smooth mesh,
respectively. In the pelvis and the bronchus data, the contours are extracted man-
ually by Bézier curves and then converted to point lists. Table 1 and 2 show the
enumeration results. The leftmost column shows the indices of the interspace. The
second column is the number of contours in the slices at the upper and the lower
regions of the interspace. The third column is the number of correct singular points.
The fourth column is the number of the enumerated Reeb graphs. The last column
is the manually chosen correct indeces of the Reeb graph. If this number is 0, the top
candidate of the sorted result was correct and no manual selection was required. In
most cases, this is just the smallest possible number under the given input contours
which can automatically be calculated. However in other cases, this is manually
specified.

5. Discussion and Future Work

We have proposed an algorithm to enumerate every possible correspondence of
contours when interpolating cross-sectional images. This allows us to explicitly
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(a) (b)
(c) (d)

Fig. 19. An example of input contours (a), the Reeb graph which has the smallest objective
function value (b), the constructed initial mesh (c), and the smoothed surface (d)

handle topological ambiguity and avoids falling into local minima by finding the
answer which best matches the user’s knowledge about the object.

However, the current implementation has some room for further improvements
in order to achieve a fully automatic reconstruction. To begin with, we need to
find an appropriate method to model the user’s knowledge about an object. Our
final goal is to develop a system which outputs a correct result without any inter-
action by the user. Although the current implementation automatically optimizes
the number of singular points and average distances between contours, it is not, by
itself, sufficient to achieve our goal. One possible improvement of the algorithm is
the consideration of more global knowledge such as the entire integral of the surface
curvature or the number of bifurcations or holes. A more straightforward approach
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Input contours

(g)

Fig. 20. Seven enumerated results from six contours on four slices rendered by translucent polygons

would be to input a complete 3D model into the system as the knowledge about
an object, which is the so-called model fitting. In this framework, our enumeration
strategy is also useful to avoid finding local minima.

In our algorithm, every contour is used during calculations. To handle larger
size data , the grouping of contours will be essential because of its computational
complexity. If the average number of contours in a slice is N, the upper bound on
the number of enumerated cases in an interspace is O(N2V).

Finally, how to handle contours on planes which are not parallel is not discussed
in this paper. However, our method can easily be applied, provided that each cross
section has only two adjacent cross-sectional slices on each side.
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Torus (five slices)

Vertebra (eight slices)

Pelvis (eighteen slices)

Bronchus (twenty-three slices)

Fig. 21. Results of the application of our algorithm to various data
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Table 1. The result of enumeration for pelvis data

Id. #Contours #Singularities #Candidates Correct Id.
0 0-3 3 1 0
1 3-6 3 2100 35
2 6-3 3 2100 63
3 3-3 0 6 0
4 3-3 0 6 0
5 3-4 1 60 2
6 4-3 1 60 1
7 3-3 0 6 0
8 3-b 2 390 5
9 5-b 0 120 0

10 5-4 1 360 0

11 4-6 2 3360 36

12 6-4 2 3360 14

13 4-4 0 24 0

14 4-2 2 50 0

15 2-2 0 2 0

16 2-0 2 1 0
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