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Finite mixtures: Semi-parametric statistical models

◮ Mixture M ∼ MM(W ,Λ) with density m(x) =

k∑

i=1

wip(x |λi )

not sum of RVs!. Λ = {λi}i , W = {wi}i
◮ Multimodal, universally modeling smooth densities
◮ Gaussian MMs with support X = R, Gamma MMs with

support X = R
+ (modeling distances [34])

◮ Pioneered by Karl Pearson [29] (1894). precursors: Francis
Galton [13] (1869), Adolphe Quetelet [31] (1846), etc.

◮ Capture sub-populations within an overall population
(k = 2, crab data [29] in Pearson)
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Example of k = 2-component mixture [17]

Sub-populations (k = 2) within an overall population...

Sub-species in species, etc.
Truncated distributions (what is the support! black swans ?!)

c© 2014 Frank Nielsen 3/39



Sampling from mixtures: Doubly stochastic process

To sample a variate x from a MM:

◮ Choose a component l according to the weight distribution
w1, ...,wk (multinomial),

◮ Draw a variate x according to p(x |λl ).
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Statistical mixtures: Generative data models

Image = 5D xyRGB point set
GMM = feature descriptor for information retrieval (IR)
Increase dimension d using color image s × s patches: d = 2 + 3s2

Source GMM Sample (stat img)

Low-frequency information encoded into compact statistical model.
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Mixtures: ǫ-statistically learnable and ǫ-estimates

Problem statement: Given n IID d -dimensional observations
x1, ..., xn ∼ MM(Λ,W ), estimate MM(Λ̂, Ŵ ):

◮ Theoretical Computer Science (TCS) approach: ǫ-closely
parameter recovery (π: permutation)

◮ |wi − ŵπ(i)| ≤ ǫ

◮ KL(p(x |λi ) : p(x |λ̂π(i))) ≤ ǫ (or other divergences like TV,
etc.)

Consider ǫ-learnable MMs:

◮ mini wi ≥ ǫ
◮ KL(p(x |λi ) : p(x |λi )) ≥ ǫ, ∀i 6= j (or other divergence)

◮ Statistical approach:
Define the best model/MM as the one maximizing the
likelihood function l(Λ,W ) =

∏

i m(xi |Λ,W ).
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Mixture inference: Incomplete versus complete likelihood

◮ Sub-populations within an overall population: observed data
xi does not include the subpopulation label li

◮ k = 2: Classification and Bayes error (upper bounded by
Chernoff information [24])

◮ Inference: Assume IID, maximize (log)-likelihood:

◮ Complete using indicator variables zi ,j (for li : zi ,li = 1):

lc = log

n∏

i=1

k∏

j=1

(wjp(xi |θj))zi,j =
∑

i

∑

j

zi ,j log(wjp(xi |θj))

◮ Incomplete (hidden/latent variables) and log-sum

intractability:

li = log
∏

i

m(x |W ,Λ) =
∑

i

log




∑

j

wjp(xi |θj)
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Mixture learnability and inference algorithms

◮ Which criterion to maximize? incomplete or complete
likelihood? What kind of evaluation criteria?

◮ From Expectation-Maximization [8] (1977) to TCS methods:
Polynomial learnability of mixtures [22, 15] (2014), mixtures
and core-sets [10] for massive data sets, etc.

Some technicalities:

◮ Many local maxima of likelihood functions li and lc (EM
converges locally and needs a stopping criterion)

◮ Multimodal density (#modes > k [9], ghost modes even for
isotropic GMMs)

◮ Identifiability (permutation of labels, parameter distinctness)

◮ Irregularity: Fisher information may be zero [6], convergence
speed of EM

◮ etc.
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Learning MMs: A geometric hard clustering viewpoint

max
W ,Λ

lc(W ,Λ) = max
Λ

n∑

i=1

k
max
j=1

log(wjp(xi |θj))

≡ min
W ,Λ

∑

i

min
j
(− log p(xi |θj)− logwj)

= min
W ,Λ

n∑

i=1

k
min
j=1

Dj(xi ) ,

where cj = (wj , θj) (cluster prototype) and
Dj(xi ) = − log p(xi |θj)− logwj are potential distance-like
functions.

◮ Maximizing the complete likelihood amounts to a geometric

hard clustering [37, 11] for fixed wj ’s (distance Dj(·) depends
on cluster prototypes cj): minΛ

∑

i minj Dj(xi ).
◮ Related to classification EM [5] (CEM), hard/truncated EM
◮ Solution of argmax lc to initialize li (optimized by EM)
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The k-MLE method: k-means type clustering algorithms

k-MLE:

1. Initialize weight W (in open probability simplex ∆k)

2. Solve minΛ
∑

i minj Dj(xi ) (center-based clustering, W
fixed)

3. Solve minW
∑

i minj Dj(xi ) (Λ fixed)

4. Test for convergence and go to step 2) otherwise.

⇒ group coordinate ascent (ML)/descent (distance) optimization.
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k-MLE: Center-based clustering, W fixed

Solve min
Λ

∑

i

min
j

Dj(xi )

k-means type convergence proof for assignment/relocation:

◮ Data assignment:
∀i , li = argmaxj wjp(x |λj ) = argminj Dj(xi ), Cj = {xi |li = j}

◮ Center relocation: ∀j , λj = MLE(Cj)
Farthest Maximum Likelihood (FML) Voronoi diagram:

VorFML(ci ) = {x ∈ X : wip(x |λi ) ≥ wjp(x |λj), ∀i 6= j}
Vor(ci ) = {x ∈ X : Di(x) ≤ Dj(x), ∀i 6= j}

FML Voronoi ≡ additively weighted Voronoi with:

Dl(x) = − log p(x |λl)− logwl
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k-MLE: Example for mixtures of exponential families

Exponential family:

Component density p(x |θ) = exp(t(x)⊤θ − F (θ) + k(x)) is

log-concave with:

◮ t(x): sufficient statistic in R
D , D: family order.

◮ k(x): auxiliary carrier term (wrt Lebesgue/counting measure)

◮ F (θ): log-normalized, cumulant function, log-partition.

Dj(x) is convex: Clustering k-means wrt convex “distances”.

Farthest ML Voronoi ≡ additively-weighted Bregman Voronoi [4]:

− log p(x ; θ)− logw = F (θ)− t(x)⊤θ − k(x)− logw

= BF∗(t(x) : η) + F ∗(t(x)) + k(x)− logw

F ∗(η) = maxθ(θ
⊤η − F (θ)): Legendre-Fenchel convex conjugate
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Exponential families: Rayleigh distributions [36, 25]
Application: IntraVascular UltraSound (IVUS) imaging:

Rayleigh distribution:

p(x ;λ) = x
λ2 e

− x2

2λ2

x ∈ R
+ = X

d = 1 (univariate)
D = 1 (order 1)
θ = − 1

2λ2

Θ = (−∞, 0)
F (θ) = − log(−2θ)
t(x) = x2

k(x) = log x
(Weibull for k = 2)

Coronary plaques: fibrotic tissues, calcified tissues, lipidic tissues
Rayleigh Mixture Models (RMMs):
for segmentation and classification tasks
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Exponential families: Multivariate Gaussians [14, 25]
Gaussian Mixture Models (GMMs).
(Color image interpreted as a 5D xyRGB point set)

Gaussian distribution p(x ;µ,Σ):
1

(2π)
d
2
√

|Σ|
e−

1
2
DΣ−1 (x−µ,x−µ)

Squared Mahalanobis distance:
DQ(x , y) = (x − y)TQ(x − y)
x ∈ R

d = X

d (multivariate)

D = d(d+3)
2 (order)

θ = (Σ−1µ, 1
2Σ

−1) = (θv , θM)
Θ = R× Sd

++

F (θ) = 1
4θ

T
v θ

−1
M θv − 1

2 log |θM | +
d
2 log π
t(x) = (x ,−xxT )
k(x) = 0
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The k-MLE method for exponential families

k-MLEEF:

1. Initialize weight W (in open probability simplex ∆k)

2. Solve minΛ
∑

i minj(BF∗(t(x) : ηj)− logwj)

3. Solve minW
∑

i minj Dj(xi )

4. Test for convergence and go to step 2) otherwise.

Assignment condition in Step 2: additively-weighted Bregman
Voronoi diagram.
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k-MLE: Solving for weights given component parameters

Solve min
W

∑

i

min
j

Dj(xi )

Amounts to argminW −nj logwj = argminW −nj
n logwj where

nj = #{xi ∈ Vor(cj )} = |Cj |.

min
W∈∆k

H×(N : W )

where N = (n1
n , ...,

nk
n ) is cluster point proportion vector ∈ ∆k .

Cross-entropy H× is minimized when H×(N : W ) = H(N) that is
W = N.
Kullback-Leibler divergence:
KL(N : W ) = H×(N : W )− H(N) = 0 when W = N.
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MLE for exponential families
Given a ML farthest Voronoi partition, computes MLEs θj ’s:

θ̂j = argmax
θ∈Θ

∏

xi∈Vor(cj )

pF (xi ; θ)

is unique (***) maximum since ∇2F (θ) ≻ 0:

Moment equation : ∇F (θ̂j) = η(θ̂j ) =
1

nj

∑

xi∈Vor(cj )

t(xi) = t̄ = η̂

MLE is consistent, efficient with asymptotic normal distribution:

θ̂j ∼ N

(

θj ,
1

nj
I−1(θj)

)

Fisher information matrix

I (θj ) = var[t(X )] = ∇2F (θj) = (∇2F ∗)−1(ηj )

MLE may be biased (eg, normal distributions).
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Existence of MLEs for exponential families (***)

For minimal and full EFs, MLE guaranteed to exist [3, 21] provided
that matrix:

T =






1 t1(x1) ... tD(x1)
...

...
...

...
1 t1(xn) ... tD(xn)




 (1)

of dimension n × (D + 1) has rank D + 1 [3].
For example, problems for MLEs of MVNs with n < d observations
(undefined with likelihood ∞).

Condition: t̄ = 1
nj

∑

xi∈Vor(cj )
t(xi ) ∈ int(C ), where C is closed

convex support.
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MLE of EFs: Observed point in IG/Bregman 1-mean
θ̂ = argmaxθ

∏n
i=1 pF (xi ; θ) = argmaxθ

∑n
i=1 log pF (xi ; θ)

argmaxθ

n∑

i=1

−BF∗(t(xi ) : η) + F ∗(t(xi )) + k(xi )
︸ ︷︷ ︸

constant

≡ argminθ

n∑

i=1

BF∗(t(xi ) : η )

Right-sided Bregman centroid = center of mass: η̂ =
1

n

n∑

i=1

t(xi ) .

l̄ =
1

n

n∑

i=1

(−BF∗(t(xi) : η̂) + F ∗(t(xi)) + k(xi ))

= 〈η̂, θ̂〉 − F (θ̂) + k̄ = F ∗(η̂) + k̄
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The k-MLE method: Heuristics based on k-means

k-means is NP-hard (non-convex optimization) when d > 1 and
k > 1 and solved exactly using dynamic programming [26] in
O(n2k) and O(n) memory when d = 1.

Heuristics:

◮ Kanungo et al. [18] swap: yields a (9 + ǫ)-approximation

◮ Global seeds: random seed (Forgy [12]), k-means++ [2],
global k-means initialization [38],

◮ Local refinements: Lloyd batched update [19], MacQueen
iterative update [20], Hartigan single-point swap [16], etc.

◮ etc.

c© 2014 Frank Nielsen 20/39



Generalized k-MLE
Weibull or generalized Gaussians are parametric families of

exponential families [35]: F (γ).
Fixing some parameters yields nested families of (sub)-exponential
families [34]: obtain one free parameter with convex conjugate F ∗

approximated by line search (Gamma distributions/generalized
Gaussians).
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Generalized k-MLE

k-GMLE:

1. Initialize weight W ∈ ∆k and family type (F1, ...,Fk ) for each
cluster

2. Solve minΛ
∑

i minj Dj(xi ) (center-based clustering for W
fixed) with potential functions:
Dj(xi ) = − log pFj

(xi |θj)− logwj

3. Solve family types maximizing the MLE in each cluster Cj by
choosing the parametric family of distributions Fj = F (γj)
that yields the best likelihood:
minF1=F (γ1),...,Fk=F (γk )∈F (γ)

∑

i minj Dwj ,θj ,Fj
(xi ).

4. Update W as the cluster point proportion

5. Test for convergence and go to step 2) otherwise.

Dwj ,θj ,Fj
(x) = − log pFj

(x ; θj )− logwj
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Generalized k-MLE: Convergence

◮ Lloyd’s batched generalized k-MLE maximizes monotonically
the complete likelihood

◮ Hartigan single-point relocation generalized k-MLE maximizes
monotonically the complete likelihood [32], improves over
Lloyd local maxima, and avoids the problem of the existence
of MLE inside clusters by ensuring nj ≥ D in general position
(T rank D + 1).

◮ Model selection: Learn k automatically using DP
k-means [32] (Dirichlet Process)
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k-MLE [23] versus EM for Exponential Families [1]

k-MLE/Hard EM [23] (2012-) Soft EM [1] (1977)
= Bregman hard clustering = Bregman soft clustering

Memory lighter O(n) heavier O(nk)
Assignment NNs with VP-trees [27], BB-trees [30] all k-NNs
Conv. always finitely ∞, need stopping criterion

Many (probabilistically) guaranteed initialization for
k-MLE [18, 2, 28]
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k-MLE: Solving for D = 1 exponential families

◮ Rayleigh, Poisson or (nested) univariate normal with constant
σ are order 1 EFs (D = 1).

◮ Clustering problem: Dual 1D Bregman clustering [1] on 1D
scalars yi = t(xi).

◮ FML Voronoi diagrams have connected cells: Optimal
clustering yields interval clustering.

◮ 1D k-means (with additive weights) can be solved exactly
using dynamic programming in O(n2k) time [26]. Then
update the weights W (cluster point proportion) and
reiterate...
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Dynamic programming for D = 1-order mixtures [26]
Consider W fixed. k-MLE cost:

∑k
j=1 l(Cj) where Cj are clusters.

xnxjxj−1x1

MLE1(Xj,n)MLEk−1(X1,j−1)
λ̂k = λ̂j,n

Dynamic programming optimality equation:

MLEk(x1, ..., xn) =
n

max
j=2

(MLEk−1(X1,j−1) +MLE1(Xj ,n))

Xl ,r : {xl , xl+1, ..., xr−1, xr}.
◮ Build dynamic programming table from l = 1 to l = k

columns, m = 1 to m = n rows.

◮ Retrieve Cj from DP table by backtracking on the argmaxj .

◮ For D = 1 EFs, O(n2k) time [26].
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Experiments with: 1D Gaussian Mixture Models (GMMs)

gmm1 score = −3.075 (Euclidean k-means, σ fixed)
gmm2 score = −3.038 (Bregman k-means, σ fitted, better)
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Summary: k-MLE methodology for learning mixtures
Learn MMs from sequences of geometric hard clustering [11].

◮ Hard k-MLE (≡ dual Bregman hard clustering for EFs) versus
soft EM (≡ soft Bregman clustering [1] for EFs):

◮ k-MLE maximizes the complete likelihood lc .
◮ EM maximizes locally the incomplete likelihood li .

◮ The component parameters η geometric clustering (Step 2.)
can be implemented using any Bregman k-means heuristic on
conjugate F ∗

◮ Consider generalized k-MLE when F ∗ not available in closed
form: nested exponential families (eg., Gamma)

◮ Initialization can be performed using k-means initialization:
k-MLE++, etc.

◮ Exact solution with dynamic programming for order 1 EFs
(with prescribed weight proportion W ).

◮ Avoid unbounded likelihood (eg., ∞ for location-scale
member with σ → 0: Dirac) using Hartigan’s heuristic [32]
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Discussion: Learning statistical models FAST!

◮ (EF) Mixture Models allow one to approximate universally
smooth densities

◮ A single (multimodal) EF can approximate any smooth
density too [7] but F not in closed-form

◮ Which criterion to maximize is best/realistic: incomplete or
complete, or parameter distortions? Leverage many recent
results on k-means clustering to learning mixture models.

◮ Alternative approach: Simplifying mixtures from kernel density
estimators (KDEs) is one fine-to-coarse solution [33]

◮ Open problem: How to constrain the MMs to have a
prescribed number of modes/antimodes?

c© 2014 Frank Nielsen 29/39



Thank you.

Experiments and performance evaluations on generalized k-MLE:

◮ k-GMLE for generalized Gaussians [35]

◮ k-GMLE for Gamma distributions [34]

◮ k-GMLE for singly-parametric distributions [26]

(compared with Expectation-Maximization [8])

Frank Nielsen (5793b870).

c© 2014 Frank Nielsen 30/39



Bibliography I

Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh.

Clustering with Bregman divergences.
Journal of Machine Learning Research, 6:1705–1749, 2005.

Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon.

A tight lower bound instance for k-means++ in constant dimension.
In T.V. Gopal, Manindra Agrawal, Angsheng Li, and S.Barry Cooper, editors, Theory and Applications of
Models of Computation, volume 8402 of Lecture Notes in Computer Science, pages 7–22. Springer
International Publishing, 2014.

Krzysztof Bogdan and Ma lgorzata Bogdan.

On existence of maximum likelihood estimators in exponential families.
Statistics, 34(2):137–149, 2000.

Jean-Daniel Boissonnat, Frank Nielsen, and Richard Nock.

Bregman Voronoi diagrams.
Discrete Comput. Geom., 44(2):281–307, September 2010.

Gilles Celeux and Gérard Govaert.

A classification EM algorithm for clustering and two stochastic versions.
Comput. Stat. Data Anal., 14(3):315–332, October 1992.

Jiahua Chen.

Optimal rate of convergence for finite mixture models.
The Annals of Statistics, pages 221–233, 1995.

Loren Cobb, Peter Koppstein, and Neng Hsin Chen.

Estimation and moment recursion relations for multimodal distributions of the exponential family.
Journal of the American Statistical Association, 78(381):124–130, 1983.

c© 2014 Frank Nielsen 31/39



Bibliography II

Arthur Pentland Dempster, Nan M. Laird, and Donald B. Rubin.

Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.

Herbert Edelsbrunner, Brittany Terese Fasy, and Günter Rote.

Add isotropic Gaussian kernels at own risk: more and more resilient modes in higher dimensions.
In Proceedings of the 2012 symposuim on Computational Geometry, SoCG ’12, pages 91–100, New York,
NY, USA, 2012. ACM.

Dan Feldman, Matthew Faulkner, and Andreas Krause.

Scalable training of mixture models via coresets.
In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2142–2150. Curran Associates, Inc., 2011.

Dan Feldman, Morteza Monemizadeh, and Christian Sohler.

A PTAS for k-means clustering based on weak coresets.
In Proceedings of the twenty-third annual symposium on Computational geometry, pages 11–18. ACM,
2007.

Edward W. Forgy.

Cluster analysis of multivariate data: efficiency vs interpretability of classifications.
Biometrics, 1965.

Francis Galton.

Hereditary genius.
Macmillan and Company, 1869.

Vincent Garcia and Frank Nielsen.

Simplification and hierarchical representations of mixtures of exponential families.
Signal Processing (Elsevier), 90(12):3197–3212, 2010.

c© 2014 Frank Nielsen 32/39



Bibliography III

Moritz Hardt and Eric Price.

Sharp bounds for learning a mixture of two gaussians.
CoRR, abs/1404.4997, 2014.

John A. Hartigan.

Clustering Algorithms.
John Wiley & Sons, Inc., New York, NY, USA, 99th edition, 1975.

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant.

Disentangling gaussians.
Communications of the ACM, 55(2):113–120, 2012.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and

Angela Y. Wu.
A local search approximation algorithm for k-means clustering.
Computational Geometry: Theory & Applications, 28(2-3):89–112, 2004.

Stuart P. Lloyd.

Least squares quantization in PCM.
Technical report, Bell Laboratories, 1957.

James B. MacQueen.

Some methods of classification and analysis of multivariate observations.
In L. M. Le Cam and J. Neyman, editors, Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. University of California Press, Berkeley, CA, USA, 1967.

Weiwen Miao and Marjorie Hahn.

Existence of maximum likelihood estimates for multi-dimensional exponential families.
Scandinavian Journal of Statistics, 24(3):371–386, 1997.

c© 2014 Frank Nielsen 33/39



Bibliography IV

Ankur Moitra and Gregory Valiant.

Settling the polynomial learnability of mixtures of Gaussians.
In 51st IEEE Annual Symposium on Foundations of Computer Science, pages 93–102. IEEE, 2010.

Frank Nielsen.

k-MLE: A fast algorithm for learning statistical mixture models.
CoRR, abs/1203.5181, 2012.

Frank Nielsen.

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means.
Pattern Recognition Letters, 42(0):25 – 34, 2014.

Frank Nielsen and Vincent Garcia.

Statistical exponential families: A digest with flash cards, 2009.
arXiv.org:0911.4863.

Frank Nielsen and Richard Nock.

Optimal interval clustering: Application to bregman clustering and statistical mixture learning.
Signal Processing Letters, IEEE, 21(10):1289–1292, Oct 2014.

Frank Nielsen, Paolo Piro, and Michel Barlaud.

Bregman vantage point trees for efficient nearest neighbor queries.
In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo (ICME), pages 878–881,
2009.

Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy.

The effectiveness of Lloyd-type methods for the k-means problem.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 165–176,
Washington, DC, USA, 2006. IEEE Computer Society.

c© 2014 Frank Nielsen 34/39



Bibliography V

Karl Pearson.

Contributions to the mathematical theory of evolution.
Philosophical Transactions of the Royal Society A, 185:71–110, 1894.

Paolo Piro, Frank Nielsen, and Michel Barlaud.

Tailored Bregman ball trees for effective nearest neighbors.
In European Workshop on Computational Geometry (EuroCG), LORIA, Nancy, France, March 2009. IEEE.

Adolphe Quetelet.
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