A series of maximum entropy upper bounds of the differential entropy

https://arxiv.org/abs/1612.02954
https://www.lix.polytechnique.fr/~nielsen/MEUB/

Frank Nielsen1,2 Richard Nock3,4,5
Frank.Nielsen@acm.org

1École Polytechnique, France 2Sony Computer Science Laboratories, Japan 3Data61, Australia 4ANU, Australia 5The University of Sydney, Australia

January 2017
Shannon’s differential entropy

\(X \sim p(x) \): continuous random variable, support
\(\mathcal{X} = \{ x \in \mathbb{R} : p(x) > 0 \} \)

Shannon’s entropy quantifies amount of uncertainty [2]:

\[
H(X) = \int_{\mathcal{X}} p(x) \log \frac{1}{p(x)} \, dx = - \int_{\mathcal{X}} p(x) \log p(x) \, dx
\]

(1)

logarithm: basis 2 (unit in *bits*), basis \(e \) (*nats*).

Differential entropy is strictly concave and:

- May be negative: \(X \sim N(\mu, \sigma) \), \(H(X) = \frac{1}{2} \log(2\pi e \sigma^2) < 0 \) when \(\sigma < \frac{1}{\sqrt{2\pi e}} \)

- May be infinite (unbounded): \(X \sim p(x) \) with \(p(x) = \frac{\log(2)}{x \log^2 x} \) for \(x > 2 \) (with support \(\mathcal{X} = (2, \infty) \))

- Closed forms [7, 9] for many distribution families, but the *differential entropy of mixtures* usually does not admit closed-form expressions [10, 6]
Maximum Entropy Principle (MaxEnt)

Jaynes’ MaxEnt distribution principle [4, 5] (1957):
Infer a distribution given several moment constraints.
Constrained optimization problem:

$$\max_p H(p) : \quad E[t_i(X)] = \eta_i, \quad i \in [D] = \{1, \ldots, D\}. \quad (2)$$

- When an iid sample set \(\{x_1, \ldots, x_s\}\) is given, we may choose, for example, the raw geometric sample moments
 \(\eta_i = \frac{1}{s} \sum_{j=1}^{s} x_j^i\) for setting up the constraint \(E[X^i] = \eta_i\) (ie.,
taking \(t_i(X) = X^i\) in Eq. 2).

- The distribution \(p(x)\) maximizing the entropy under those moment constraints is unique and termed the MaxEnt distribution. The constrained optimization of Eq. 2 is solved by means of Lagrangian multipliers [8, 2].
MaxEnt and exponential families

MaxEnt distribution \(p(x) \) belongs to a \textit{parametric family} of distributions called an \textit{exponential family} [1, 8, 3].

Canonical probability density function of an exponential family (EF):

\[p(x; \theta) = \exp \left(\langle \theta, t(x) \rangle - F(\theta) \right) \]

\(\langle a, b \rangle = a^\top b \): scalar product
\(\theta \in \Theta \): natural parameter
\(\Theta \): natural parameter space
\(t(x) \): sufficient statistics
\(F(\theta) = \log \int p(x; \theta)dx \): log-normalizer [1]
Dual parameterizations of exponential families

A distribution $p(x; \theta)$ of an exponential family can be parameterized equivalently either using the

- natural coordinate system θ,

- expectation coordinate system $\eta = E_p(x; \theta)[t(x)]$ (also called moment coordinate system)

The two coordinate systems are linked by the Legendre transformation:

$$F^*(\eta) = \sup_{\theta} \{ \langle \eta, \theta \rangle - F(\theta) \}$$

$$\eta = \nabla F(\theta), \quad \theta = \nabla F^*(\eta)$$

In practice, when $F(\theta)$ is not available in closed-forms, conversion $\theta \leftrightarrow \eta$ is approximated numerically [8].
Differential entropy of exponential families

Closed-form when the dual Legendre convex conjugate function is in closed-form:

\[H(p(x; \theta)) = -F^*(\eta(\theta)) \]

More general form when allowing an auxiliary carrier measure term [9]
Strategy to get MaxEnt Upper Bounds (MEUBs)

Rationale: Any other distribution with density $p'(x)$ different from the MaxEnt distribution $p(x)$ and satisfying all the D moment constraints $E[t_i(X)] = \eta_i$ have smaller entropy:

$$H(p'(x)) \leq H(p(x))$$

with $p(x) = p(x; \theta)$.

Recipe for building MaxEnt Upper Bounds on arbitrary density $q(x)$:

- Choose sufficient statistics $t_i(x)$ so that the differential entropy $H(p(x; \eta))$ of the induced maxent distribution $p(x; \theta)$ is in closed-form (or can be unbounded easily)

- Compute the moment coordinates $\eta_i = E_q[t_i(x)]$, and deduce that $H(q(x)) \leq H(p(x; \eta))$
Absolute Monomial Exponential Family

\[p_l(x; \theta) = \exp \left(\theta |x|^l - F_l(\theta) \right), \quad x \in \mathbb{R} \quad (4) \]

for \(\theta < 0 \).

Exponential family \((t(x) = |x|^l)\) with log-normalizer:

\[F_l(\theta) = \log 2 + \log \Gamma \left(\frac{1}{l} \right) - \log l - \frac{1}{l} \log(-\theta), \quad (5) \]

\[\Gamma(u) = \int_0^{\infty} x^{u-1} \exp(-x) dx \] generalizes the factorial:

\[\Gamma(n) = (n - 1)! \text{ for } n \in \mathbb{N} \]
Differential entropy of AMEFs

The entropy expressed using the θ-parameter is:

$$H_l(\theta) = \log 2 + \log \Gamma \left(\frac{1}{l} \right) - \log l + \frac{1}{l} (1 - \log(-\theta)),$$

$$= a_l - \frac{1}{l} \log(-\theta),$$

(6)

where $a_l = \log 2 + \log \Gamma \left(\frac{1}{l} \right) - \log l + \frac{1}{l}$.

The entropy expressed using the η-parameter is:

$$H_l(\eta) = \log 2 + \log \Gamma \left(\frac{1}{l} \right) - \log l + \frac{1}{l} (1 + \log l + \log \eta),$$

$$= b_l + \frac{1}{l} \log \eta,$$

(7)

with $b_l = \log \frac{2\Gamma(\frac{1}{l}) (el)^{\frac{1}{l}}}{l}$.
A series of MaxEnt Upper Bounds (MEUBs)

For any continuous RV X, MaxEnt entropy Upper Bound (MEUB) U_l:

$$H(X) \leq H_l^n \left(E_X \left[|X|^l \right] \right)$$

Are all UBs useful?
That is, can we build a RV X so that $U_{l+1} < U_l$?
(Answer is yes!)
AMEF MEUBs for Gaussian Mixture Models

Density of a mixture model with k components:

$$m(x) = \sum_{c=1}^{k} w_c p_c(x)$$

Gaussian distribution:

$$p_i(x) = p(x; \mu_i, \sigma_i) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp \left(-\frac{(x - \mu_i)^2}{2\sigma_i^2} \right),$$

$\mu_i = E[X_i] \in \mathbb{R}$: mean parameter

$\sigma_i = \sqrt{E[(X_i - \mu_i)^2]} > 0$: standard deviation

To upper bound $H(X) \leq H_\eta^\eta \left(E_X \left[|X|^\ell \right] \right)$, we need to compute the raw absolute geometric moments $E_X \left[|X|^\ell \right]$ for a GMM.
Raw absolute geometric moments of a GMM

Technical part (integration by parts and solving recurrence)

$$A_l(X) = \begin{cases}
\sum_{c=1}^{k} w_c \sum_{i=0}^{\left\lceil \frac{l}{2} \right\rceil} \left(\binom{l}{2i} \mu_c \sigma_c^{2i} \frac{\Gamma(1+2i)}{\sqrt{\pi}} \right) \\
= \sum_{c=1}^{k} w_c \sum_{i=0}^{\left\lceil \frac{l}{2} \right\rceil} \left(\binom{l}{2i} \mu_c \sigma_c^{2i} (2i - 1)!! \right) \\
\sum_{c=1}^{k} w_c \sum_{i=0}^{l} \left(\frac{n}{i} \right) \mu_c \sigma_c^i \left(I_i \left(-\frac{\mu_c}{\sigma_c} \right) - (-1)^i I_i \left(\frac{\mu_c}{\sigma_c} \right) \right)
\end{cases}
$$

for even \(l \),

$$\sum_{c=1}^{k} w_c \sum_{i=0}^{l} \left(\frac{n}{i} \right) \mu_c \sigma_c^i \left(I_i \left(-\frac{\mu_c}{\sigma_c} \right) - (-1)^i I_i \left(\frac{\mu_c}{\sigma_c} \right) \right)$$

for odd \(l \).

where \(n!! \) denotes the double factorial: \(n!! = \prod_{k=0}^{\left\lceil \frac{n}{2} \right\rceil - 1} (n - 2k) = \sqrt{\frac{2n+1}{\pi}} \Gamma \left(\frac{n}{2} + 1 \right) \), and:

$$I_i(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^i \exp \left(-\frac{1}{2} x^2 \right) \, dx,$$

$$I_i(a) = \frac{1}{\sqrt{2\pi}} \left(a^{i-1} \exp \left(-\frac{1}{2} a^2 \right) \right) + (i - 1) I_{i-2}(a),$$

with the terminal recursion cases:

$$I_0(a) = 1 - \Phi(a) = \frac{1}{2} \left(1 - \text{erf} \left(\frac{a}{\sqrt{2}} \right) \right) = \frac{1}{2} \text{erfc} \left(\frac{a}{\sqrt{2}} \right),$$

$$I_1(a) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} a^2 \right).$$
Laplacian MEUB for a GMM \((l = 1)\)

AMEF for \(l = 1\) is the Laplacian distribution

The differential entropy of a Gaussian mixture model
\(X \sim \sum_{c=1}^{k} w_c p(x; \mu_c, \sigma_c)\) is upper bounded by:

\[
H(X) \leq U_1(X)
\]

\[
U_1(X) = \log \left(2e \left(\sum_{c=1}^{k} w_c \left(\mu_c \left(1 - 2\Phi\left(-\frac{\mu_c}{\sigma_c}\right)\right) + \sigma_c \sqrt{\frac{2}{\pi}} \exp\left(-\frac{1}{2} \left(\frac{\mu_c}{\sigma_c}\right)^2\right)\right)\right)\right).
\]
Gaussian MEUB for a GMM ($l = 2$)

AMEF for $l = 2$ is the Gaussian distribution

The differential entropy of a GMM $X \sim \sum_{c=1}^{k} w_c p(x; \mu_c, \sigma_c)$ is upper bounded by:

$$H(X) \leq U_2(X) = \frac{1}{2} \log \left(2\pi e \sum_{c=1}^{k} w_c ((\mu_c - \bar{\mu})^2 + \sigma_c^2) \right),$$

with $\bar{\mu} = \sum_{c=1}^{k} w_c \mu_c$.
Vanilla approximation method: Monte-Carlo

Estimate $H(X)$ using \textit{Monte-Carlo (MC) stochastic integration}:

$$\hat{H}_s(X) = -\frac{1}{s} \sum_{i=1}^{s} \log p(x_i), \quad (8)$$

where \(\{x_1, \ldots, x_s\}\) is an iid set of variates sampled from \(X \sim p(x)\).

MC estimator \(\hat{H}_s(X)\) is \textit{consistent}:

$$\lim_{s \to \infty} \hat{H}_s(X) = H(X)$$

(convergence in probability)

However, no deterministic bound, can be above or below true value.
Experiments: Laplacian vs Gaussian MEUBs

\[k = 2 \text{ to } 10 \text{ for } \mu_i, \sigma_i \sim_{iid} U(0, 1), \text{ averaged on 1000 trials.} \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>Average error</th>
<th>Percentage of times (U_1(X) < U_2(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5401015778688498</td>
<td>32.7</td>
</tr>
<tr>
<td>3</td>
<td>2.7397146972652484</td>
<td>39.2</td>
</tr>
<tr>
<td>4</td>
<td>3.4333962273074774</td>
<td>47.9</td>
</tr>
<tr>
<td>5</td>
<td>0.9310683623797987</td>
<td>49.9</td>
</tr>
<tr>
<td>6</td>
<td>0.5902956910979954</td>
<td>52.1</td>
</tr>
<tr>
<td>7</td>
<td>0.7688142345093779</td>
<td>53.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2982994538560814</td>
<td>53.8</td>
</tr>
<tr>
<td>9</td>
<td>0.1955843679792208</td>
<td>56.8</td>
</tr>
<tr>
<td>10</td>
<td>0.1797637053023196</td>
<td>59.9</td>
</tr>
</tbody>
</table>

Important to *recenter the GMMs* so that they have zero expectation (as AMEFs): This does not change the entropy. If not, the 30\%+ rates fall significantly to less than 10\%.
Are all AMEF MEUBs useful for GMMs?

- For zero-centered GMMs, only Laplacian or Gaussian MEUB is useful,

- For arbitrary GMMs, each bound can be the tightest one ($k = 2$, with GMM mean 0 and two symmetric components with small standard deviation).
Zero-centered GMMs

\(U_1(X) < U_2(X) \) iff

\[
\log 2e \sqrt{\frac{2}{\pi}} \bar{\sigma}_1 \leq \log \sqrt{2\pi e} \bar{\sigma}_2.
\]

\[
\frac{\bar{\sigma}_1}{\bar{\sigma}_2} \leq \frac{\pi}{2\sqrt{e}} \approx 0.9527
\]

\(\bar{\sigma}_1 \): arithmetic weighted mean, \(\bar{\sigma}_2 = \sqrt{\sum_{i=1}^{k} w_i \sigma_i^2} \): quadratic mean

weighted quadratic mean dominates weighted arithmetic mean:

\[
\frac{\bar{\sigma}_1}{\bar{\sigma}_2} \leq 1.
\]

\(k = 1 \): \(\sigma > \frac{2\sqrt{e}}{\pi} \) (ie., \(\sigma > 1.0496 \))
Zero-centered GMMs: \(U_{l+2} < U_l \)?

Geometric raw (even) moments coincide with the central (even) geometric moments

\[
H(X) \leq H^\eta_l(A_l(X)) = b_l + \frac{1}{l} \log z_l + \log \bar{\sigma}_l,
\]

\[
E_X[X^l] = 2^{\frac{l}{2}} \frac{\Gamma\left(\frac{1+l}{2}\right)}{\sqrt{\pi}} \left(\sum_{i=1}^{k} w_i \sigma_i^l \right) = A_l(X).
\]

\(\bar{\sigma}_l: l\text{-th power mean: } \bar{\sigma}_l = \left(\sum_{i=1}^{k} w_i \sigma_i^l \right)^{\frac{1}{l}} \)

\[
\frac{\bar{\sigma}_{l+2}}{\bar{\sigma}_l} \geq 1 \Rightarrow \log \frac{\bar{\sigma}_{l+2}}{\bar{\sigma}_l} \geq 0
\]

\(\rightarrow \) not possible (see arXiv).
Arbitrary GMMs: Consider 2-component GMM

\[m(x) = \frac{1}{2} p(x; -\frac{1}{2}, 10^{-5}) + \frac{1}{2} p(x; \frac{1}{2}, 10^{-5}) \]

\[H(MC) = -9.400517405407735 \]
1. MEUB: 0.999999999958284
2. MEUB: 0.7257913528258293
3. MEUB: 0.5863457882025702
4. MEUB: 0.498301754470345
5. MEUB: 0.4365134932716713
6. MEUB: 0.390267211711506
7. MEUB: 0.3510343073850886
8. MEUB: 0.32490700997403515
9. MEUB: 0.30754399801125
10. MEUB: 0.2803860698295638
11. MEUB: 0.2629389102447494
12. MEUB: 0.2479955106708096
13. MEUB: 0.23451890956649502
14. MEUB: 0.2275989562550735
15. MEUB: 0.212640783562905
16. MEUB: 0.2028296978359989
17. MEUB: 0.19429672922288133
18. MEUB: 0.18653647716356042
19. MEUB: 0.17944416377804479
20. MEUB: 0.1729335449648154
21. MEUB: 0.16693293142890442
22. MEUB: 0.16138220185001972
23. MEUB: 0.1562305292037145
24. MEUB: 0.15143462788690765
25. MEUB: 0.14695738668300817
26. MEUB: 0.14276679134420478
27. MEUB: 0.1383506718452443
28. MEUB: 0.13513799065560295
29. MEUB: 0.13165433203558718
30. MEUB: 0.12836540080724268
31. MEUB: 0.12525467216646413
Contributions and conclusion

- Introduced the class of *Absolute Monomial Exponential Families* (AMEFs) with closed-form log-normalizer,

- Reported closed-form formulæ for the differential entropy of AMEFs,

- Calculated the exact *non-centered absolute geometric moments* for a Gaussian Mixture Model (GMMs),

- Apply MaxEnt Upper Bounds induced by AMEFs to GMMs: All upper bounds are potentially useful for non-centered GMMs (But for zero centered-GMMs, only the first two bounds are enough.)

- Recommend min(U_1, U_2) in applications! (not only U_2)

- Reproducible research with code
 https://www.lix.polytechnique.fr/~nielsen/MEUB/
L.D. Brown.

Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory.

Thomas M Cover and Joy A Thomas.

Elements of information theory.

Aapo Hyvarinen, Juha Karhunen, and Erkki Oja.

Independent component analysis.

Edwin T Jaynes.

Information theory and statistical mechanics.

Edwin T Jaynes.

Information theory and statistical mechanics II.

Joseph V Michalowicz, Jonathan M Nichols, and Frank Bucholtz.

Calculation of differential entropy for a mixed Gaussian distribution.

Handbook of Differential Entropy.

Ali Mohammad-Djafari.

A Matlab program to calculate the maximum entropy distributions.
Frank Nielsen and Richard Nock.
Entropies and cross-entropies of exponential families.

Sumio Watanabe, Keisuke Yamazaki, and Miki Aoyagi.
Kullback information of normal mixture is not an analytic function.
Differential entropy of a location-scale family

Density of a location-scale distribution: \(p(x; \mu, \sigma) = \frac{1}{\sigma} p_0 \left(\frac{x-\mu}{\sigma} \right) \)
\(\mu \in \mathbb{R} \): location parameter and \(\sigma > 0 \): dispersion parameter.

Change of variable \(y = \frac{x-\mu}{\sigma} \) (with \(dy = \frac{dy}{\sigma} \)) in the integral to get:

\[
H(X) = \int_{x=-\infty}^{+\infty} -\frac{1}{\sigma} p_0 \left(\frac{x-\mu}{\sigma} \right) \left(\log \frac{1}{\sigma} p_0 \left(\frac{x-\mu}{\sigma} \right) \right) dx,
\]
\[
= \int_{y=-\infty}^{+\infty} -p_0(y)(\log p_0(y) - \log \sigma),
\]
\[
= H(X_0) + \log \sigma.
\]

→ always independent of the location parameter \(\mu \)
Non-central even geometric moments of a normal distribution

| Even l | $A_l = E [|X|^l] = E [X^l] = \sum_{i=0}^{\lfloor l/2 \rfloor} \binom{l}{2i} (2i - 1)!! \mu^{l-2i} \sigma^{2i}$ |
|----------|--|
| 2 | $\mu^2 + \sigma^2$ |
| 4 | $\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$ |
| 6 | $\mu^6 + 15\mu^4\sigma^2 + 45\mu^2\sigma^4 + 15\sigma^6$ |
| 8 | $\mu^8 + 28\mu^6\sigma^2 + 210\mu^4\sigma^4 + 420\mu^2\sigma^6 + 105\sigma^8$ |
| 10 | $\mu^{10} + 45\mu^8\sigma^2 + 630\mu^6\sigma^4 + 3150\mu^4\sigma^6 + 4725\mu^2\sigma^8 + 945\sigma^{10}$ |
Non-central odd geometric moments of a normal distribution

$$A_l = E[|X|^l] = C_l(\mu, \sigma)\sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + D_l(\mu, \sigma)\text{erf}(\frac{\mu}{\sqrt{2}\sigma})$$

<table>
<thead>
<tr>
<th>Odd l</th>
<th>A_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sigma \sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + \mu \text{erf}(\frac{\mu}{\sqrt{2}\sigma})$</td>
</tr>
<tr>
<td>3</td>
<td>$(2\sigma^3 + \mu^2 \sigma)\sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^3 + 3\mu^2 \sigma^2)\text{erf}(\frac{\mu}{\sqrt{2}\sigma})$</td>
</tr>
<tr>
<td>5</td>
<td>$(8\sigma^5 + 9\mu^2 \sigma^3 + \mu^4 \sigma)\sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^5 + 10\mu^3 \sigma^2 + 15\mu^4 \sigma^2)\text{erf}(\frac{\mu}{\sqrt{2}\sigma})$</td>
</tr>
<tr>
<td>7</td>
<td>$(48\sigma^7 + 87\mu^2 \sigma^5 + 20\mu^4 \sigma^3 + \mu^6 \sigma)\sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^7 + 21\mu^5 \sigma^2 + 105\mu^3 \sigma^4 + 105\mu^6 \sigma^6)\text{erf}(\frac{\mu}{\sqrt{2}\sigma})$</td>
</tr>
<tr>
<td>9</td>
<td>$(384\sigma^9 + 975\mu^2 \sigma^7 + 345\mu^4 \sigma^5 + 35\mu^6 \sigma^3 + \mu^8 \sigma)\sqrt{\frac{2}{\pi}} \exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^9 + 36\mu^7 \sigma^2 + 378\mu^5 \sigma^4 + 1260\mu^3 \sigma^6 + 945\mu^8 \sigma^8)\text{erf}(\frac{\mu}{\sqrt{2}\sigma})$</td>
</tr>
</tbody>
</table>
Maxima program

\begin{verbatim}
assume (theta<0);
F(theta) := log(integrate(exp(theta*abs(x)^5),x,-inf,inf));
integrate(exp(theta*abs(x)^5-F(theta)),x,-inf,inf);
\end{verbatim}
Maxima program

/* Binomial expansion */
binomialExpansion(i, p, q) := if i = 1 then p+q
else expand((p+q)*binomialExpansion(i-1, p, q)) ;

/* The standard distribution (here, normal) */
p0(y) := exp(-y^2/2)/sqrt(2*pi);

/* Even moment */
absEvenMoment(mu, sigma, l) :=
ratsimp(integrate(factor(expand(binomialExpansion(l, mu, y*sigma)))*p0(y), y, -inf, inf));

/* Odd moment */
absOddMoment(mu, sigma, l) :=
ratsimp(integrate(factor(expand(binomialExpansion(l, mu, y*sigma)))*p0(y), y, -mu/sigma, inf)
-integrate(factor(expand(binomialExpansion(l, mu, y*sigma)))*p0(y), y, -inf, -mu/sigma));

/* General : Maxima does not give a closed-form formula because of the absolute value */
absMoment(mu, sigma, l) :=
ratsimp(integrate(abs(factor(expand(binomialExpansion(l, mu, y*sigma))))*p0(y), y, -inf, inf));

assume(sigma>0);
assume(mu>0); /* Maxima needs to branch condition */
absEvenMoment(mu, sigma, 8);
absOddMoment(mu, sigma, 7);
absMoment \((\mu, \sigma, l) := \\
\text{ratsimp} \left(\text{ratsimp} \left(\int_{-\infty}^{\infty} \text{factor} \left(\text{expand} \left(\text{binomialExpansion} \left(l, \mu, y \sigma \right) \right) \right) \ p_0(y) \ dy \right) \right) \)

\(\sigma > 0\)

\(\mu > 0\)

\[
\begin{align*}
\frac{105}{\sqrt{\pi}} \sigma^8 & + \frac{420}{\sqrt{\pi}} \mu^2 \sigma^6 & + \frac{210}{\sqrt{\pi}} \mu^4 \sigma^4 & + \frac{28}{\sqrt{\pi}} \mu^6 \sigma^2 & + \frac{1}{\sqrt{\pi}} \mu^8 \\
- \frac{1}{2} \mu^2 & & - \frac{1}{2} \mu^2
\end{align*}
\]

\[
\begin{align*}
\frac{32}{\sqrt{\pi}} \sigma^7 & + \frac{87}{\sqrt{\pi}} \mu \sigma^5 & + \frac{52}{\sqrt{\pi}} \mu^3 \sigma^3 & + \frac{1}{\sqrt{\pi}} \mu^5 & & + \frac{105}{\sqrt{\pi}} \mu \text{erf} \left(\frac{\mu}{\sqrt{2} \sigma} \right) \sigma^6 \\
- \frac{1}{2} \mu^2 & & - \frac{1}{2} \mu^2 & & - \frac{1}{2} \mu^2 & & - \frac{1}{2} \mu^2
\end{align*}
\]

\[
\begin{align*}
\frac{105}{\sqrt{\pi}} \mu^3 \text{erf} \left(\frac{\mu}{\sqrt{2} \sigma} \right) \sigma^4 & + \frac{21}{\sqrt{\pi}} \mu^5 \text{erf} \left(\frac{\mu}{\sqrt{2} \sigma} \right) \sigma^2 & + \frac{1}{\sqrt{\pi}} \mu^7 \text{erf} \left(\frac{\mu}{\sqrt{2} \sigma} \right)
\end{align*}
\]